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Abstract: Aerosol retrieval algorithms used in conjunction with remote sensing are subject to
ill-posedness. To mitigate non-uniqueness, extra constraints (in addition to observations) are
valuable for stabilizing the inversion process. This paper focuses on the imposition of an empirical
correlation constraint on the retrieved aerosol parameters. This constraint reflects the empirical
dependency between different aerosol parameters, thereby reducing the number of degrees of
freedom and enabling accelerated computation of the radiation fields associated with neighboring
pixels. A cross-pixel constraint that capitalizes on the smooth spatial variations of aerosol properties
was built into the original multi-pixel inversion approach. Here, the spatial smoothness condition is
imposed on principal components (PCs) of the aerosol model, and on the corresponding PC weights,
where the PCs are used to characterize departures from the mean. Mutual orthogonality and unit
length of the PC vectors, as well as zero sum of the PC weights also impose stabilizing constraints
on the retrieval. Capitalizing on the dependencies among aerosol parameters and the mutual
orthogonality of PCs, a perturbation-based radiative transfer computation scheme is developed.
It uses a few dominant PCs to capture the difference in the radiation fields across an imaged area.
The approach is tested using 27 observations acquired by the Airborne Multiangle SpectroPolarimetric
Imager (AirMSPI) during multiple NASA field campaigns and validated using collocated AERONET
observations. In particular, aerosol optical depth, single scattering albedo, aerosol size, and refractive
index are compared with AERONET aerosol reference data. Retrieval uncertainty is formulated by
accounting for both instrumental errors and the effects of multiple types of constraints.

Keywords: correlated aerosol inversion; radiative transfer; multiangle radiometry; polarimetry

1. Introduction

Aerosol retrievals performed on remotely-sensed radiometric and polarimetric imagery are subject
to non-uniqueness of the solutions and a large computational burden. The former is caused by
insufficient information in the observations and the latter is associated with the high dimensionality of
the parameter space. To stabilize the inversion process, optimization-based inversions are often informed
by extra constraints that supplement the observations. Exploration and application of these constraints
are primary tasks in designing a reliable inversion algorithm. A particularly effective physical constraint
for remote sensing applications is the so-called smoothness condition (see [1-5]), which takes advantage
of the general observation that some quantities (such as ozone vertical distribution and atmospheric
temperature profile) vary smoothly in certain dimensions. For aerosols, their loading and properties
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(e.g., size distribution or spectral real and imaginary refractive index) tend to vary smoothly in the
spatial (horizontal and vertical) dimensions, while the underlying surface reflectance tends to vary
smoothly in the temporal dimension. Imposition of this type of constraint leads to the “multi-pixel”
inversion approach [6]. In this case, many pixels are stably inverted at one time and the dimensionality
of the retrieval space is proportional to the number of inverted pixels.

Additional constraints can further reduce the large dimensionality of the parameter space, with the
expected benefits of higher stability and accelerated retrievals. In this study, we introduce a “correlation
constraint” on the aerosol inversions. This constraint takes advantage of empirical dependencies
between different sets of aerosol parameters. The cross-correlation coefficient between a pair of aerosol
fields quantifies the degree of correlation—as long as this coefficient is not zero, the aerosol variables
are not independent of each other, i.e., they are correlated to some extent. However, development of a
sophisticated physical model to parameterize these correlations is intractable due to the complexity of
the real physical world. On the other hand, empirical methods, such as principal component analysis
(PCA) or empirical orthogonal function (EOF) analysis, can be used to capture phenomenological
correlations between aerosol fields. By implementing PCA over a training dataset, the original fields
can be transformed to superpositions of a set of mutually orthogonal vectors, or principal components
(PCs). Then, the original aerosol fields can be approximately reconstructed using a linear combination
of a certain number of PCs, with accuracy dependent on the number of PCs employed.

Figures 1 and 2 show a PC analysis of AERONET Level 2 aerosol inversions within a circular
domain of diameter 2000 km around the Fresno, California, and Namibe, Angola, sites, respectively.
The aerosol fields include total volume concentration, fraction of fine mode particles, effective
radii of fine and coarse mode particles, spectral real and imaginary parts of refractive index, and
volume concentration of the spherical particles. To generate Figure 1, a total of 691 retrievals from
60 AERONET stations within a circular domain of 2000 km around the AERONET site in Fresno,
California, at longitude —119.787° and latitude 36.738° for the years 1994-2018 were used in the
PC analysis. For Figure 2, a total of 780 retrievals from 18 AERONET stations within a circular
domain of 2000 km around the AERONET site in Namibe, Angola, at longitude 12.178° and latitude
—15.159° for the years 2000-2017 were used for the PC analysis. Although there are 13 parameters
and the aerosol fields vary both temporally and spatially, a few PCs dominate the variations about
the mean. For these two cases, 85-90% of the variance in the aerosol fields is captured by the first
four PCs. Corresponding to the AERONET analysis in Figure 1 (Fresno domain), Table 1 lists the
mutual correlation coefficients among all 13 parameters. Many different types of parameters show
correlation coefficients exceeding ~0.3, and among related parameters, such as real and imaginary
part of the refractive index, even stronger correlation is observed. While non-absorbing and weakly
absorbing particles are dominant in the Fresno domain (Figure 1), absorbing (smoke) aerosols prevail
in the Namibe domain (Figure 2). Nevertheless, mutual correlation among aerosol parameters is found
in the latter domain as well, as indicated in Table 2. Moreover, comparison of Tables 1 and 2 shows
dependence of correlation on specific sets of parameters and regions. For example, the correlation
between total aerosol concentrations and spherical particle concentration in the 2000 km Fresno region
is weaker than that in the Namibe region. The correlation between fine mode aerosol fraction and real
part of refractive index, however, is stronger in Fresno region.
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Figure 1. (a) Top left panel: AERONET inversion of aerosol fields and properties (in natural logarithm
space) including total volume concentration (Cy tot), fraction of fine mode aerosols (fgne), effective
radii of fine (ref, fine) and coarse (Feff, coarse) Mode aerosols, column effective real part of refractive
indices (1, 1-4) at 0.439, 0.675, 0.870, and 1.018 um, respectively, imaginary part of refractive indices
(15, 1-4), and spherical particle volume concentration (Cy sphere)- Though not specified by use of legend,
each color is associated with an independent set of retrieval parameters. Top right panel: spatial
and temporal mean of all retrievals and the first four principal components (PCs). Bottom left panel:
percentage variance of the aerosol fields captured by PCs, indicating that 41%, 62%, 77%, and 85% of
variance is captured by the first one, two, three, and four PCs, respectively. Bottom right panel: Aerosol
optical depth (AOD) and single scattering albedo (SSA) at 440 nm that are reported in the AERONET
retrievals analyzed here. (b) Regression of the derived aerosol properties from four PC against input
AERONET values. The scatter plot is colored by the density of the points. Each panel corresponds to a
specific aerosol property indicated in the title.
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Figure 2. Same as Figure 1 but analysis was performed for a circular domain of 2000 km around
AERONET site in Namibe, Angola. The first four PCs capture 56%, 74%, 83%, and 90% variance of the
aerosol fields.
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Table 1. Correlation coefficient of AERONET retrieved aerosol properties analyzed in Figure 1
(for 2000 km circular around Fresno, California). The correlation is calculated for all parameters
in logarithmic space.

