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Abstract: Continuous, long-term sequence, land surface albedo data have crucial significance for
climate simulations and land surface process research. Sensors such as the Moderate-Resolution
Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer (VIIRS) provide
global albedo product data sets with a spatial resolution of 500 m over long time periods. There is
demand for new high-resolution albedo data for regional applications. High-resolution observations
are often unavailable due to cloud contamination, which makes it difficult to obtain time series albedo
estimations. This paper proposes an “amalgamation albedo” approach to generate daily land surface
shortwave albedo with 30 m spatial resolution using Landsat data and the MODIS Bidirectional
Reflectance Distribution Functions (BRDF)/Albedo product MCD43A3 (V006). Historical MODIS
land surface albedo products were averaged to obtain an albedo estimation background, which was
used to construct the albedo dynamic model. The Thematic Mapper (TM) albedo derived via direct
estimation approach was then introduced to generate high spatial-temporal resolution albedo data
based on the Ensemble Kalman Filter algorithm (EnKF). Estimation results were compared to field
observations for cropland, deciduous broadleaf forest, evergreen needleleaf forest, grassland, and
evergreen broadleaf forest domains. The results indicated that for all land cover types, the estimated
albedos coincided with ground measurements at a root mean squared error (RMSE) of 0.0085–0.0152.
The proposed algorithm was then applied to regional time series albedo estimation; the results
indicated that it captured spatial and temporal variation patterns for each site. Taken together, our
results suggest that the amalgamation albedo approach is a feasible solution to generate albedo data
sets with high spatio-temporal resolution.

Keywords: land surface albedo; time series; high spatio-temporal resolution; EnKF

1. Introduction

Land surface albedo, which is defined as the fraction of incident solar radiation (0.3–5.0 µm)
reflected by land surfaces [1], is widely used in ground energy balance analysis, weather climate
prediction, and climate change research [2,3]. Existing global albedo products include the
Advanced Very High-resolution Radiometer (AVHRR) [4–6], Earth Radiation Budget Experiment
(ERBE) [7], Moderate-Resolution Imaging Spectroradiometer (MODIS) [8], Multi-angle Imaging
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SpectroRadiometer (MISR) [9], POLarization and Directionality of the Earth’s Reflectances
(POLDER) [10–12], Meteorological Satellites (Meteosat) [13], and Global Land Surface Satellite
(GLASS) [14], are all conventional production. Their spatial resolution ranges from several hundred
meters to several kilometers, which is much larger than the characteristic patch size for forest
management, the typical field size of global agriculture, or the dominant extent of impervious surfaces
in urban areas [15]. There is yet demand for new land surface albedo estimation methodologies which
span longer time periods without sacrificing high spatio-temporal resolution.

Previous researchers have proposed various techniques for estimating high spatial resolution
albedo with satellite imagery. Liang [16], for example, used an extensive radiative transfer model
as a conversion formula for calculating total shortwave albedo, total-, direct-, and diffuse-visible,
and near-infrared broadband albedos for several narrowband sensors. He [17,18] later applied
the algorithm to the Chinese environment and disaster monitoring and forecasting small satellite
constellation (HJ) data and Landsat series data to derive 30 m resolution albedo data. The results were
validated at Surface Radiation (SURFRAD), AmeriFlux, Baseline Surface Radiation Network (BSRN),
and Greenland Climate Network (GC-Net) sites; the direct estimation algorithm did provide accurate
albedo estimations for different land cover types with root mean squared errors (RMSEs) ranging from
0.022 to 0.034 for snow-free surfaces. Shuai et al. [19] proposed an algorithm for generating land surface
albedo at 30 m resolution using Landsat and the anisotropy information from Moderate-Resolution
Imaging Spectroradiometer (MODIS) observations. Their estimated albedos showed an absolute
accuracy of ± 0.02–0.05, RMSE less than 0.03, and a bias less than 0.02 by comparison against
field measurements. Zhang [20] used the Spatial and Temporal Adaptive Reflectance Fusion
Model (STARFM) to blend spatial information from fine-resolution shortwave albedo images and
temporal information from coarse-resolution shortwave albedo images to successfully estimate high
spatio-temporal resolution albedos. These methods all center on the use of Landsat imagery to obtain
high spatial resolution albedos. However, Landsat data sets are affected by the long satellite return
cycle and cloud contamination, and do not readily provide surface albedo data with high temporal
resolution or time series albedo data.

Data assimilation is an effective approach to time series land surface parameter estimation. It is a
mechanism to integrate various direct or indirect observation information types of varying resolution
and from different sources to automatically adjust the model trajectory which provides accurate
dynamic model state and model predictions. The Kalman filter algorithm was first developed in
1960 and later used to estimate time series soil moisture, leaf area index (LAI), and other surface
parameters [21,22]. Li [23] proposed the Dual ensemble Kalman Filter (Dual EnKF) to estimate a time
series LAI; Dual EnKF represents an updated LAI estimation with more sensitive parameters (LAI,
Markov parameter, weight of the first price function, and weight of the second price function) in
the dynamic model. Zhou [24] built a data-based mechanistic assimilation technique by coupling a
revised universal data-based mechanistic model (LAI_UDBM) with a vegetation canopy radiative
transfer model (PROSAIL). The Ensemble Kalman filtering algorithm was applied to enhance the LAI
estimation accuracy.

