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Abstract: Oil spills bring great damage to the environment and, in particular, to coastal ecosystems.
The ability of identifying them accurately is important to prompt oil spill response. We propose
a semi-automatic oil spill detection method, where texture analysis, machine learning, and adaptive
thresholding are used to process X-band marine radar images. Coordinate transformation and
noise reduction are first applied to the sampled radar images, coarse measurements of oil spills are
then subjected to texture analysis and machine learning. To identify the loci of oil spills, a texture
index calculated by four textural features of a grey level co-occurrence matrix is proposed. Machine
learning methods, namely support vector machine, k-nearest neighbor, linear discriminant analysis,
and ensemble learning are adopted to extract the coarse oil spill areas indicated by the texture
index. Finally, fine measurements can be obtained by using adaptive thresholding on coarsely
extracted oil spill areas. Fine measurements are insensitive to the results of coarse measurement.
The proposed oil spill detection method was used on radar images that were sampled after an oil spill
accident that occurred in the coastal region of Dalian, China on 21 July 2010. Using our processing
method, thresholds do not have to be set manually and oil spills can be extracted semi-automatically.
The extracted oil spills are accurate and consistent with visual interpretation.

Keywords: X-band marine radar; oil spill detection; texture analysis; machine learning;
adaptive algorithm

1. Introduction

Oil spills can result in immediate and long-term environmental damage that can last for decades.
In oil spill accidents, crude oil at and beneath the water’s surface can quickly spread and reach the
coastal region under particular weather and oceanographic conditions [1–5]. Therefore, quick and
accurate oil spill detection is a critical step for oil spill cleaning. Marine radars are normally installed
in vessels for navigation [6]. The marine radar images used in this study are convenient and expedient
to obtain. In marine radar images, the intensity of the backscattered signal in an oil spill area is weaker
than in the neighboring waters, a phenomenon that can be exploited to detect oil spills [7]. Although
several commercial systems have been developed, such as the oil spill detection (OSD) system of Miros
(Norwegian company) [8,9], the SeaDarQ radar system of Nortek Netherlands [10], and the sigma S6
OSD system of Rutter (Canada company) [11], oil spill extraction methods are seldom publicized due
to commercial competition.

Some scholarly studies have been published on how to use marine radar to detect oil spills in the
1980s [12,13], but the detailed oil spill segmentation method was not yet introduced. Zhu et al. studied
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how the OSD method [14] can be used to access oil spills information. In their study, multiple radar
images were used to map and predict the attenuation of signal intensity in the images, and a manually
set global threshold was applied to extract the oil spills. In another study, Liu et al. proposed an
adaptive thresholding method [15] to visualize the oil spills on individual sampled radar images.
Similarly, a manually set threshold had to be used to select an available area for oil spill segmentation.
Xu et al. detected oil spills on radar images by dual thresholds [16], however, the thresholds still have
to be manually selected in this research.

In this paper, we propose a semi-automatic oil spill detection method using texture analysis,
machine learning, and adaptive thresholding. In our method, manually set thresholds are not
required. The process of the proposed method is shown in Figure 1, and the proposed method will
be described in Sections 2–4. Section 2 describes how radar images were obtained and preprocessed
by erasing co-channel interference, reducing small objects turbulence. Section 3 explores a coarse
measurement method. An index calculated by the grey level co-occurrence matrix (GLCM) will be
used to indicate areas containing oil spills. Machine learning methods are used to separate the oil spill
area. In Section 4, fine measurements of the oil spill area will be obtained by an adaptive thresholding
method. In Section 5, extraction results of oil spills based on several radar images are carried out,
and the performance of the proposed method is discussed in Section 6. Finally, Section 7 presents
the conclusions.

Figure 1. Flow chart of marine radar image processing for oil spill detection.