Cv,tot fﬁne Teff fine  Teffcoarse Dl ngp N3 Npq nj n;o n;3 nj4 CV,sphere
Cytot 1.00 —-034 -041 0.08 —0.12 —0.01 0.01 0.02 —-0.01 -016 -023 —-0.25 0.06
ffine - 1.00 0.18 0.30 —-034 —-036 —-034 —-035 0.22 0.32 0.31 0.30 0.67
Teff fine - - 1.00 -0.01 -0.17 -035 -041 -043 -0.16 -0.08 —0.01 -0.01 —0.06
Teffcoarse - - - 1.00 —-0.01 —-0.01 -0.01 -0.01 0.25 0.23 0.21 0.20 0.25
ngy - - - - 1.00 0.94 0.88 0.84 0.33 0.31 0.28 0.28 —0.29
nyo - - - - - 1.00 0.98 0.96 0.28 0.22 0.18 0.17 —0.28
ng3 - - - - - - 1.00 0.99 0.24 0.16 0.12 0.11 —0.26
Nyg4 - - - - - - - 1.00 0.21 0.12 0.08 0.08 —0.28
nj1 - - - - - - - - 1.00 0.95 0.90 0.87 0.23
n;p - - - - - - - - - 1.00 0.98 0.96 0.29
n;3 - - - - - - - - - - 1.00 0.99 0.25
nj4 - - - - - - - - - - - 1.00 0.23
Cv,sphere - - - - - - - - - - - - 1.00

Table 2. Correlation coefficient of AERONET retrieved aerosol properties analyzed in Figure 2
(for 2000 km circular domain around Namibe, Angola).

Cy ot ffine Teff fine  Teffcoarse Tl L) ng3 Npq njj n;» nj3 Nj4 Cv,sphere
Cytot 1.00 -032 -0.37 —-0.05 —-043 —-041 -042 —-040 —-052 —-054 —-054 —-0.54 0.39
ffine - 1.00 0.23 0.42 —0.12 —-0.06 0.02 0.09 0.62 0.59 0.57 0.56 0.45
Teff fine - - 1.00 —0.07 0.20 0.18 0.17 0.14 0.26 0.28 0.27 0.26 —0.01
Teffcoarse - - - 1.00 0.14 0.19 0.25 0.33 0.36 0.41 0.41 0.42 0.26
ngq - - - - 1.00 0.97 0.92 0.86 0.51 0.58 0.58 0.58 —0.31
nyo - - - - - 1.00 0.98 0.94 0.57 0.61 0.61 0.61 —0.28
n.3 - - - - - - 1.00 0.98 0.61 0.63 0.63 0.62 —0.22
Nry - - - - - - - 1.00 0.62 0.63 0.63 0.62 —0.17
nj - - - - - - - - 1.00 0.96 0.94 0.92 0.19
n; - - - - - - - - - 1.00 0.99 0.99 0.12
n;3 - - - - - - - - - - 1.00 1.00 0.09
N4 - - - - - - - - - - - 1.00 0.08
CV,sphere - - - - - - - - - - - - 1.00

This empirical correlation among aerosol parameters motivates reduction of the dimensionality
of the retrieval parameter space and acceleration of the radiative transfer (RT) computations.
Benefiting from the empirical aerosol correlations and orthogonality of PCs, increased computational
efficiency is achieved by developing a PC-based fast multi-pixel RT computation scheme, as described
in Section 4. A straightforward way to reduce dimensionality of the retrieval space is to first derive PCs
from a training dataset, such that the retrieval problem reduces to determination of the pixel-dependent
PC weights. To account for possible errors in the precomputed PCs, the correlation-based inversion
should allow adjustment of the elements of the PC vectors. This is not straightforward, as the vector
elements vary significantly in magnitude. A methodology for handling this issue is discussed in
Section 3.

PCA has been used to significantly accelerate hyperspectral RT computations [7-9]. Following a
determination of representative components from a training dataset of trace-gas and solar-induced
chlorophyll fluorescence, the hyperspectral inversions of these quantities are sped up by retrieving
PC weights [10-12]. In another retrieval application, Multi-angle Imaging SpectroRadiometer (MISR)
operational aerosol retrieval over land uses spatial contrasts to derive PCs of the surface related
contribution to the top-of-the-atmosphere (TOA) radiances [13,14]. The similarity in the angular
shapes of surface bidirectional reflectance factors among MISR’s four spectral bands in the visible and
near-infrared [15] is an example of a prior empirical constraint used to stabilize the aerosol retrievals.
In contrast to MISR’s application of PCA to the surface boundary, this paper applies PCA to the aerosol
parameters. An optimization approach is developed, which allows both PC vectors and PC weights to
be retrieved.



Remote Sens. 2019, 11, 746 6 of 51

Our retrieval approach is referred to as the “correlated multi-pixel inversion”, where “multi-pixel”
reflects that our approach simultaneously uses multiple pixels within image-based measurements (as
in the original multi-pixel inversion [6]), while “correlated” captures the extra correlation constraint.
In contrast to most optimization approaches that retrieve the individual aerosol fields (see reviews
in [16,17]) from multi-spectral radiometric or polarimetric remote sensing observations, we retrieve
PC weights and PC vectors of those fields that have spectral, spatial, or temporal correlation with
each other, with the purpose of reducing parameter space and improving algorithm efficiency.
The individual fields are then constructed from the PC weights and PC vectors. The smoothness
constraints on those fields, as implemented in the original “multi-pixel algorithm” used with airborne
data at JPL [18,19], are adapted to the current correlated multi-pixel inversion approach. Both
“multi-pixel” and “correlated multi-pixel” retrieval approaches utilize a one-dimensional (1D) code
based on the independent pixel approximation [20] to ensure forward modeling efficiency.

This paper is organized as follows. Following an algorithm overview in Section 2, the correlated
multi-pixel retrieval algorithm and error analysis are formulated in Section 3. A faster forward vector
(polarized) RT model for a coupled atmosphere-surface system is presented in Section 4. In Section 5,
retrieval tests are performed using 27 datasets acquired by the Airborne Multiangle SpectroPolarimetric
Imager (AirMSPI) during multiple NASA field campaigns. A summary is presented in Section 6.

2. General Structure of the Algorithm

The expected advantages of correlated multi-pixel inversion in PC space are two-fold. First,
it reduces the number of parameters to be retrieved and utilizes observed correlations as empirical
constraints to improve the retrieval efficiency and accuracy. Specifically, the correlated parameter
space reduces from Neorr X Npixel t0 (Npc + 1) X Neorr + Npc X Npixel, Where Npixel, Neorr, and Npc
are the number of image pixels in the scene, the number of correlated aerosol parameters per pixel,
and the number of PC vectors, respectively. Reduction of parameter in conjunction with the imposition
of proper constraints is expected to mitigate ill-posedness. Morever, establishment of the PC vectors
using ground-based measurements, climatology, or other data sources enables characterization of
aerosol properties for which the remote-sensing observations may have insufficient sensitivity (such as
aerosol chemical composition or vertical profile).