Many other researchers have achieved notable results in this field. Shi [25] used the China Land
Soil Moisture Date Assimilation System (CLSMDAS) to perform an assimilation experiment on soil
moisture based on the EnKF and Land Surface Process Model; their results reasonably reflected the
spatial and temporal distribution of soil moisture. Jin [26] used the EnKF algorithm coupled with the
canopy radiative transfer model (ACRM) to accurately predict time series LAI data from a phenological
model. Xu [27] proposed an algorithm that integrated Direct Insertion (DI) and Deterministic Ensemble
Kalman Filter (DEnKF) methods to assimilate snow depth with surface albedo; the solution was shown
to improve the precision of snow depth simulations. Although the EnKF assimilation method has been
widely used in the inversion of many surface parameters, it has not yet been applied to the estimation
of land surface albedos.
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In this paper, we propose a time series high-resolution land surface albedo estimation algorithm
based on the ensemble Kalman filter. The albedo dynamic model was established based on historical
MODIS albedo products and Thematic Mapper (TM) observations, and albedo data was recursively
updated via the EnKF method.

2. Study Areas and Data

2.1. Study Areas

We selected 18 FluxNet sites as our research areas. Among them, 15 sites were used for estimating
and verifying the single-point time series albedo for five different land cover types (cropland; deciduous
broadleaf forest; evergreen needleleaf forest; grassland; evergreen broadleaf forest). Five sites were
selected as the central pixel for estimating and verifying regional time series albedos for each land
cover type.

Due to the long satellite reentry cycle and cloud contamination, satellite data and ground data did
not always match temporally. We also needed to match ground data with TM data in the time series to
conduct this study, so the year of data used for each site in the experiment was inconsistent . Table 1
provides further information.

Table 1. Ground stations used for validation.

Site Name Network Latitude (◦) Longitude (◦) Land Cover Type Data Year

CA-Oas * FluxNet 53.6289N 106.1978W DBF 2009
IT-Col * FluxNet 41.8494N 13.5881E DBF 2009
IT-Ro2 * FluxNet 42.3903N 11.9209E DBF 2010
US-Bar + AmeriFlux 44.0646N 71.2881W DBF 2009
FR-Pue * FluxNet 43.7414N 3.5958E EBF 2009
MY-Pso * FluxNet 2.9730N 102.3062E EBF 2009

AU-Wac *+ FluxNet 37.4259S 145.1878E EBF 2007
CH-Dav * FluxNet 46.8153N 9.8559E ENF 2009
FI-Hyy * FluxNet 61.8474N 24.2948E ENF 2009
NL-Loo * FluxNet 52.1666N 5.7436E ENF 2010
IT-Sro + FluxNet 43.7279N 10.2844E ENF 2009
DE-Kli * FluxNet 50.8931N 13.5224E CRO 2009
IT-Bci * FluxNet 40.5238N 14.9574E CRO 2010
FR-Gri * FluxNet 48.8442N 1.9519E CRO 2010

US-Arm + AmeriFlux 36.6058N 97.4888W CRO 2010
AU-DaP * FluxNet 14.0633S 131.3181E GRA 2008
US-Ib2 * AmeriFlux 41.8406N 88.2410W GRA 2010

AU-Stp *+ FluxNet 17.1507S 133.3502E GRA 2009

Cropland (CRO); deciduous broadleaf forest (DBF); evergreen needleleaf forest (ENF); grassland (GRA); evergreen
broadleaf forest (EBF). Sites with * are used for estimating and verifying single-point time series albedo, sites with +
are selected as the central pixel for estimating and verifying regional time series albedo.

2.2. Ground Verification Data

FluxNet is a global network of micrometeorological flux measurement sites that measure the
exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. It was
established based on other observation networks including AmeriFlux, CarboEurope, AsiaFlux,
OzFlux, and a few independent sites. At present, over 140 Flux tower stations are operating on
a long-term and continuous basis. Data and site information are available online at the FluxNet
website, http://fluxnet.fluxdata.org/. Land surface types include temperate conifer and broadleaf
(deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands,
and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70 ◦N to
30 ◦S. The FluxNet site records upwelling and downwelling shortwave radiative flux data with a
half-hour observation period. For our purposes, we selected observation data from 0.5 hours before

http://fluxnet.fluxdata.org/
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and after noon. The shortwave albedo of the site was calculated as the ratio of upwelling radiation
and downwelling radiation. After eliminating invalid observations (filled data) and data with albedos
less than 0 or greater than 1, each selected site was associated with sufficient time series ground albedo
data for validation.

2.3. Landsat Satellite Data

Landsat sensors have continuously imaged the land surface since the 1970s [28]. The TM onboard
Landsat 4 and 5 satellites with seven spectral bands sampled the shortwave range at a spatial resolution
of 30 m from 1984 to 2011. TM images are an important remote sensing data source for earth resources
and environments as per their high spatial resolution, spectral resolution, and positioning accuracy.
We downloaded all available Landsat data during the ground measurement period. The distribution
of available high-quality TM data corresponding to each FluxNet site within one year is shown in
Figure 1. Abundant cloud-free TM data can be obtained for individual pixels; TM data are prone to
contamination over larger areas. As shown in Figure 1, all of the sites have more than five available
cloud-free TM images within one year. This provides reliable observation data for the effective
operation of the EnKF algorithm.
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2.4. MCD43A3 BRDF/Albedo Product

MCD43A3 (Version 6) (V006) is the latest version of the MODIS Bidirectional Reflectance
Distribution Functions (BRDF)/Albedo product. It includes bi-hemispherical reflectance (white-sky
albedo) and directional-hemispherical reflectance (black-sky albedo) with a 500 m spatial resolution.
The daily albedo is composed of 16-day multi-angle observations, where the Julian date of each specific
file represents the 9th day of the 16-day retrieval period. MCD43A3 was produced based on the
Algorithm for Model Bidirectional Reflectance Anisotropies of the Land Surface (AMBRALS), which
uses all atmospherically corrected, high-quality, cloudless surface reflectance over the course of 16 days
to achieve the best-fit surface bidirectional reflectivity via Ross–Li kernel models [29,30]. The Ross–Li
kernel model is expressed as follows:

R(θ, ϑ, φ, Λ) = fiso(Λ) + fvol(Λ)Kvol(θ, ϑ, φ) + fgeo(Λ)Kgeo(θ, ϑ, φ) (1)
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where R(θ, ϑ, φ, Λ) is the frontal reflectivity with a solar zenith angle θ, observed zenith angle ϑ,
relative azimuth φ, and wavelength band Λ. fiso(Λ) is the proportion of uniform scattering in all
directions, fvol(Λ) is the proportion of body scattering, fgeo(Λ) is the proportion of geometric optical
scattering, Kvol(θ, ϑ, φ) is the RossThick kernel, and Kgeo(θ, ϑ, φ) is the LiSparse kernel.

MODIS V006 products provide shortwave black-sky albedo and white-sky albedo [31], which
must be converted into blue-sky shortwave albedo according to the proportion of sky scattered
light [32].

α(θi, λ) = (1− s(θiτ(λ)))αbs(θi, λ) + s(θiτ(λ))αws(θi, λ) (2)

where α(θi, λ) is the blue-sky albedo of the band λ at a solar zenith angle of θ, αbs(θi, λ) is the black-sky
albedo, αws(θi, λ) is the white-sky albedo, and s(θi, τ(λ)) is the fraction of diffuse skylight when the
solar zenith angle is θ, which is a function of aerosol optical depth and can be calculated using a
predetermined look-up table (LUT) based on the 6S atmospheric radiative transfer code [33].

There was some data missing in MCD43A3 due to retrieval failure, so we used a gap filling
algorithm to construct a continuous albedo data set. Missing data was filled with the average of all
pixel values of the same land type in a given window (10 × 10 pixels) centered on the target pixel.

3. Methods

Our data assimilation methodology included an EnKF which recursively updated the albedo
by coupling the direct estimation approach with a dynamic model. A flow chart of this process is
shown in Figure 2. The existing high quality multi-year MODIS albedo product data is averaged to
compute albedo climatology, then a simple dynamic model is established based on the climatology to
evolve albedo over time and to forecast short-range albedos. A direct estimation approach is used to
generate high-resolution TM albedo data. The EnKF technique is used to estimate real-time albedos by
combining the predictions from the dynamic model and the high-resolution TM data.

The proposed method was essentially a three-step process:
(1) Obtain MODIS albedo data for the historical period of interest, correct them geometrically,

convert black-sky albedo (BSA) and white-sky albedo (WSA) to blue-sky albedo using the scatter ratio,
resample to a 30 m resolution, and average the albedo of the historical period to obtain the time-series
shortwave albedo climatology;

(2) Transform the cloudless TM image into a 30 m spatial resolution TM shortwave albedo via
direct estimation algorithm; and

(3) Use the EnKF method with the MODIS time series albedo as the background field and input
the TM high spatial resolution albedo data to estimate the high spatial resolution albedo.

This method effectively integrated the time change information from MODIS data and spatial
Landsat data to resolve issues with the low spatial resolution, sparsity, and long return cycle of MODIS
data, as well as the sparsity of Landsat data to ultimately obtain high spatial and temporal resolution
albedo data.
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Figure 2. Real-time albedo inversion based on ensemble Kalman Filter (EnKF).

3.1. Validation Site Land Surface Heterogeneity

Previous researchers have verified the consistency of global land surface albedo products against
ground measurement data at MODIS 500 m spatial scales at SURFRAD, Atmospheric Radiation
Measurement Southern Great Plains (ARM/SGP) [34], and Cloud and Radiation Testbed-Southern
Great Plains (CART/SGP) sites [35]. The MODIS albedo product has high accuracy with RMSE of
0.013–0.018. However, these verifications are based on homogeneous sites using point observations.
In heterogeneous surface areas, site observations do not represent the MODIS pixels area, and thus
the remote sensing products cannot be fully verified. As such, we must analyze site representativeness
before validation with remote sensing data [36]. The heterogeneity of surface space describes the
extent of surface heterogeneity within a certain range and reflects the heterogeneity in the area around
FluxNet sites [37,38]. In this study, we used variogram model parameters and the relative coefficient
of variation (RCV) to analyze the effect of heterogeneity in the area around FluxNet sites according to
Roman [39].
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The isotropic spherical variogram model was used to evaluate landscape heterogeneity with 1.0
km2, 1.5 km2, and 2.0 km2 TM albedo subsets. The TM albedo was obtained using the direct estimation
approach proposed by He [18]. The spherical model formula is:

γsph(h) =

{
c0 + c·(1.5 · h

a − 0.5(h
a )

3
) for 0 ≤ h ≤ a

c0 + c for h > a
(3)

The range a defines the distance from a point beyond which there is no further correlation of a
biophysical property associated with that point. It has also been described as the average patch size of
the landscape when the curve reaches the high-level distance [40]. The data are correlated within the
range of a. Otherwise, the data are not correlated with each other; that is, the observations outside
the range do not affect the estimation results. For a 1.0 km2 subset amax = 690 m, for a 1.5 km2 subset
amax = 1050 m, and for a 2.0 km2 subset amax = 1410 m. The sill c is the variation of ordinates when the
abscissa is greater than the variable range. The nugget c0 is the variation of the abscissa at 0, which
describes the variability of the data at the microcosmic level.