2. Radar Image Preprocessing

2.1. Radar Image Collection

An oil spill accident took place on the shore in Dalian on July 16 2010. A large amount of oil
was poured into ocean. The teaching–training ship “YUKUN” owned by Dalian Maritime University
was commissioned to measure the oil spills in the coastal area. An X-band marine radar from Sperry
Marine (Head Office in London, UK) was installed on “YUKUN”, and radar images were used to
detect oil spills. The main parameters of X-band marine radar are shown in Table 1. Figure 2a shows
the navigation route of the teaching–training ship “YUKUN” on 21 July 2010. Figure 2b shows an
example of radar images obtained at the seashore near Dalian Bay at 23:19:32, covering the area
shown in red in Figure 2a. The scanning radius of the radar image is 0.75 nautical miles. For more
straightforward analysis, the marine radar images were plotted on a Cartesian coordinate system
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instead of the polar coordinate system. In the Cartesian coordinate, the horizontal axis indicates angles
of incidence, the vertical axis distances from the pole, and the brightness the strength of the reflected
signal. Figure 3 shows the transformed image of Figure 2b in the Cartesian coordinate and the image
size is 512 × 2048.

Table 1. Main parameters of X-band marine radar.

Name Parameters

Working frequency 9.41 GHz
Antenna length 8 ft
Detection range 0.5–12 nautical miles

Horizontal direction 360◦

Vertical direction ±10◦

Peak power 25 kW
Pulse width 50 ns/250 ns/750 ns

Pulse repetition frequency 3000 Hz/1800 Hz/785 Hz

Figure 2. (a) Navigation route of ship “YUKUN” on 21 July 2010, (b) sampled marine radar image at
23:19:32 (red area of Figure 2a).

Figure 3. Converted radar image in the Cartesian coordinate.

2.2. Denoising

As shown in Figure 3, co-channel interference manifests as bright band effects. An index calculated
by convolutional filters [15] was used to detect co-channel interference. The expression of the index is
shown as follow:

C(i, j) =
∑
(N−1)/2
k=−(N−1)/2 I(i, j + k)Vc(k)

∑
(N−1)/2
l=−(N−1)/2 I(i + l, j)Vr(l)

, (1)
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where C(i, j) is the index value, Vc is the N by 1 convolutional filter, Vr is the 1 by N convolutional
filter, and N is the length of the convolutional filter, which is set as an odd number.

Based on the calculated index value, the co-channel interference was detected by Otsu’s
method [17,18]. Then, the identified co-channel interference was erased by a mean filter with a 1 by
N matrix [19]. The radar image erasing co-channel interference is shown in Figure 4, with two
convolutional filters [1, 1, 1, 1, 1, 1, 1] and [1; 1; 1; 1; 1; 1; 1], and mean filter [1/6, 1/6, 1/6, 0, 1/6,
1/6, 1/6]. According to the convolutional filter method, only the pixel value at the loci of co-channel
interference is modified.

Figure 4. Radar image with co-channel interference removed.

Though co-channel interference has been removed, Figure 4 is still littered with bright speckles
caused by reflected signals of small objects. These speckles are considered as noise in image processing
for oil spill detection. To reduce speckles, the Fields-of-Experts (FoE) model [20] was introduced.
In this method, bright speckles are extracted as prior information. To gain information on the speckles,
binarization with the threshold calculated by Otsu’s method was first used to identify the bright areas,
then connected components (objects) of fewer than 200 pixels were extracted as speckles. 3 × 3 square
patches with 8 filters were adopted to clean up the bright speckles. After introducing the FoE model,
the intensity of bright speckles was reduced significantly. A radar image with co-channel interference
erased and bright speckles reduced is shown in Figure 5.

Visual interpretation by experts is one of the most common methods for oil spill detection [21].
One visual interpretation result in the Cartesian coordinate of Figure 2 is shown in Figure 6.

Figure 5. Radar image with co-channel interference erased and bright speckles reduced.

Figure 6. One visual interpretation results of oil spills (shown in red) in the Cartesian coordinate of
radar image sampled at 23:19:32, 21 July 2010.