An overview of the correlated multi-pixel approach and its mapping to different sections of this
paper is shown in Figure 3. Symbols and abbreviations used in this work are found in Appendix A
(Table Al). A training dataset of correlated parameters is used to derive the spatial and temporal mean
of correlated parameters over a targeted area, along with PCs of the correlated departures from the
mean. Together with the uncorrelated retrieval parameters, a state vector is initialized with elements
specified in Section 3.1. In addition to observational constraints provided by the remote-sensing
observations used in the retrievals (Section 3.2.1), convergence and robustness retrieval are optimized
by imposing additional constraints. For correlated fields, the additional constraints include: (a) the
spectral variation of certain correlated fields (e.g., aerosol optical properties); (b) the spatial variation
of certain correlated fields across neighboring image pixels; (c) mutual orthogonality and unit length of
the PC vectors; and (d) zero sum of the PC weights. Formalisms for imposing these constraints in PC
space are provided in Sections 3.2.2-3.2.7 and Appendix C. For any uncorrelated field (such as surface
reflectance), constraints on the spectral, spatial, or temporal variations of the associated parameters
are handled in the same way as is formulated in the original multi-pixel inversion approach [6] and
repeated in Section 3.2.3 and Appendix B. Combining observational and a priori constraints, a system
of equations is established at each iteration and then solved to increment the solution (Section 3.2.8) in
an inversion process. Error analysis for all retrieved properties is discussed in Section 3.3.
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Figure 3. General structure of the correlated multi-pixel inversion approach. The interpretation of
symbols used in the figure can be found in Table A1 of Appendix A.

To preserve generality of the approach, we use the symbol xcorr in the notations below to denote
a column vector containing an arbitrary set of parameters that have correlation with each other.
In the specific implementation of the correlated multi-pixel inversion for AirMSPI aerosol remote
sensing (Section 5), we specify the correlation to be among aerosol parameters only, while the surface
parameters are uncorrelated with each other or with aerosol properties (though in principle these
assumptions could be relaxed [21-23]). Utilization of the aerosol correlations enables development of
a fast PC-RT model for TOA radiance and polarization calculation over a group of pixels (Section 4).

As the retrieval output, the correlated aerosol fields for pixel p (Xcorr,p) are constructed from
pixel-resolved PC weights in vector form (w,), spatially and temporally effective PC matrix (v), and
spatial and temporal mean vector Xorr, Namely

Xcorr,p = Xcorr TV X Wp 1)

where Xcorr is a single column vector and the matrix v is made up of Npc column vectors consisting
of correlated aerosol fields, with Npc denoting the number of retrieved principal components.
By integrating all PCs into a matrix, we have

Vz[vl vy --- VNPC] 2)
where each PC is composed of Norr elements, i.e.,

Vi = [0k(1);9(2); - - - ; 0k (Neorr) | 3)
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",y

where “;” indicates that the elements vy (1), vx(2), ... and vg(Ncorr) are vertically arranged into a
column vector. We can further define a PC weight matrix w that consists of Ny columns, namely,

w= { Wi oWy e W } @)
where the vector containing PC weights for p-th pixel is
wy = [wp(1);wp(2); - ;wp(Npc)] (5)

The quantities (Xcorr, Vv, W) are contained in the solution vector x from the last iteration of an
inversion process.

3. Inversion

3.1. State Vector

Equations (1)-(5) demonstrate the basic operations for constructing correlated fields from PC
weight and PC vectors. We define a state vector Xstate that includes both correlated and uncorrelated
fields. The retrieval parameters are arranged in the following order,

Xstate = [icorr/' Vk=1;Vk=2; =" * Vk=Npcs Wp=1;Xp=1,uncorr; Wp=2;Xp=2,uncorr * * * ; Wp:NPixcl;Xp:Npixcl,uncorr} (6)
where the mean of aerosol fields takes the form of a column vector
Xcorr = |Xcorr,1; Xcorr,2; * * }icorr,NTpmrr ()

and Ntp corr is the total number of types of parameters correlated with others, and each type may have
a subset of values. For example, real and imaginary refractive indices are two types of parameters
correlated with each other and each of them have a subset of values as a function of wavelength.
For the j-th type of correlated parameter with L(j) elements,

icorr,]' = [icorr,j(l);icorr,j (2);-- 'icorr,j(L(]‘)” (8)

Similarly, an arbitrary (k™) PC vector composed of N1pcorr types of correlated parameters can be
arranged into the following column vector,

Vi = {Vk,l} Vit Vk,NTp,Corr} )
where for the type of correlated parameter with Leorr(j) elements,
Vigj = [0 (1);06(2); - 0k (Leorr (7)) | (10)
The PC weight vector for pixel p is
wp = [wp(1);wp(2); - - - wy(Nec)] (11)
For the state vector with Ntp uncorr types of uncorrelated parameters, we have for an arbitrary pixel p,
Xp,uncorr = [Xp,uncorr,l; Xp,uncorr,2; * * * ;Xp,uncorr,NTp,uncorr} (12)
where the [11Tp yncorr]-th type of uncorrelated parameter has Luncorr (1TP uncorr) €lements, namely,

xuncorrrpl”TP,uncorr = [Xuncorrrp/nTP,uncorr (1)’ xUnCOfrrp/nTP,uncorr (2)’ Ty xUnCOTr/P NTP,uncorr (Luncorr(nTP,uncorr) )} (13)
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3.2. Constraints

Reduction of parameter space is critical for ensuring inversion efficiency and mitigating
ill-posedness of large-scale optimization. Moreover, imposition of various types of constraints is
important for stabilizing the retrievals and improving accuracy. The correlated multi-pixel inversion
algorithm described here uses a total of ten types of constraints:

1. The first type of constraint, formulated in Section 3.2.1, consists of the observations provided
directly by the remote sensing instrument(s).

2. The second type of constraint consists of a priori values for the retrieval parameters, and is
described in Section 3.2.2.

3. For the uncorrelated fields (such as surface reflection properties), the pixel-resolved properties
Xuncorr Can be subjected to both across-pixel and within-pixel constraints. Imposition of these
types of constraints has been incorporated into the original multi-pixel inversion [6] and is
repeated in Section 3.2.3 as well as in Appendix B as the third type of constraint.

4. When a set of parameters (e.g., aerosol properties) are correlated with each other, their mean
can be subjected to smoothness constraints. This is referred to as the fourth type of constraint in
Section 3.2.3.

5. Transformation of smooth variations of aerosol properties from regular aerosol parameters into
the PC space forms the fifth type of constraint, discussed in Section 3.2.4.

6. In PC space, the smoothness constraints can be applied to the PC weights w and vectors v
separately. Application to across-pixel weights w, discussed in Section 3.2.3, forms the sixth type
of constraint.

7. Similarly, application of the smoothness constraints to certain type of parameters within a PC
vector v, also discussed in Section 3.2.3, forms the seventh type of constraint. Although it
appears that the sixth and seventh types of constraints applied to “w” and “v” separately are
redundant with the fifth type of constraint that ensures a smooth variation of overall correlated
field constructed from PCs; they are helpful when poor initial guesses of “w” and “v” are
provided by a training dataset.

8.  The eighth type of constraint, formulated in Section 3.2.5, imposes a zero sum of the PC weights.

9.  The ninth type of constraint, formulated in Section 3.2.6, imposes mutual orthogonality of the
PC vectors.

10. The tenth type of constraint, formulated in Section 3.2.7, imposes unit norm on all PC vectors.

Even with this set of constraints, numerical errors are unavoidable during the iterations. Hence,
a post-correction is implemented after each iteration by reapplying PC analysis to the updated PCs.
This way the intrinsic properties of PCs are strictly preserved.