The coefficient of variation (CV) is the ratio of the standard deviation to the mean. It is independent
of spatial scale and can provide an estimate of the overall variability of data. The relative CV is:

Rcv =
CV1.5x −CVx

CVx
; x = 1.0 km2 (4)

where Rcv is the relative CV, CV1.5x is the CV calculated from a 1.5 km2 TM albedo subset at the center
of a given observation station, and CVx is the CV calculated from a 1.0 km2 TM albedo subset at
the center of the given observation station. If a site is more representative, it has a weaker spatial
heterogeneity, a similar landscape around the site, and Rcv closer to 0.

3.2. Albedo Dynamic Model Construction

Albedo climatology is determined by the average of albedo over historical period. In this study,
we calculated albedo climatology from high-quality multi-year MODIS albedo data as follows:

ALBt
′ =

1
n

n

∑
k=1

ALBt(k) (5)

where ALBt
′ is the albedo value corresponding to time t on the background field curve, ALBt(k) is the

MODIS albedo value at time t, and n is the year.
The albedo climatology describes the general change tendency of albedo in a one-year period.

There may be some deviation from the ground measurements due to precipitation, anthropogenic
activities, and other reasons. Albedo climatology simulates the general trend of land surface albedo
and supplies the albedo estimation background. When new observations are available, the EnKF
updates the estimation to produce a final value. We constructed our dynamic model based on the
climatology used to forecast the short-range albedo:

ALBt = Ft × ALBt−1 (6)

where ALBt represents the current estimated albedo, ALBt−1 represents the estimated albedo at the
preceding time step, and Ft is:

Ft = 1 +
1

ALBt + ε
× dALBt

dt
(7)

where ε = 10−3 prevents negative denominators and dALBt
dt is the growth rate of albedo at time t.

The dynamic model was adopted from Samain et al. [41] and Xiao et al. [42].
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3.3. High-Resolution Albedo Estimation

Surface albedo can be obtained directly from Top of Atmosphere (TOA) reflectance without
requiring atmospheric correction [43]. The apparent surface albedo was separated from the inherent
surface albedo, and the empirical relationship between the simulated surface albedo and TOA
reflectance was built based on extensive radiative transfer simulations under a variety of atmospheric
conditions. To mitigate errors from nonlinearities, a new statistical relationship was extended to
generate albedo measurements from the spectral bands and three broadbands [18], including the
visible (300–700 nm), near-infrared (NIR; 700–3000 nm), and total shortwave ranges (300–3000 nm),
based on the following linear equation:

αλ = ∑ ρTOA
i ·ci + c0 (8)

where αλ is the surface albedo for the spectral range of λ, ρTOA
i is the TOA reflectance for spectral band

i, and ci and c0 are the regression coefficients.
The direct estimation approach simulates TOA reflectance from radiative transfer information.

Here, the sensor spectral response functions obtained from the USGS and the MODIS BRDF database
were used as inputs for the 6S radiative transfer code, aerosol types, water vapor, ozone, and CO2.
The linear regression coefficients for each of the geometrical combinations were precalculated and
stored in LUTs for operational use. TOA reflectance was simulated using the regression models in the
LUT. Cloud-free observations were selected from the quality control document, then the TM surface
albedo was obtained from TOA reflectance data. The direct estimation approach has been successfully
applied to Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper
Plus (ETM+), and Operational Land Imager (OLI) sensors [18]; extensive validations have also been
carried out at SURFRAD, AmeriFlux, BSRN, and GC-Net sites. The direct estimation approach can
generate reliable surface albedo estimates with accuracy of 0.022 to 0.034 in terms of RMSEs over
snow-free surfaces [44,45]. The direct estimation approach has also been used in OLI and Gaofen-1
satellite (GF-1) surface albedo inversion [46,47].

3.4. Ensemble Kalman Filter

In the 1960s, Kalman [48,49] and Bucy [48] developed the Kalman filter algorithm for optimal
estimation of system states according to a linear system state equation and combined input and
output system observation data. The traditional Kalman filter algorithm is often applied to linear
problems [50,51]. It can estimate the state of a dynamic system from a series of data with measurement
noise when the measurement variance is known, and is a common component in communication,
navigation, guidance, and control applications. The dynamic model and observer in a Kalman filter
are typically expressed as follows:

xk+1 = Mkxk + ωk+1 (9)

zk = Hkxk + υk (10)

where xk is the dynamic model state vector; Mk ∈ Rn×n is the system matrix, which changes with
time; zk represents observed values, and Hk is a time-varying observation system which transforms
the state variable into the same value as the observed value. In this study, the observed values and
state variable were land surface albedos. ωk is the model error and υk is observed noise. The albedo
has different levels of inversion accuracy over time.

The predicted value of the state variable of the dynamic model at time k is defined as x f
k . The data

assimilation step serves to calculate the optimal estimate xa
k of the state variables at moment k by

combining the predicted value x f
k and the observed value zk of the model state variables at time k, xa

k ,

the optimal estimate of xk, is a linear function of x f
k and zk.

xa
k = x f

k + Kk[zk − Hkx f
k ] (11)
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where zk − Hkx f
k is observed incrementally (innovation) and Kk is the Kalman gain matrix.

Data assimilation is conducted to minimize the variance of xa
k by determining Kk. The update

equations for state variables and covariance are:

xa
k = x f

k + Kk[zk − Hkx f
k ] = x f

k + P f
k HT

k (HkP f
k HT

k + Rk)
−1

(zk − Hkx f
k ) (12)

Pa
k = P f

k − Kk HkP f
k = P f

k − P f
k HT

k (HkP f
k HT

k + Rk)
−1

HkP f
k (13)

where xa
k is the updated state variable value, x f

k is the predicted state variable, P f
k is the predicted

covariance, and Pa
k is the posterior covariance of state variables.