Remote Sens. 2019, 11, 756 5 of 19

3. Coarse Measurement

3.1. Texture Analysis

Texture is taken as a repetitive pattern to describe a limited area [22]. The GLCM was first
introduced to describe statistical features in texture analysis by Haralick [23]. The GLCM is determined
as a two-dimensional histogram of grey levels for a pair of pixels, which are separated by a fixed
spatial relationship. Texture analysis of TerraSAR-X data has been used to enhance the land use/cover
(LULC) classification near Pirna, Saxony, Germany [24]. GLCM was utilized to detect the landslides on
levees based on Synthetic Aperture Radar (SAR) data [25]. Besides land applications, GLCM texture
analysis was also used for oil spill monitoring from ERS-2 SAR image in the Bohai Sea, China [26].
Based on these studies, it can be said that texture analysis is an effective tool for hazard mapping.
Therefore, texture analysis using GLCM is introduced to oil spill detection by marine radar imaging.
Compared with SAR images, the intensity of reflected signal from sea surface grabbed by X-band
marine radar is affected by distance, roughness of sea surface, and incidence [27,28]. Hence, texture
characteristics of SAR images cannot be applied to X-band marine radar images directly.

Four textural features—energy, entropy, contrast, and correlation—were proved to be
independent [29]. To decrease the computational complexity of the 4 texture features on marine
radar images, the subsampling window was set to 32 × 32 pixels, the off-set step was set to 4 pixels,
and the number of gray levels used in GLCM was set to 32. Based on these settings, the pooling images
of 4 textural features are shown in Figure 7. Figure 7a shows the entropy. The bright area in the radar
image has a small reflection value. Oil spill area is included in the small entropy value area. Figure 7b
shows the energy, both oil spill areas and areas farther away in the radar image have weak energy,
which is not useful in distinguishing oil spills independently. Figure 7c shows the correlation value,
the oil spill area and places farther away have high correlation values, but it is difficult to extract the oil
spill area. The textural feature of contrast is shown in Figure 7d. The contrast value in the oil spill area
is high, but it cannot provide oil spill extraction information alone. Based on Figure 7, it is impossible
to extract the oil spill areas with single texture features.

Figure 7. Cont.
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Figure 7. Textural features of grey level co-occurrence matrix (GLCM) on the marine radar images:
(a) Entropy, which indicates oil spills in small value; (b) energy, which indicates oil spills and far
distance areas in small value; (c) correlation, which indicates oil spills and certain areas farther away in
high value; (d) contrast, which indicates oil spills and areas farther away in high value.

To highlight the region containing oil spills, an index calculated by 4 independent textural features
of GLCM is proposed to distinguish oil slicks. In this calculation, we assume that the contribution of
each feature is equivalent. Then, the value of each textural feature is normalized from 0 to 1, which is
expressed as:

Norm(M) =
M−min(M)

max(M)−min(M)
, (2)

where M is the value of textural features on the marine radar image. In the texture analysis shown in
Figure 7, the contrast between oil spill area and water area is not significant. A logarithmic operation
can be used to carry out the contrast enhancement [30]. Therefore, the logarithmic operations are used
on the four independent textural features. Finally, according to the performance of each textural feature
for oil spill detection, an index I used for oil spill detection by marine radar imaging is calculated
as follows:

I = log(1−Norm (ENT)) + log(1−Norm (ENE)) + log(Norm (COR)) + log(Norm (CON)), (3)

where ENT is entropy, ENE is energy, COR is correlation, and CON is contrast.
According to Equation (3), the proposed texture index of Figure 5 is shown in Figure 8. In Figure 8,

the color of the area containing oil slicks is warmer than that of other areas. This observation can be
used to carry out oil spill segmentation.

Figure 8. Texture index for oil spill detection on the marine radar image, which indicates oil spills in
the dark red area.

3.2. Classification by Machine Learning Algorithm

After processing using the proposed texture index, the marine radar image can be divided into
two categories—one is the area containing oil spill and the other is the area without oil spill. To separate
the area containing oil spill, machine learning is introduced. In this process, we do not need to test
multiple thresholds to pick the best one for oil spill segmentation. In machine learning, several
methods can be used for classification, and the following methods will be discussed in this section:
Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Linear Discriminant Analysis (LDA) and
Ensemble Learning (EL).
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3.2.1. SVM

SVM has been successfully used for classification [31–33] and pattern recognition [34]. To separate
two classes by SVM, the goal is to find the hyperplane that maximizes the minimum distance between
any data point. Suppose there is a training dataset containing l points {xi, yi}l

i , with the input data
xi ∈ Rn and the corresponding data yi ∈ {−1,+1} as two classes. In feature space, SVM models can
be expressed as:

y(x) = ωT ϕ(x) + b, (4)

where ω is a weight vector of the same dimension as the feature space, ϕ(·) is the nonlinear mapping
to map the input vector into a so-called higher dimensional feature space, and b is the bias.