With the ten types of constraints (M = 10) introduced above, we now describe the statistical
inversion of multi-source (or multi-constraint) data. It involves solving the following system of
equations (see [24] for Equations (14)—(20) below):

i = f;(x) + Af], 1<i<M (14)
where f; denotes the jth type of constraint, Af] is the error with this type of constraint, and x = Xstate,
as defined in Equation (6). Formally, the statistical independence of different sources of constraints
means that the covariance matrix of joint constraint f* = [f]; f5; - - - ; f};] has the following structure

CC 0 0 0

0 C, 0 0
Cp = . (15)

0 0 Cum
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where C; indicates the covariance matrix of i-th constraint (f;). Following the expressions of f; and
Cy:, the probability distribution function (PDF) of joint data (1 < i < M) can be derived by multiplying
PDFs of data from all M sources, namely,

M 14 T 1
P(f(x)[f") ZHP(fi(X)\ff) Nexp{—zg[fi(X) —£](C) [fi(x) —fﬂ} (16)

Further introducing the weight matrix (W) for multiple (M) types of constraints, the objective cost
function to be minimized has a quadratic form, namely,

M
Yiotar (X) = ) 7i¥i(x) (17)

i=1

where .

¥i(0) = 51600 — £ W fi(x) — £] (18)
W= %G, (19)

&

82
vi = é (20)

In the above equations, €7 is the first diagonal element of C; (i.e., ¢ = {C;},,) and the Lagrange factor
i weights the contribution of each type of constraint with respect to the first one (y; = 1).
Minimization of ¥y (x) in Equation (17) means its gradient with respect to the solution x
approaches zero, such that
M
V‘Ftotal(x) = Z 'Yivlyi(x) =0 (21)
=1

1

which can be ensured by enforcing the gradient of all components approach zero, namely
V¥i(x) = KIW;  (fi(x) — ) = 0 (22)

where K; is the Jacobian matrix containing the derivatives of i-th type of constraint with respect to the
retrieval parameters. To solve the above equation iteratively, we replace x by x — Ax in Equation (22)
and substitute

fi(x — Ax) = £;(x) — K;Ax (23)
into it. This results in
VY¥i(x— Ax) = KW (f;(x) — KiAx — £) =0 (24)
or equivalently,
(KWK Ax = Ki W (£i(x) — ) = V¥i(x) (25)

The Jacobian matrix K; in Equations (22)—(25) consists of the derivative of the I-th observational or a
priori data with respect to the n-th unknown,
of; |

Kiiny = ax,’q ) (26)

More explicit evaluation of f;(x), f;, and K and W matrices for all ten types of constraints is discussed
in the following subsections.
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3.2.1. Observational Constraints (i = 1)

11 of 51

Assuming a total number of Npiyel pixels, where each pixel has Z observations, then after arranging

all pixel data into a column vector we have
;‘(:l (x) = [f;pl;ff,pz; T

where N; = N,

pixel x Z.

.k
4 ferpixel]

YN (27)

The parameters of the atmosphere-surface model are adjusted so that the model prediction of

radiance and polarization f;(x) fit the observational constraints fj(x). The calculation of f;(x) is
introduced in Section 4. The Jacobian matrix K; consists of first order partial derivatives with respect
to correlated and uncorrelated parameters in the vicinity of x, namely,

Kl,icon Kl,v Kl,w ( P ) Kl,uncorr (pl ) 0 0 e 0 0
Kl _ Kl,icon Kl,v 0 0 Kl,w(pZ) Kl,uncorr(pZ) " o 0 0 (28)
1, Xcorr K],V 0 0 0 0 to Kl,w ( Npixel) Kl,uncorr (Npixel)

where K x_  is the Jacobian matrix containing derivatives of observations with respect to spatial and
temporal mean correlated parameters (total number is Neorr). Variation of Xcorr impacts observations

in all pixels. Then K; % is evaluated by

ayl
X corr ( 1 )
92
OXcorr (l )

Kl/icorr -
J
YN ¢
9xcorr (1)

By1
OXcorr (2)
9y2
OXcorr (2)

YN,
0Xcorr(2)

ay]
OXcorr ( Neorr )
9>
afcorr(Ncorr) (29)

YN,
9%corr (Neorr)

The matrix K; y in Equation (28) is the Jacobian matrix containing derivatives of observations with
respect to all PC elements. It is evaluated as follows:

K, = { Kiy(k=1) Kyy(k=2)
with

aayll aaylz
H R
3 3

Ky y(K) = ve(1)  duk(2)
YN, YN,
avk(l) E)vk(z)

Ky,v(k = Nec) | (30)

1

avk Ncorr)

Y2

az7k (Ncorr)

(31)

any

a'”k (Ncorr)

The matrix K;  in Equation (28) is the Jacobian matrix containing derivatives of observations with

respect to pixel-resolved PC weights and is evaluated as follows:

ayp,l
dwy(1)

ayp,2
dwy(1)

Kiw(p) =
ayp,Z
dwy(1)

ayp/l
dwy(2)

ayp,z
dwy(2)

ayp,Z
dwy(2)

ay p1

awg(NPC)
yp,Z

dwy (Npc) (32)

ayp,Z
dwp(Npc)
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Moreover, the derivatives with respect to pixel-resolved uncorrelated parameters are evaluated by,

ayp,l ayp,l L. ayl’rl
oxp(1)  9xp(2) 9xp(L(1)+L(2)+...+L(Nuncorr))
Wpa  Wp2 9p2
dxp (1 dxp, (2 9dxy,(L(1)+L(2)+...4+L(Nuncorr
Ky uncorr(p) = | 7+ 791 P R (33)
Yp,z Wpz Yp,z
Dxp(l) axp(Z) aXp(L(1)+L(2)+---+L(Nuncorr))

The covariance matrix for the first constraint (i.e., the observations) assembles the sub-weighting
matrix from all pixels, namely,

Wi(l) o0 .- 0
0 Wi(2) - 0
Wi = (34)
0 0 -+ W1(Npixel)

3.2.2. A Priori Constraints (i = 2)

The a priori constraint is constructed in the same way as in a previous study [24]. Namely,
Equation (14) becomes
;1‘ ) = ﬂ przorl x+ Axll priori (35)

Then in Equations (21)-(25), K;—, = I (identity matrix) and W;_, = 2 Cax. More explicitly, W;—
can be constructed from estimated range of each parameter relative to the ‘first one,

1 0 - 0
0 M e 0
(xl,max_xl,min)
Wiz = y (36)
0 0 . ONmac¥Nmin)

(7"l,ma><7xl,min)2
3.2.3. Smoothness Constraints in Regular Parameter Space (i = 3, 4, 6, and 7)