The ensemble Kalman filter algorithm is a complex sequential data assimilation method which
produces non-linear models within a Kalman gain scheme. In the ensemble Kalman filter algorithm,
x is defined as an n-dimensional model state vector and A = (x1, x2, . . . xN) ∈ <n×N is composed
of a collection of N model state vectors. The ensemble mean is stored in each column of A ∈ <n×N .
The ensemble perturbation matrix is defined as:

A′ = A− A (14)

The ensemble covariance matrix is:

Pe =
A′(A′)T

N − 1
(15)

Given a vector of measurements d ∈ <m, where m is the number of measurements, the observation
matrix is expressed as follows:

D = (d1, d2, . . . dN) ∈ <m×N (16)

Then, the standard analysis equation of the Kalman filter is:

Aa = A + A′A′T HT(HA′A′T H + R)
−1

(D− HA) (17)

where H ∈ <n×N (m is the number of measurements) is the measurement operator relating the model
state to the observations; R ∈ <m×m is the observational error covariance matrix, and D ∈ <m×N is
the disturbance observation matrix set. H is a linear operator which is not suitable in cases when the
operator is nonlinear. By augmenting the model state vector, xT = [xT , hT(x)]. Y ∈ <n×N is defined
as the set matrix of augmented state vectors and Y′ ∈ <n×N is the set disturbance matrix of state
variables. As such, the analytical equation is:

Aa = A + A′Y′
T

H′
T
(HY′Y′

T
H′

T
+ R)

−1
(D− HY) (18)

where H is a new observation operator. The analytical equation can solve the data assimilation problem
for which the observation operator is nonlinear.

In this study, we calculated the background error covariance from albedo background and
field observations. We calculated observation error covariance values from TM albedo and field
observations over the time series described above. At each time point, we generated N random noises
with 0 as the mean and 0.01 as the variance. N is the ensemble number, which affects estimation
efficiency and accuracy: A larger N has a lower calculation efficiency and higher accuracy. We set the
ensemble number to 100 and added random noise values to the background field values of the current
date to obtain N new background field values [52]. Finally, we calculated the standard deviation
between the N background field values and the ground field observations as the background field
errors of the current date. Observation errors were simulated in the same way. Figure 3 shows the
error setting for the background field, TM albedo, and field observation for the AU-DaP site in 2008.
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The “background error” and “TM error” labels represent simulated background errors and TM albedo
errors, respectively. For regional use, the error of the area was set based on the error of the center pixel;
a normal distribution noise with a mean of 0 and a variance of 0.01 was added for each pixel.
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Surface albedo is the only model state here, so the size of the model state vector n is equal to
1. We used the albedo value derived by the direct estimation approach as the albedo observation
data, so the sum of the size of the model state vector n and the number of measurement equivalents
added to the original model state vector was equal to 2. The simulated albedo was included in the
state variables of the dynamic model at the given observation time. We emphasize the observation
error covariance R here as per its significant influence on the Aa value. In our experiments, all the
errors were simulated at site AU-DaP.

3.5. Validation

We used the time series field-observed local noon albedos at FluxNet sites to validate the albedos
estimated with the EnKF algorithm. Spatially continuous albedos derived by the direct estimation
approach were selected to validate the accuracy of estimated albedo at the regional scale. Single-point
verification was performed at 15 FluxNet sites as shown in Table 1; the spatial representativeness of
each FluxNet site was investigated according to the method described in Section 3.1. Three statistical
parameters, coefficient of determination (R2), RMSE and Bias, were used to evaluate the results. If the
maximum error between the estimated result and the validated value did not exceed 0.05, the estimated
result was considered accurate enough for scientific use [1,53].
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4. Results

4.1. Land Surface Heterogeneity at FluxNet Sites

Figure 4a shows an 18 km subset TM albedo for IT-Col and a magnified image of the measurement
point and spatial boundaries of 1.0 km2 and 1.5 km2, which provides a detailed visual representation
of the landscape heterogeneity at the site. Figure 4b shows the variogram estimator (point values) for
the TM albedo subsets. The spatial variability is more obvious over the larger squared regions (1.5 km2

and 2.0 km2), and different land cover types are more likely to be found at larger separation distances.
This variogram estimator reaches an asymptote or constant variance between spatial uncorrelated
samples near the sample variance. We calculated the range and Rcv for each Flux site to determine the
heterogeneity of MODIS pixels as summarized in Table 2.

When the TM footprint increased from 1.0 km to 1.5 km, Rcv increased 0%–10% over CA-Oas,
IT-Col, IT-Ro2, FR-Pue, AU-Wac, CH-Dav, NL-Loo, DE-Kli, IT-BCi, FR-Gri, US-ARM, AU-DaP, and
US-IB2. These sites differ less from the surrounding landscape; when the TM footprint changes, Rcv

only changes slightly relative to the smaller landscapes in the surrounding regions. The size of Rcv

depends on the degree of landscape similarity within the given range. When surface heterogeneity
around the site is weak, the overall degree of stationarity between regions is similar, the overall
variability is small, and the value of Rcv is relatively low. Rcv increased 32.46% over HI-Fyy and 86.38%
over IT-Sro as the TM footprint increased from 1.0 km to 1.5 km. Based on the range of FI-Hyy beyond
the 1 km2 limit, the landscapes around the two sites are obviously different; the small lakes near FI-Hyy
are not within the 1 km2 boundary, IT-Sro is near the sea, and internal (CV1 km) regions do not include
the sea. At the US-Bar, MY-Pso, and AU-Stp stations, the results for RCV were moderate (10%–20%).
There are two types of vegetation around the three sites which include mixtures of grass and trees.
There are some grasslands located approximately 1.0 km north of the US-Bar tower and southeast
of the MY-Pso tower. A broadleaf forest is located southwest of the AU-Stp station, but the internal
(CV1 km) does not include the forest. The overall fluctuation between regions was not high—the three
sites were moderately heterogeneous.
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Figure 4. (a) Subset of 18.0 km TM albedo at IT-Col (measurement point) and spatial boundaries
of 1.0 km2 and 1.5 km2. (b) Variogram plot, spherical model (dotted curves), and sample variance
obtained via TM albedo on 25 July, 2009 for 1.0 km2 (asterisks), 1.5 km2 (diamonds), and 2.0 km2

(squares) regions.