The expression used for classification using the kernel trick is:

y(x) = sign
(
∑ αiyiK(x, xi) + b

)
, (5)

where αi are support vectors, and K
(

xi, xj
)
= ϕ(xi)

T ϕ
(
xj
)

is the kernel trick.
Several types of kernels, such as linear, polynomial, splines, radius-based function, and multi-layer

perceptrons, can be used within the SVM.

3.2.2. k-NN

The k-NN algorithm is one of the most commonly used classifiers [35,36]. Suppose datasets
(X1, Y1), (X2, Y2), (X3, Y3), . . . are independent and identically distributed pairs taking values in Rd.
A classifier C is a Borel measurable function from Rd to {1, 2}, with the interpretation that the point
x ∈ Rd is classified as belonging to class C(x). Let

(
X(1), Y(1)

)
, . . . ,

(
X(n), Y(n)

)
denote a permutation

of the training sample (X1, Y1), . . . , (Xn, Yn) such that ‖ X(1) − x ‖≤ . . . ≤‖ X(n) − x ‖, where ‖ · ‖
is an arbitrary norm on Rd. We define the k-NN classifier to be

CkNN(x) =

 1, if
k
∑

i=1

I{Y{i}=1}

k ≥ 1
2 ,

2, otherwise,
(6)

where I is the group indicator vector.
In the k-NN method, each sample belonging to the test dataset is classified according to the closest

k samples belonging to the training dataset. Among the class numbers obtained from k samples, the
class having the maximum number is determined as the class of the sample [36]. The distances between
the test samples and the training samples can be calculated as Euclidean, Manhattan, and Hamming.

3.2.3. LDA

LDA is a normally used method for classification [37–39]. Suppose a set of N samples {x1, x2,
. . . , xN} are in an n-dimensional space, and the samples belong to m classes {C1, C2, . . . , Cm}. The
between-class scatter Sb and within-class scatter Sw are defined as:

Sb =
m

∑
i=1

Ni(µi − µ)(µi − µ)T, (7)

Sw =
m

∑
i=1

∑
xk∈Ci

(xk − µi)(xk − µi)
T, (8)

where µ is the total sample mean vector, µi is the mean sample of class Ci, and Ni is the number of
samples in class Ci.
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LDA finds a projection matrix A by maximizing the following objective function:

ALDA = argmax
A

∣∣ATSb A
∣∣

|ATSw A|
. (9)

According to Equation (9), LDA seeks directions on which data points of different classes are far
from each other while requiring data points of the same class to be close to each other.

3.2.4. Ensemble Learning (EL)

EL is an effective method to enhance classification performance and accuracy in the remote
sensing community [40–42]. The EL method is a paradigm of machine learning, and it focuses on
using multiple learners to solve a problem. In the EL method, instead of finding the best individual
learner to solve the problem, better performance can be reached by combining multiple weak learners’
outputs. An EL system is constructed by two key components—a specific strategy to build an ensemble
using diverse classifiers, and a rule to combine multiple outputs. Diversity of multiple classes is the
foundation for constructing an effective EL system. The normally used method supports different
training sets produced by a resampling technique, such as Boosting and Bagging.

3.2.5. Oil Spill Detection on the Texture Analyzed Image

To carry out machine learning methods, training data is first needed to gauge the parameters
in different machine learning methods. Then, classification is carried out by the trained model of
machine learning methods. On the image of proposed texture index, the selected data for training
is shown in Figure 9. The data in the blue polygons are used as oil spills, and the data in the green
polygons are taken as water. In the SVM method, the type of kernel is polynomial with the degree
as 3. In the k-NN method, the value of k is 10 and the Euclidean distance is used. In the EL method,
the LogitBoost method is adopted, after which decision tree learner is used. Parameters used in the
LDA method are deduced by training data. Based on training information and set parameters, the oil
spill detection carried out by SVM, k-NN, LDA, and EL are shown in Figure 10. In Figure 10, white
areas are oil spills and black areas are water. The oil spill areas in Figure 10a,b are roughly the same as
the dark red areas in Figure 8. Figure 10d indicates the oil spill areas containing many small speckle
noises. The classification results of oil spill areas in Figure 10c are the most different from the visual
interpretation results in Figure 8, including a large number of water areas.