The formulation of these types of constraints is similar, so we discuss them together. The third
type of constraint reflects the smooth variation of an uncorrelated type of parameter (such as the
variation of parameter of the surface bidirectional reflectance distribution function with wavelength).
The fourth type of constraint reflects the smooth variation of certain type of parameter in the mean
field (e.g., aerosol refractive index as a function of wavelength). The sixth type of constraint reflects the
smooth variation of PC weights from pixel to pixel. The seventh equation reflects the smooth variation
of certain type of parameters residing in a PC vector (such as the deviation of refractive index from the
mean). The strengths of the sixth and seventh types of constraints depends on the rank of PC. Putting
all four of these types of constraints together, we have

f; =0" = S3,mXuncorr + A;(x
fjl’: =0" =Sy X+ A;&m) o7
f6 =0" = Sé,mwstate + A;(w)

f; =0"= S7,mVstate + Ag(v)

uncorr)

where Wgtate and Vgiate are column vectors containing only PC weights and vectors, respectively, and
are extracted from the overall state vector expressed in Equation (6), and S; ,, is the differentiation
matrix of m-th order for i-th type of constraint.
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When a retrieval parameter varies smoothly as a function of some variable z, it is assumed to
be locally approximated by a smooth function g(z), such as a constant, a line, a parabola, etc. With a
polynomial form, the m-th derivative approaches zero [6], such that

m 8m=1 (Z): const
Sim(z)z =2 8(z) _ g, Qma(z) = Az+ B (38)
gm—3(z) = Az2+ Bz +C

For a discretized grid of the variable z, the explicit form of S; ,,,z, is,

dg . Alg _ 8(zj41)—g(z) .
Sim(z)zi =4 & Fae T e ol (39)
LIMAZ] 7] dg o Amg A"Tl(zp) /B (zi41) A" g(2) /B (2)) form > 2
dzm ™ Aw(z) T [Am-1(zj)+Am-1(zj11)]/2 ’ =
Taking the orders of difference m = 1 and 2 as examples, we have
Am=1(2j) = zj41 — 2 (40)
Am=(zj) = [D1(z)) + M (2j41)] /2
Application of the above equation to L discretized grids r; (namely, 1 < j < L) leads to
fi(x) = S;mx (41)
so that by invoking Equation (26),
Ki=S; (42)
where the matrix S; ,, is evaluated by,
1 1
am Tum o 0 0
0 - 0
Si,m:l _ Al(z) A (2) (43)
0 0 0
1 1
0 0 I &)
and
ez S e B D e 9 0 0
Simer = 0 EOEOTEG] MmO NQIRENE) - 0 (44)
0 0 SCTECTSD] ACUST T SOETRAD]

The same principle applied to higher orders of difference (m > 2) ensures a smooth curve with
d d‘;’,ﬁz) = 0. Substitution of Equations (41), (42), and f; = 0* into Equation (18) gives,

1 _
Yi(x) = Esz{mwi,,;si,mx (45)

where the weighting matrix W has the following diagonal terms,

1

{Wi,m}]']' = Ami(z]') (46)

and Ay (z;) is specified in Equation (40) for m = 1 and 2, and can be generalized to an arbitrary
higher order.
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Substitution of Equations (41), (42), and f; = 0* into Equation (26) gives

(s}mwij,;sm)Ax = s{mwij,;(si,mx) (47)
Further defining
0; =S/, W, \Sim (48)
we have
0;Ax = Q;x (49)

Note that for equidistant pixels on an imaged grid, the weighting matrix W is a unity matrix
(namely W = I). To distinguish the smoothness constraints imposed on different types of parameters,
we note here,

Quncorr, 1=3

0F i=4
Q= o 50
l oY, i=6 0)
oy i=7

3.2.4. Smoothness Constraints in PC Space (i = 5)

The fifth type of constraint reflects the smooth variation of correlated parameters in different
dimensions. However, unlike the smoothness constraint directly imposed on relevant uncorrelated
parameters, it has to be transformed to the PC vectors and weights. For simplicity, we put all PC weights

into a single-column vector Wgtate = [ Wi—1, Wi—2, " ; Wi—Npe and all PC elements for j-th
correlated parameter into another single-column vector vgtate = [ Vi—1; Vk=2, "5 Vk=Npc
The smooth variation of the j-th correlated aerosol parameter is ensured by,

f?:5 = 0* = Si,mxwv + A;([V,W]) (51)

Vstate

where xywvy = [ ] . To evaluate the differentiation matrix S; ,,, we recall that a pixel-resolved

Wistate
correlated parameter is constructed from PCs via Equation (1). An arbitrary correlated parameter
Xcorr,p(j) associated with p-th pixel is derived as,

Npc
Xcorr,p (]) = Ycorr,j + kgl wP(k)vk(j) = yCorr,j + [wlﬂ(l)vl (]) + Wp (2)02 (]) +..+ wp(NPC)vNPc (]H (52)

(a) across-pixel smoothness
The across-pixel variation of a correlated parameter is contributed by pixel-resolved PC
weights, namely,
AXcorrp = V X (Awp) (53)

Taking the first order of difference (m = 1) in the across-pixel variation of the field as an example,
Equation (39) becomes,

Npc
i (k) — wi(k
e b s ) )~ 6] o
m=13%1)%] dz Alz Al(zj)

where z measures the inter-pixel relative distance. As an example, we take the simplest case of
a single PC (k = 1), three pixels (p1, p2, p3) associated with PC weights [w,1, wp2, wy3], and two
correlated parameters associated with PC elements vy (1) and vx—1(2). The matrix S; ,, is constructed
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in the following way to ensure smooth variation of the correlated parameter across equidistant (e.g.,
unity spacing) pixels via f;_5(Xwv) = Si mXwv:

wpr(k=1) — wak = 1) 0 %a() —ma() 0 v
(x P Nt 0 wpi(k=1) —wp(k=1) v=1(2) —v4=1(2) 0 w - =
fis o) = Sim = S 3| ) 0 0 whl) —ua | (] D (55)
0 wplk=1) —wpk=1) 0 01 (2)  —0q(2) wz (k=1)

(b) within-pixel smoothness

Within-pixel variation of a parameter (such as refractive index) describes its dependence on a
non-spatial variable, e.g., wavelength. For an arbitrary pixel p, the within-pixel variation of a correlated
parameter is contributed by PC vectors, namely,

AXcorr,p = (AV) X Wy (56)

Taking the first order of difference (m = 1) as an example, the differentiation matrix S; ,, is constructed
in the following way to ensure smooth variation of the correlated parameter to x(j) as a function of z
across which x(j) is smooth (for example, z is wavelength when x(j) is aerosol refractive index),

s ang | LA b+ 1) -u )]}

Si,m:1<zj)2]' =3~ A ~ ¥

(57)

Taking the simplest case of a single PC (k = 1), three parameters associated with PC elements v_1(1),
Vk=1(2) and vx_1(3) as an example,

1
o ey o s ) [0
B _ )1
fj:S(va) = Si,m:lxwv =132 ]021 (11:1) _wp(k:1) Uk:1(3;j;k:1(2) x Vg1 3) (58)
M) M(z2) Aq(z2) wy(k=1)

Invoking f; = 0%, the cost function in the form of Equation (45) is derived for both across-pixel and
within-pixel smoothness constraints. Further, substitution of f;_5(Xwv) = S; ;—1Xwv into Equation (26)
gives the expression for Jacobian matrix elements,

a(si,mxwv)[

59
axwv,n ( )

Kin) =

Xwv

in which the matrix S; ,, is a function of x (see Equation (57)), therefore K; # S; ,,. Intuitively, one can
think of f;_5(xwv) = S;m—1Xwv as a model prediction to fit the “observation” f;, which is a zero
vector. Therefore, the above Jacobian matrix is evaluated in the same way as is done for observational
constraints by use of finite difference methodology. The finite difference method is used for evaluating
Equation (59).