Table 2. Rcv for selected ground sites.

Site TM Overpass Time 1 km Range 1.5 km Range Rcv

CA-Oas 10-Aug-09 71.00 m 55.00 m 5.26%
IT-Col 25-Jul-09 295.00 m 342.00 m 7.44%
IT-Ro2 03-Jul-09 260.00 m 129.00 m 5.38%
US-Bar 17-May-10 168.00 m 353.00 m 16.87%
FR-Pue 26-Jul-09 624.00 m 332.00 m 7.8%

MY-PSO 11-Sep-09 45.00 m 644.00 m 14.38%
AU-Wac 16-Apr-07 109.00 m 112.00 m 3.40%
CH-Dav 06-Aug-09 1453.00 m 396.00 m 9.11%
FI-Hyy 31-May-09 877.00 m 155.00 m 32.46%
NL-Loo 06-Sep-10 70.00 m 34.00 m 5.33%
IT-SRo 23-Jul-09 304.00 m 641.00 m 86.38%
DE-Kli 24-Aug-09 304.00 m 193.00 m 7.25%
IT-BCi 09-Oct-10 234.00 m 182.00 m 8.94%
FR-Gri 24-May-10 114.00 m 87.00 m 7.44%

US-ARM 16-Jul-11 584.00 m 393.00 m 5.53%
AU-DaP 23-Aug-09 257.00 m 422.00 m 6.74%
US-IB2 12-Sep-10 216.00 m 243.00 m 4.30%
AU-Stp 25-Aug-09 470.00 m 341.00 m 16.77%
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4.2. Estimating and Verifying Single-Point Time Series Albedo

We included five vegetated land surface types in this study: Deciduous broadleaf forest, evergreen
broad-leaved forest, evergreen coniferous forest, grassland, and farmland. Three sites were subjected
to validation for each land surface type. The results are shown in Figure 5.

The algorithm starts with cloudless TM albedo data spanning the whole year. The starting days
for each site are different, so the MODIS albedo data for different land surface types have different
degrees of overestimation and underestimation; however, they are relatively continuous in time and
all reflect the variation characteristics of surface albedo in snow-free periods. The EnKF algorithm
combines the advantages of MODIS and TM sensors. The estimated results were very close to the
directly calculated TM albedo data when adequate TM data were included. When TM data is absent,
the albedo background is used as the final estimation to maintain a complete time series. Our results
also showed that with the continuous introduction of TM observations, the errors induced by MODIS
background data could be corrected by EnKF. The albedo background is generated by resampling
MODIS albedo data.

We also evaluated the heterogeneity of the test sites (Section 4.1) within the entire MODIS 500 m
spatial scale. The results indicated that the proposed algorithm can adapt to heterogeneous surfaces
(Figure 5e,h,o).

Figure 6 shows scatter plots of the estimated albedos and ground measurements. Different colors
represent the three different sites for each land surface type.

As shown in Figure 6, RMSEs of the estimated albedos in deciduous broadleaf forest (DBF),
evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), cropland (CRO), and grassland
(GRA) were 0.0152, 0.0085, 0.0087, 0.0152, and 0.0109; the R2 values were 0.5980, 0.7061, 0.9190, 0.8191,
and 0.6911, respectively. The RMSEs for all land surface types were less than 0.02, which meets the
requirements of global and regional climate models [53]. The correlation coefficients between the
estimated surface albedos and the surface measurements were high (R2 > 0.6). The estimation results
were close to the line y = x. The accuracies of ENF and CRO were the highest among all land surface
types with R2 values of 0.9190 and 0.8191, respectively. The lowest R2 value was 0.5980 for DBF, which
can be attributed to the dispersion of TM data (Figure 1). At ENF and CRO sites, the distribution
of TM data was more uniform across the whole time series. At the DBF site, there was a slightly
longer period of missing data which prevented the albedo from being updated in a timely manner.
The estimation accuracy depended on the temporal distribution of the available TM data at a certain
degree, as temporally uniform distributed TM data led to higher estimation accuracy. Nevertheless,
the proposed algorithm greatly improves the estimation accuracy compared to field observation alone.
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Figure 5. Time series albedo estimations based on EnKF for DBF (a–c), EBF (d–f), ENF (g–i), CRO (j–l),
GRA (m–o); three sites for each surface type. Grey vertical line represents error between estimated and
measured values.