In machine learning, the image of texture index is pooled by texture analysis. Therefore, the
detected region of oil spills on the image of texture index should be restored to the original size. The
restored areas containing oil spills extracted by 4 machine learning methods are shown in Figure 11.
As shown in Figure 11, oil spill areas detected by textural analysis and machine learning contain lots
of water area. Hence, fine measurements of oil spills are required.

Figure 9. Selected training data for 4 machine learning methods, where green polygons are training
data of water and blue polygons are training data of oil spills.
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Figure 10. Oil spill segmentation based on the image of proposed texture index by 4 machine learning
methods: (a) Support Vector Machine (SVM), which indicates oil spills roughly the same as the visual
interpretation in Figure 8; (b) k-Nearest Neighbor (k-NN), which indicates oil spills roughly the same
as the visual interpretation in Figure 8; (c) Linear Discriminant Analysis (LDA), which indicates oil
spills containing many water areas; and (d) Ensemble Learning (EL), which indicates oil spills with
many noisy speckles.

Figure 11. Cont.
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Figure 11. Selected areas containing oil spills and the surrounding water on the marine radar image in
its original size by 4 machine learning methods: (a) SVM, (b) k-NN, (c) LDA, (d) EL.

4. Fine Measurements

As mentioned before, the intensity of the reflected signal from the sea surface is affected by
distance, roughness of sea surface, and incidence, oil spills cannot be extracted accurately with
a one-fit-all threshold. Adaptive thresholding methods [43–47] are normally used in image processing
for segmentation. To obtain accurate oil spill information based on selected regions by textural analysis
and machine learning, the adaptive thresholding method proposed by Bradley et al. [48] was used.

In the adaptive thresholding method, an average of 32 by 32 pixels around the current pixel was
calculated. If the gray value of current pixel was η% less than the average, the current pixel, which
would be otherwise taken as water area, was determined as oil spill area.

The oil spills extracted by the adaptive thresholding method have common areas with the result
of visual interpretation. The higher the proportion of the common area to the total area detected by
thresholding method (γa) is, the greater the correct rate of the adaptive thresholding method will be.
The larger the proportion of the common area to the total area of visual interpretation results (γv)
is, the more comprehensive the recognition by the adaptive thresholding method will be. Oil spill
extraction by adaptive thresholding method varies by different values of η. Therefore, a value of η%
resulting in both a high γa and a high γv is needed. Table 2 shows the values of γa and γv by the
adaptive thresholding method using different values of η. As can be seen from Table 2, when η% <
35%, γa is less than 0.7; when η% > 35%, γv is less than 0.7; only when η% = 35%, γa is larger than 80%
and γv is around 80%. Hence, η = 35 was used in the adaptive thresholding method.

The spilled oil floating on the water appears as continuous zones. If detected oil spill areas were
small and not continuous, they were determined as incorrect extraction and removed as noise. On the
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voyage, ship wake disturbs sea surface considerably, resulting in dark area in radar images. Therefore,
areas containing the ship wake cannot be distinguished from oil spills area on the marine radar image.
In our research, the areas containing the ship wake were excluded in oil spill detection. This area was
set from 30◦ portside to 30◦ starboard in the stern. Finally, the fine measurements of oil spills in the
Cartesian coordinate are shown in Figure 12, and the detected oil spills plotted on the original radar
image are shown in Figure 13.

Table 2. The value of γa and γv using different values of η in the adaptive thresholding method.