Invoking f;(xwy) = SimXwv and f; = 0%, Equation (25) becomes

(K,.Tw;lK,»)Axwv = KTW,'S, Xy (60)
Further defining
_ kTw-1
Q‘%‘;r 1= Kjrwi 1Ki (61)
OQr, = KW Sim
we have

0corr,l Axy = Qcorr,wav (62)
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Note that if S; ,, is independent of x (cases for 3, 4, 6, and 7), then K can be analytically evaluated from
Equation (59), namely,

Ki =S, (63)
so that
o = Qo = SLW'S; (64)

In this manner, the static smoothness matrices for cases for 3, 4, 6, and 7 (Section 3.2.3) are recovered.

Based on above demonstration, the evaluation of S; ,,,, K;, and (); matrices is generalized from the
case of regular (non-correlated) retrieval parameters to the case of correlated parameters represented
by PCs in Appendix C. The ) matrix derived above is accounted for later to solve for an increment of
the PC terms during optimization.

3.2.5. Zero-sum Constraint on PC Weights (i = 8)

As an intrinsic property of pixel-resolved PC weights, they are required to sum to zero for an
arbitrary set of PC vectors. This constraint is ensured by multiplying the PC weights w in the state
vector by an O matrix, such that,

f;k:S =0"=fi_g (Wstate) + A6 (65)

where Wgtate is a column vector defined in Section 3.2.4 and contains the weights of all PCs, and
fi_g(Wstate) i expressed as

fS(Wstate) = OWstate (66)
where IR R
1 0 0
0 1 0 -
0= N ,1 = [1, 1, ..., 1]1><Npixe1 (67)
o 0
0 0 1

Npc % (Npc X Npixel)
Further substituting fg =0 and fg(Wstate) = OWstate into Equation (18), the cost function has the
following quadratic form,

1
Yi(Wstate) = E(WgtateOTOWstate) (68)

Substitution of Equation (66) into Equation (26) gives the evaluation of Jacobian matrix elements,

0 ( OWgtate ) 1

=0 69
awstate,n Ln 69)

Wistate

Kiin) =

Further defining a zero-sum matrix to be,
0o =0;,=0'0 (70)
and invoking fg(Wstate) = OWgtate and fg =0*, Equation (25) becomes,
QoAWstate = QOWstate (71)

3.2.6. Mutual Orthogonality Constraint among PC Vectors (i = 9)

An intrinsic property of PC vectors is that they are mutually orthogonal. This forms the
orthogonality constraint imposed on all pairs of PC vectors via f; (i = 9), namely

:'{:9 =0" = fi:9 (Vstate) + Aiﬁ (72)
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where Vgtate is a column vector defined in Section 3.2.4 and contains all PC vectors, and f;—g(Vstate ) iS
expressed as

f9 (Vstate) = I'Vstate (73)
where, ) )
T
e v 00 o0
T T
v, 0 v, o0 0 0
T q q q a T
Ve 0 00 0 Yk
T T
r=| 9 Vs Vea O 0 9 (74)
T T
0 Vi 0 v, 0 0
0 Vi—Npc 0 0 0 Vi
aq 3 q aq T T
L 0 0 0 0 Vk=Nec—1  Vk=Npc |
T
Furth bstituti f*:o*:{ } d f =T int
urther substituting fg [0 0 0] {3 [Necx (Noc—1)]} 1 and fy(Vstate ) Vstate iNto

Equation (18), the cost function is derived as,
1
¥i(v) = EvgtaterTertate (75)

Substitution of Equation (73) into Equation (26) gives the evaluation of Jacobian matrix elements,

d(T'v);
k. = =T 76
i(l,n) avstate,n v In (76)
Further defining a zero-sum matrix to be,
Or=0,=TIT (77)

and invoking fo(Vstate) = I'Vstate and f§ =0, Equation (25) becomes,
OrAvsiate = Orvstate (78)

3.2.7. Unity-norm Constraint PC Vectors (i = 10)

Another intrinsic property of each PC vector is that its norm equals unity (i.e.,|| vy 12 = vivp =1).
This forms the unity constraint imposed on all PC vectors via f; (i = 10), such that

i—10 =1" = fi—10(Vstate) + A (79)
where
f10 (Vstate) = Uvstate (80)
and U is expressed as,
VLI 0 0
0 v 0
U= k=2 ~ (81)
0
0 0 T

\%
k=Npc Npc x (NPC X Ncorr)
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Then substituting Equation (80) and fj, =1* = {[ 11 -+ 1 ]T}N . into Equation (18), the cost
PCX
function is derived as,

1
E (V;ateUTUVstate - NPC) (82)

Moreover, substitution of Equation (80) into Equation (26) gives the evaluation of Jacobian
matrix elements:

Y (Vstate) =

) (UVstate ) 1
K: = —— 83
i(1n) avstate,n Vstate ( )
Further defining a unity constraining matrix to be,
Oy = K'K;
U,l lT 1 (8 4)
Qup =K;U
and invoking f10(Vstate) = UVstate and f]; =1*, Equation (25) becomes equivalent to
QU,l Avgiate = QU,ZVstate - K;rfl* (85)

3.2.8. Construction of Overall Equation System

Accounting for the above ten types of above-specified constraints, the solution to minimizing
Equation (17) is approached iteratively. The solution from iteration g is incremented as follows,

Xg+1 = Xg — Axq (86)

where Ax; is obtained by accounting for both observational and a priori constraints derived in
Sections 3.2.1-3.2.7,

Ay % Axg = V¥t (xg) (87)
As the explicit form, we have
Ay =K WKy g+ 1Q011 + 7aW, ! (88)
0*
V‘Ytotal(xq) = K{qwf ! [fl(xq) - f? ] + ’Yﬂtotal,zxq + 7aW, 1(Xq —x’ priori) =+ *'YUK?o,quO (89)
0*

where “yQo1a1” incorporates i = 3-10 types of constraints, namely,

_ R X X,Ra wv,Ra w,Ra v,Ra R R R

YQhotal,1 = YuncorrQuncorr + Yeorr Qeorr + 'ng;rnmrr 1+ YéorrQeorr + YeorrQeorr + 'YOQQa +rQr? + A/UQU% (90)
_ R X x,Ra wv,Ra w,Ra v,Ra R R Ra

')/Ofﬂtall - 'thOl‘rOuﬁcorr + 'Yé(orrﬂcorr + ’YZ\Q;rOcorrlz + 'Y‘c/\(,)rrncorr + VXorrncorr + 70003 + 'YFO]"a + 'YUQU72

where the eight terms on the right-hand-side of the above equation are equal to Q; with i = 3-10,
respectively, and the multipliers -y, control the strength of these constraints. The smoothness matrices
’)/uncorrﬂﬁgcorrr r)/gorrngé)lis ’ '70an1 ')/I"Q{“{ar Yu an/ ’Y?grﬂg)‘l]’fl{a/ and 'Y‘c/\c’)ély Q?SQI Ra act on uncorrelated
fields, multi-pixel mean of correlated fields, PC weights, PC vectors, PC vectors, combined PC
weights and vectors, and separate PC weights and vectors, respectively. They are essentially equal to
Yuncorr Quncorrs Vo Porer Y00, 71O, YuQuU, YELOWY and 1%V QWY respectively, as evaluated
in Sections 3.2.3-3.2.7. However, the elements of these matrices are rearranged into the same dimension
to add to each other in assembling ¥, in Equation (90). In performing the rearrangement, specific
locations of relevant parameters in the state vector (see Equation (6)) have to be accounted for, and
zero values have to be filled in to accommodate the parameters not subjected to a specific constraint.
For the uncorrelated parameters and fields, the explicit forms of yuncorr Quncorr as well as 'yforr onrr are

given in Appendix B. For the correlated parameters and fields, the smoothness constraints imposed
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on PC vector and weight retrieval incorporates two types: the coupled type (¢, O%0r), which acts
on combined PC weights and vectors, and the decoupled type AW IvOW/Y which act on PC weights
and vectors separately. Based on previous demonstration of principles for deriving Q); fori =5, a
comprehensive evaluation of Y%V QYWY is provided in Appendix C. Comprehensive evaluations of
YeorrQborr and ¥ Q% are provided in Appendix D. The imposition of 8, Q¢ and ¥eor Qo
are effective when pixel-resolved PC weights themselves or PC elements associated with a type of
parameter present certain smooth behavior (usually appearing in low order PCs). Our retrieval tests
indicate that a combined use of y¥¥. QWY and AWIVOW/Y stabilize the inversion of PCs.