Remote Sens. 2019, 11, 753 15 of 24

Remote Sens. 2019, 11, 753 15 of 24 

 

0.6911, respectively. The RMSEs for all land surface types were less than 0.02, which meets the 
requirements of global and regional climate models [53]. The correlation coefficients between the 
estimated surface albedos and the surface measurements were high ( 2R  > 0.6). The estimation results 
were close to the line y x=  . The accuracies of ENF and CRO were the highest among all land 
surface types with 2R  values of 0.9190 and 0.8191, respectively. The lowest 2R  value was 0.5980 for 
DBF, which can be attributed to the dispersion of TM data (Figure 1). At ENF and CRO sites, the 
distribution of TM data was more uniform across the whole time series. At the DBF site, there was a 
slightly longer period of missing data which prevented the albedo from being updated in a timely 
manner. The estimation accuracy depended on the temporal distribution of the available TM data at 
a certain degree, as temporally uniform distributed TM data led to higher estimation accuracy. 
Nevertheless, the proposed algorithm greatly improves the estimation accuracy compared to field 
observation alone. 

 

 

 
Figure 6. Estimated albedos and ground measurements at AmeriFlux and Flxunet sites: (a) DBF; (b) 
EBF; (c) ENF; (d) CRO; (e) GRA. Different colors represent different sites. 

Es
tim

at
ed

 al
be

do

Es
tim

at
ed

 a
lb

ed
o

Es
tim

at
ed

 a
lb

ed
o

Es
tim

at
ed

 al
be

do

Es
tim

at
ed

 a
lb

ed
o

Figure 6. Estimated albedos and ground measurements at AmeriFlux and Flxunet sites: (a) DBF; (b)
EBF; (c) ENF; (d) CRO; (e) GRA. Different colors represent different sites.

4.3. Regional Timing Albedo Estimation and Verification

We validated the proposed assimilation algorithm on five types of land surface areas, each area
containing a ground-based station. The five stations, as mentioned above, were US-Bar, AU-Wac,
IT-Sro, US-Arm, and AU-Stp (Table 1). The results are shown in Figure 7. The daily estimation result
was difficult to display and the beginning date for each site was different, so we used nine days-worth
of estimation results from each site.
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Figure 7. Shortwave albedo maps generated by EnKF for five different land surface types. Day of year
(DOY) indicated for each albedo map. Estimations have one-day temporal resolution starting with the
first cloud-free TM image (only a portion of the results are shown).

The EnKF assimilation method uses TM albedo as observation data. The estimation is strongly
dependent on the quantity of TM albedo values. To obtain time-continuous, high spatial resolution
albedo data, the EnKF algorithm updates the background field from the first cloudless TM image;
therefore, assimilation results will be improved as more TM images become available. Figure 7 shows
the estimated time series albedos for five different land cover types. Again, the starting point of each
time series was not exactly the same as was determined by the availability of high-quality TM data.
Starting with the first cloudless TM image, the algorithm can obtain an albedo dataset with a temporal
resolution of one day and a spatial resolution of 30 m (shown here as 25-day or 35-day intervals),
thereby reflecting albedo fluctuations within a one-year period.

As verification, we compared the albedo generated by the EnKF algorithm and the TM albedo
directly estimated on the same date. Figure 8 shows that the EnKF and TM albedo results are
consistent. The scatter plot has RMSE values between 0.0031 and 0.0112, and R2 values between 0.8584
and 0.9494. One exception was the farmland area (US-Arm site), where regional estimation and TM
albedo verification results had R2 lower than the other four surface types, and RMSE higher than
other landforms. This may be due to the fact that farmland surface vegetation is more affected by
anthropogenic factors than other land surface types; the jump in surface albedo makes the deviation of
farmland albedo estimations larger than others. In this case, inducing more high-resolution images
into the assimilation process could effectively improve the albedo estimation accuracy.
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Figure 8. Shortwave albedo map generated by EnKF method with directly estimated TM albedo for
five different land surface types: (a) DBF at US-Bar site (2009); (b) EBF at AU-Wac site (2007); (c) ENF
at IT-Sro site (2009); (d) CRO at US-Arm site (2010); (e) GRA at AU-Stp site (2009). Right-hand scatter
plots show consistency between the two sets of results, as number of dots gradually decreases from red
to blue.
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The DBF, EBF, and CRO sites selected in this study are heterogeneous research areas and have
RMSE values less than 0.01 and R2 values greater than 0.9, which indicate that the algorithm is
well-suited to albedo estimation in heterogeneous areas.

5. Discussion

5.1. Accuracy of the Albedo Background

In the data assimilation algorithm, the background field is a preliminary estimate of target
parameters, which is obtained from historical and empirical data, and reflects the general variation
trend of the estimator [54]. Our EnKF algorithm results were obtained based on the optimal estimation
of the current time. The background field trend introduces an observation increment in the optimal
weight, so its accuracy is very important. We conducted spatial registration before constructing the
background; after processing, the projection mode and resolution of MODIS data were consistent
with Landsat. MODIS data actually provides background fields and dynamic models (preliminary
estimates), so errors do exist, but they are allowed under the assimilation algorithm. Surface albedo
presents a certain regularity in the growing season. We averaged the historical MODIS data, instead of
the contemporary MODIS data, as the albedo background field because MODIS data were missing
across our study area [55]. Consider the AU-DaP site as an example: The background field albedo
has the same change trend as the original MODIS albedo, but with no missing data and an overall
smoother structure. To this effect, the background field is more suitable for data assimilation.

The background field encompasses periodic albedo characteristics, but the albedo is overestimated
or underestimated due to the accuracy of MODIS products (especially in heterogeneous pixels) [56].
Under the assimilation scheme, however, the background field only provides an initial prediction
and the weight of background data is determined according to its accuracy. When the background
accuracy is low, the weight is decreased and the weight of the TM observation is increased. Therefore,
the estimation results gradually approach the field observations as the quantity of TM observations
increases; using the mean albedo of the time series as a background field is feasible and effective.