η Machine Learning Methods
SVM k-NN LDA EL

0.10
γa 0.3014 0.2899 0.1744 0.2494
γv 0.8788 0.8833 0.9496 0.9287

0.15
γa 0.3574 0.3411 0.2189 0.3122
γv 0.8771 0.8815 0.9278 0.927

0.20
γa 0.4403 0.4351 0.3169 0.4105
γv 0.8462 0.8506 0.9161 0.896

0.25
γa 0.5176 0.5111 0.4315 0.4972
γv 0.8215 0.8348 0.8809 0.88

0.30
γa 0.6184 0.6143 0.582 0.6338
γv 0.805 0.8053 0.8719 0.8623

0.35
γa 0.8009 0.813 0.876 0.8096
γv 0.7782 0.7788 0.7936 0.8161

0.40
γa 0.9485 0.9484 0.9597 0.9583
γv 0.6632 0.6641 0.547 0.6237

0.45
γa 0.9738 0.9736 0.972 0.9713
γv 0.5032 0.5035 0.4597 0.4651

0.50
γa 0.9766 0.9763 0.9762 0.9764
γv 0.3685 0.3682 0.318 0.3547

Figure 12. Cont.
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Figure 12. Fine measurement results of oil spills (shown in white) based on coarse extracted areas by
4 machine learning methods in the Cartesian coordinate: (a) SVM, (b) k-NN, (c) LDA, (d) EL.

Figure 13. Fine measurements of oil spills (shown in red) marked on the marine radar image in the
polar coordinate based on coarse extracted areas by 4 machine learning methods: (a) SVM, (b) k-NN,
(c) LDA, (d) EL.

5. Results

In the actual measurement of oil spills by marine radar images, interferences, such as wind
turbulence and swells, appear as dark areas. To exclude these interferences, a ship-borne thermal
infrared sensor produced by Zhejiang Dali Technology Co. Ltd (Hangzhou, Zhejiang, China) was used,
as shown in Figure 14a. Wind turbulence and swells do not generate temperature differences but oil
spills do. According to the thermal infrared image captured at 23:19, 21 July 2010 on “YUKUN” in
Figure 14b, the region captured by radar images contains spilled oil instead of interferences.
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Figure 14. An oil spill image monitored by thermal infrared sensor: (a) Thermal infrared sensor used
in this study, (b) an image captured by thermal infrared sensor.

To evaluate the performance of oil spill detection based on the proposed method of texture
analysis, machine learning, and adaptive thresholding, another two randomly selected marine radar
images were processed to detect oil spills, shown in Figure 15. The radar images erasing co-channel
interference and reducing the small speckles of Figure 15 in the Cartesian coordinate are shown in
Figure 16. Figure 16 shows that the processed images are cleaner than original sampled radar images.
The low noise images are helpful for oil spill detection by textural analysis. The visual interpretation
results of Figure 15 are shown in Figure 17. The calculated value of texture index for oil spill detection
based on Figure 16 is shown in Figure 18, which indicates the oil spill areas as deep red color. On the
image of proposed texture index, several areas were selected for machine learning training and they
are also plotted on Figure 18. The final oil spill detection results using four machine learning methods
are shown in Figure 19. The oil spill detection work was carried out on a personal computer and the
basic configurations are shown in Table 3. Using this computer, the processing time of the classification
using four machine learning methods are shown in Table 4.

Figure 15. Two sampled radar images: (a) Sampled at 23:15:45, 21 July 2010 and (b) sampled at 23:19:22,
21 July 2010.
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Figure 16. Preprocessed radar images of: (a) Figure 15a and (b) Figure 15b.

Figure 17. The visual interpretation results of oil spills (shown in red) in two radar images:
(a) Figure 15a and (b) Figure 15b.

Figure 18. Cont.
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Figure 18. Texture index image of: (a) Figure 16a and (b) Figure 16b. The green polygons are training
data of water, and the blue polygons are training data of oil spills.

Table 3. The basic configurations of the personal computer used for oil spill detection.

Configuration Type

CPU Inter®Core™ i5-4300U
Memory 8 GB

Display card Intel HD Graphics 4400
Hard disc Solid State Drive 128 GB

Table 4. Calculation time of four machine learning methods on three marine radar images.