Ideally, a retrieval is deemed successful when the minimization of the cost function is achieved,
such that

Yrotal < (Nf+ Ne + Np» — Na)e? (91)

where N¢, N¢, N, and N+ are the total number of observations, total number of constraints imposed
on retrieval (including smoothness constraints in different dimensions, zero-sum constraint over PC
weights and orthogonality and unity constraints over PC vectors), total number of retrieval parameters,
and total number of a priori estimates of parameters, respectively; and ¢2 is the expected variance due to
measurement errors. In practice, forward RT modeling error and other unmodeled effects can impede
realization of the required cost function minimization. Therefore, the retrieval is also terminated when
the relative difference of fitting residues with solutions from two successive iterations drops below a
user-specified threshold value, €2, namely,

|‘Ptotal(xq+1)_‘Ijtotal(xqﬂ <2

<e. (92)
Yiotal (Xq) ¢

3.2.9. Determination of Lagrange Multipliers

The Lagrange multipliers reflect the strength of smoothness constraints for a given parameter to
be retrieved. Each multiplier is defined as,

Vi=¢€1/€ (93)

where ¢? are the first diagonal elements of the covariance matrices corresponding to i-th type of
constraints. To estimate €? for a given parameter to be retrieved (f = x), which is a function of z, the
most unsmooth known solution f“$(z) over the target domain is used, as suggested by Dubovik and

King [25], namely,
o (A f(2)] )
2
= —— | d 94
‘ Zmin ( d"z > : ( )

where znin and zmax specify the lower and upper bound of z. For i = 3, 4, 5, ; is evaluated using
least smooth known solution of correlated parameter x over the target domain. Fori =6 and 7, 7; is
evaluated using the least smooth known solution of PC weights and PC vectors, respectively, which
are derived from a training dataset over the target domain.

In practical implementation of our algorithm, the Lagrange multipliers are modified in the
following way:

Final _ ‘
Yi = ﬁi?% (95)

There are two differences between ’yfinal and 7;:

1. The multipliers “Ny/N;” are introduced to account for possible redundancy of the measured
and a priori data. Considering that €? is a variance of the error in a single measured or estimated a priori
value, if we have N values of a similar kind, the total variance increases in proportion to N. Introducing
this coefficient ensures that when there are several kinds of data, the data with fewer values are given
comparable weight, as the data type for which there is a greater number of available values.
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2. The multiplier €2/¢? is introduced with € estimated as the dynamic fitting residual
during iterations:
Ttotal (xq)
Nt + N + Na= — Na)e?

g%(xq) ~ (

(96)

With the multiplier €2 /€2, the fitting residual is used as an estimate of measurement error variance.
As a result, during the first few iterations, the contribution of the a priori term is strongest, and its
influence decreases as the retrieval progresses. This is done to ensure mostly monotonic convergence,
as in the Levenberg-Marquardt procedure [26,27]. However, the Levenberg-Marquardt approach
does not specify a particular scheme for introducing these terms, rather it relies on the implementer’s
intuition. Our algorithm requires the fitting errors in the initial iterations to be dominated by model
linearization errors as opposed to random measurement errors, because at each iterative step the
full forward model is replaced by its linear approximation, the “errors of linearization” decrease as
convergence toward the final solution progresses, and they practically disappear, so that € becomes
equal to ¢2. As a result of this adjustment of the Lagrange multiplier, the non-linear iteration becomes
significantly more monotonic. The Lagrange multiplier that controls the strength of a priori (i = 2),
zero sum (i = 8), orthogonality (i = 9), and unity (i = 10) constraints are dynamically updated using
Equations (95) and (96). When the solution approaches the truth, the constraining effect of smoothness
constraints via the Lagrange factor decreases during the optimization process.

3.3. Retrieval Error Estiamte

Instrumental errors, forward modeling errors, and physical constraints imposed on the retrievals
need to be taken into account when evaluating retrieval errors. Instrumental errors include random
and systematic effects, such as absolute bias, band-to-band error, and camera-to-camera error. If all of
these error sources are well-characterized, their error propagation to the retrievals can be derived in a
comprehensive way [19]. If not, then a practical method is to use the square root of the diagonal terms
of the following covariance matrix,

Axj = (CAx)]‘j (97)

with
Cax = (Axsyst) X (Axsyst)T + Caxrand (98)

where the covariance matrix Cpyranqg accounts for the contributions by random errors in the
measurement (€,5n4),
t -12
CAXrand = [A(X rue)] € (99)

rand

and systematic error Axsyst is estimated by
AXsyst = [A(xtrue)] ! v‘Ftotal (Xtrue) (100)

where A and V¥, are calculated by substituting x™¢ into Equations (88) and (89), respectively.

As the retrieved solution is the closest estimate of the “true” solution x"™¢, we adopt

true _ yretrieved for yncertainty estimation. Uncertainties with uncorrelated parameters are available

X
from Equation (97). Uncertainties with pixel-resolved correlated parameters rely on the propagation of

retrieval uncertainties of PCs and PC weights, so that,

<Axretrieved) 2 — (Aii%trrgeved)Z 4 ]\gc { [wretrieved (k) ] 2 (Avietrieved)2 + [Aw;etrieved (k)}
k=1

p,corr p

2 (Vietrieved)2 } (101)
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To estimate errors for functions of the retrieved parameters (namely f (x;eme"ed), eg.,
aerosol single-scattering albedo, (S5A)), the following chain rule is applied,

A f (X;etrieved ) — \/ Kg (x;}etrieved ) CAx;etrieved K> (x;etrieved ) (102)

where K; denotes the Jacobian array containing derivatives of f (x;,etrieved) with respect to x;etrieved.

When x* Priori js not available, we assume x* P'o" = xg so that the a priori term on the
right-hand-side of Equation (89) for V¥, is neglected. Indeed, instrument errors are already
contained in the observation vector. Therefore, by implementing Equations (97) and (98), it is possible
that errors are double-counted in the case that they bias the solution in the same direction as the
modeling errors, resulting in a conservative error estimate.

Most error estimates involving Jacobians assume that the calculation is representative of the whole
solution space and that the retrieval error is linear with measurement error. These two assumptions
can be problematic in situations where model or observation errors are large. In these cases, closure
tests using synthetic data with combined random and systematic errors to obtain improved error
estimates are recommended.