5.2. Errors Induced by TM Albedo Estimation

In this study, TM albedos derived by direct estimation were utilized as albedo observation data.
The TM albedos were used to adjust model-based predictions to bring them as close as possible to
actual measured values. The quality of the TM data directly affects the accuracy of the final estimations.
Previous researchers have thoroughly validated TM albedos derived by direct estimation [18]. In this
study, we also compared the TM albedo with the ground measured albedo for several FluxNet sites.
Figure 9 shows that the surface albedo estimated from TM images is highly accurate (maximum error
< 0.03) and can be used as the input observation value for the data assimilation algorithm.

The accuracy of inversion is affected by the accuracy, quantity, and time distribution of TM data,
where quantity and time distribution complement each other. In this study, we used L1T data with
less than 10% cloud contamination for our estimations. There were approximately 5–11 TM data
points available at the selected sites, which was sufficient for albedo estimation by data assimilation.
If the quantity of available TM data in one year falls below 5 points, the albedo during the time
series may not be updated for long periods of time, and the accuracy of the estimations degrades.
Several high-quality observations are needed to ensure accurate estimations. Other high-resolution
satellite images such as HJ1A/B or Sentinel-2 can be supplemented to resolve this problem for those
areas where high-resolution observations are limited.
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5.3. Error Setting in the Data Assimilation Algorithm

In the data assimilation system, the observation-model error is critical for land surface albedo
estimation. We calculated observation error from field observations and TM data and calculated model
error from field observations and the albedo background. Field observation data are key in terms of
error determination. For each site, we used the field observation data to generate errors resulting in
high estimation accuracy. When extending the model to regional use where no field observation data
was available, we attempted to generate a “common” error by averaging the error of the 18 ground
stations and inputting it to the assimilation scheme. The test results on the AU-DaP site are shown
in Figure 10. Errors caused by TM data are relatively small and uniform, and using the mean errors
instead of the original observation error did not affect the estimation results significantly. In effect, the
common error from different sites represents the averaged field condition and can be used to account
for large areas.
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Figure 10. Estimated results using mean error of 18 stations as data assimilation input at AU-DaP.
Replacing original observation error with mean error does not significantly affect the estimation results.

5.4. Capability of Capturing Abrupt Variations in Land Surface Albedo

Abrupt changes in surface albedo are often due to drastic changes in surface characteristics over
a short period, which are difficult to capture using remote sensing data [57]. The background field
as obtained from MODIS historical period data can reflect abrupt changes to a certain extent, but the
effect is not obvious. If TM data are available during the period of abrupt change, the model prediction
is updated and the estimated results are closer to the observed values; the abrupt change in surface
albedo can be captured effectively.

In our time-series albedo estimation for farmland stations, surface albedo jump occurred on the
230th day at the DE-Kli site, the 150th day at the IT-Bci site, and the 230th and 250th days at the FR-Gri
site. There are TM data available before and after these days, and the trajectory of the estimated
results was corrected in time after adding the observed data. On the 170th day at the DE-Kli site, the
140th day at the IT-Bci site, and the 245th day at the FR-Gri site, there were no TM data available
to update the model prediction and only the background field trajectory could be used for forward
predictions. The abrupt variation in surface albedo is difficult to show and the estimated results
contain deviations. The jump is more severe during snowy periods (especially snowfall and melting),
where the surface albedo deviation may be higher than 0.5 and the EnKF algorithm cannot be applied
effectively without support from TM data. To operate the surface albedo data assimilation algorithm, it
is necessary to secure more high-quality satellite data as input observations. With support from more
observations, the data assimilation algorithm is better able to capture abrupt variations and produce
accurate estimations.

6. Conclusions

High spatio-temporal resolution albedo products are essential for climate simulations, as well
as for various agricultural and environmental monitoring applications. In this study, we developed
a novel method based on the ensemble Kalman filter algorithm to integrate MODIS high temporal
resolution albedo and Landsat high spatial resolution albedo data to estimate high spatial-temporal
resolution albedos.



Remote Sens. 2019, 11, 753 21 of 24

We constructed an albedo background field using MODIS historical surface albedo data, from
which the initial predicted albedo was obtained from a dynamic model. TM albedos derived by direct
estimation were then used as observation data to update the initial predictions. The error of the
dynamic model and observations was generated from field observations. When extending the model
to regions where no field observation data were available, we created a “common” error by averaging
the error of all test stations. The results were compared with ground measurement data for cropland,
deciduous broadleaf forest, evergreen needleleaf forest, grassland, and evergreen broadleaf forest sites.
We found that estimation accuracy is high (RMSE < 0.0152) for all land cover types. When applied to
large areas, the proposed algorithm also shows high estimation accuracy both for homogeneous and
heterogeneous regions. The estimated and TM albedos derived by direct estimation were in accordance
with RMSE values of 0.003 to 0.0112, and R2 values of 0.8584 to 0.9964.

The proposed algorithm has four distinct advantages over other similar methodologies. (1) It can
generate reliable estimates of land surface albedo with high spatio-temporal resolution. (2) It can be
used for all manner of snow-free vegetation surfaces, even heterogeneous surfaces. (3) It compensates
for return-cycle and cloud contamination problems with high spatial resolution satellite image data.
(4) The algorithm can be easily extended to other fine-resolution data similar to Landsat data (e.g.,
Sentinel-2).

The proposed algorithm does still have some drawbacks. For instance, the EnKF starts with
the first available observation data to update the dynamic model, so the start time of high accuracy
estimation depends on the availability of cloudless Landsat satellite images. The quality and quantity
of observation data are crucial to the accuracy of the assimilation results. To further improve estimation
accuracy, it is necessary to obtain more, higher-quality albedo data.
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