Machine Learning Method Processing Time (s)
Figure 9 Figure 18a Figure 18b

SVM 0.122 0.077 0.315
k-NN 0.327 0.330 0.670
LDA 0.028 0.023 0.217
EL 2.403 2.659 3.567

Figure 19. Cont.
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Figure 19. Final oil spill detection results (shown in red): (a) Figure 15a using SVM, (b) Figure 15b using
SVM, (c) Figure 15a using k-NN, (d) Figure 15b using k-NN, (e) Figure 15a using LDA, (f) Figure 15b
using LDA, (g) Figure 15a using EL, and (h) Figure 15b using EL.

6. Discussion

The sampled radar image in Figure 2 is processed and shown in Sections 2–4 in detail. As shown
in Figure 11, the coarse measurement of oil spills using the four machine learning methods contains
many water areas, and the extracted areas between the four machine learning methods are not same.
As shown by the fine measurement results in Figure 13, all extracted oil spill areas based on coarse
measurement are congruent with visual interpretation, and the fine extracted oil spill areas between
four machine learning methods have little difference. Figure 19a,c,e,g are oil spill detection results of
the radar image in Figure 15a using SVM, k-NN, LDA, and EL, respectively. Figure 19a,c,e,g shows
that the oil spill detection results using textural analysis, machine learning, and adaptive thresholding
methods are comparable to the visual interpretation shown in Figure 17a. Compared with the oil
spill detection results between Figure 19a,c,e,g, it is difficult to identify the visual difference between
the four machine learning methods used. The oil spill extraction results of Figure 15b are shown in
Figure 19b,d,f,h. It also shows that the extracted oil spill areas in Figure 19b,d,f,h are consistent with
the visual interpretation shown in Figure 17b, and there are few differences in the final results between
the four machine learning methods. Table 4 shows that the processing time of EL is significantly longer
than the other three methods, and the LDA needs the shortest processing time of the four methods.

In the oil spill detection methods proposed by Zhu et al. [14] and Xu et al. [16], a threshold was
needed for each radar image, which was manually selected. In the proposed method, no manually
selected threshold is needed. Comparing Figure 13 with Figure 11, the fine measurement by adaptive
thresholding is insensitive to the coarse measurement results by texture analysis and machine learning,
which means that the manually selected training areas for machine learning are insensitive to the final
oil spill extracted results. Therefore, the proposed method is robust.
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The value γa in the three radar images is shown in Table 5. Table 5 indicates that over 80% of
the extracted oil spill areas by the proposed method are the same as the visual interpretation results.
Although the extracted oil spill areas by the proposed method are close to the visual interpretations,
some narrow oil bands are not considered.

Table 5. The value <γa in the three radar images.

Radar Images The Value γa
SVM k-NN LDA EL

Figure 2 0.8009 0.813 0.876 0.8096
Figure 15a 0.8144 0.83 0.861 0.8379
Figure 15b 0.8731 0.873 0.8295 0.8669

7. Conclusions

In this paper, we proposed an oil spill detection method using texture analysis, machine learning,
and adaptive thresholding based on marine radar images. First, preprocessing of radar images was
carried out by coordinate transforming and denoising. Then coarse detection of oil spills was executed
using texture analysis and machine learning. In texture analysis, a texture index of oil spills calculated
by energy, entropy, correlation, and contrast was proposed to indicate the location of oil spills. Four
machine learning methods—support vector machine, k-nearest neighbor, linear discriminant analysis,
and ensemble learning—were used to classify oil spills on radar images coarsely. In these four methods,
ensemble learning would need the longest time, while linear discriminant analysis was the fastest.
Finally, fine measurements were carried out using the adaptive thresholding method.

The proposed method was used on the radar images sampled in an oil spill accident in Dalian on
21 July 2010. According to the proposed method, manually set thresholds were not required, oil spill
detection was achieved semi-automatically by selecting training data on the image of the proposed
texture index. The selected training data affected oil spill detection by machine learning in coarse
measurement. However, the fine measurement is insensitive to the results of coarse measurement.
Therefore, the proposed semi-automatic oil spill detection method is robust. Over 80% of the extracted
oil spill areas by the proposed method are the same as the visual interpretation results, thus it is an
effective method to be applied for oil spill detection in emergency accidents. Compared with visual
interpretation results, the proposed method had to exclude some narrow oil bands. Future work
should increase the narrow oil band extraction capacity.
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