3.4. Retrieval Options

A priori or first guess of PCs can be obtained from running PCA on a climatology database, field
measurements, or model output. In the case of PCs for which confidence in their contents is low,
simultaneous retrieval of PC weights and PC vectors has to be performed. For high confidence PCs, a
two-step retrieval can be used to speed up the retrieval. That is, we run PC weight retrieval using the
predetermined PCs first and then relax PCs during the retrieval to refine the solution. This relaxation
is one way to capture unexpected variance that exceeds that represented by the predetermined PCs.
In the extreme situation, where PCs are not representative of the actual aerosol properties, the scene
model can be reproduced by using N PCs, where N equals to the number of aerosol parameters. In the
absence of confidence in an a priori set of PCs, retrieval efficiency is still desired. In this case, one
can run the correlated multi-pixel inversion with 2-3 PC vectors to capture the major variation of the
correlated fields and then (a) relax more PCs into the retrieval to capture unexpected variance, or (b)
return to the original multi-pixel retrieval to refine the solution. These different options have been
built into our algorithm. In addition, to stabilize the retrieval of correlated fields varying significantly
in magnitude (even in logarithmic space), we built into the algorithm an option of retrieving scaled PC
vectors and weights. In this case, the representation of correlated fields by PCs for p-th pixel (namely
Equation (1)) is modified as,

Xcorr,p = Xcorr + €0 (V X Wy) (103)

where o in the above equation denotes an operation of element-wise multiplication, and the constant
column vector ¢ has Neorr elements and is introduced here to balance or weight the contribution of
all types of retrieval parameters in the PC analysis. It is calculated from (a) the standard deviation
of a correlated field x varying in spatial or temporal scales (0spatio—temporal, x), and (b) its uncertainty
estimate (0¢, x), namely,

— 2 2
Cr = \/Uspatio—temporal, x T 06 x (104)

Such a scaled PC analysis is used to analyze the AERONET retrievals in Figures 1 and 2.
To accommodate the constant column vector, the smoothness matrices for the correlated fields and
Lagrange multipliers need a slight modification, which is straightforward and is not discussed here.
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4. Radiative Transfer in a Coupled Atmosphere-Surface System

A fast radiative transfer model for a coupled atmosphere-surface (CAS) system plays a critical
role in ensuring inversion efficiency. Where correlation among aerosol parameters exists, this section
formulates the development of such a model for simulating TOA radiance for a group of pixels
simultaneously. Figure 4 shows a CAS system consisting of a land surface and an aerosol/air-molecule
mixed layer. The Markov chain model [28] is adopted for modeling RT in the atmospheric part of
the CAS system. Coupling of atmospheric radiation and surface reflection is performed by use of
the adding method [29]. As outlined in Figure 5, the principal-component based radiative transfer
(PC-RT) model includes two steps: (1) calculating aerosol light scattering properties (aerosol optical
depth, single scattering albedo, and phase matrix), and the reflection and transmission matrices of
the atmosphere for a group of pixels by utilizing correlations in aerosol properties (Section 4.1.1);
(2) coupling reflection/transmission matrices of the atmosphere with surface reflection pixel-by-pixel
to model the TOA observations (Section 4.1.2). For retrieval use, evaluation of the Jacobian matrix
that contains the derivatives of TOA observations with respect to all aerosol and surface parameters is
described in Section 4.2.

To further ensure modeling efficiency, the correlated aerosol microphysical properties derived
from their PCs are input to a light scattering database [30] for determination of aerosol scattering
properties using interpolation. The modeled scattering properties include aerosol optical depth
(AOD), single scattering albedo (SSA), and phase matrix. To model surface reflection, the
Rahman-Pinty-Verstraete (RPV) model [31] is used to calculate the unpolarized surface bidirectional
reflectance distribution function (BRDF). The parameters of the unpolarized part of the surface model
include spectral weights and a few angular shape parameters. A modified microfacet model [32] is
used to calculate the polarized surface BRDF (pBRDF). The pBRDF model parameters include spectral
weight, shadowing width, and slope variance of the microfacets. Combination of the two components
gives the full surface reflection model used in AirMSPI aerosol retrievals over land [19]. With the
AQOD and single scattering properties, a fast RT model that utilizes the correlation in aerosol fields and
orthogonality of PC vectors is used to model the radiometric and polarimetric observations.

\'/

. ° o o L4 e o ° .
° o... %5 ....o o0 :.o .... e® o * Air molecules
. ° ° . . ° .
@ .99 9.0, . « ¥+ @ Aerosols
0 0, .-0°9.0 0.0 0.9
- Surface

Figure 4. Depiction of the coupled atmosphere-surface (CAS) system model. The sun illuminates the
top-of-atmosphere with solar zenith angle 6y and azimuthal plane ¢. The sensor views the atmosphere
at view zenith angle 0y and azimuthal angle ¢y. A Gaussian vertical distribution profile for aerosols.
The Markov chain model is used for computing polarized RT in the atmosphere. It is then coupled
with surface reflection using an adding method.
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Figure 5. The scheme of PC-based forward radiative transfer modeling of remote sensing observations
from an airborne or spaceborne sensor. The interpretation of symbols used in the figure can be found
in Table A1 of Appendix A.

4.1. Fast Multi-Pixel Polarized RT Modeling in the Atmosphere

At a given iteration step, aerosol optical depth (AOD) and light scattering properties, including
SSA and phase matrices, are established for all layers. Then, along with the parameters of the surface
reflection, RT modeling is performed to evaluate the TOA radiation field. The basic multi-pixel
algorithm, which does not take advantage of correlations between aerosol parameters, runs the RT
pixel by pixel. Making use of correlation in aerosol fields and orthogonality of PC vectors, the next
section describes a fast way to compute radiation in the atmosphere, which is then coupled with
surface reflection to derive the TOA radiation field.

4.1.1. Fast Multiple-Pixel Radiative Transfer Modeling Utilizing Correlation

The spatial and spectral variation of aerosol fields, such as volume concentration as a function of
aerosol size, aerosol refractive index, vertical distribution profile, and volume concentration of spherical
particles, are captured by a few (Npc) dominant PC vectors. Taking advantage of orthogonality of
the PCs, the quantities (Y), including total AOD (Taer tot), absorption AOD (T,er abs), and reflection and
transmission matrices (R and T) for the above-surface atmosphere, can be expanded into Taylor series
for multi-variable vector-valued functions v;. Adopting the second order of approximation (justified
later in this section) and finite difference method to calculate derivatives, we have,

Npc

Y(Xp) ~ Y(i) + kgl [Y(i-&-és ka)zng(i—és ><Vk) wp (k) + Y<i+5SXVk>_2;§?>+Y(i_JS ><Vk) w’% (k)] (105)

where X is state vector containing multi-pixel mean aerosol properties and Js is the scale factor that
perturbs a PC vector. The scale factor is empirically determined by accounting for: (a) the accuracy of
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the two Jacobian related terms on the right-hand-side of the above equation; and (b) the sufficiency
of expanding the radiation fields to the second order and using finite number of PCs to capture
the variation of radiation across the imaging area. For an AirMSPI imaging area 10 km by 10 km,
an empirical value of 0.1 is adopted to use the above equation.

The efficiency gain of implementing the above PC based RT modeling is obvious: only (2 x Npc+1)
RT runs are necessary for evaluating the radiance fields for all pixels, which is much smaller than
required for pixel-by-pixel RT runs. If the variation of aerosol fields across an imaging area is extremely
high, we use an alternative method built into the algorithm, which applies PCA to the difference in
the RT fields evaluated by RT runs with low and high numbers of streams (“streams” represent the
quadrature points for integrating the contribution of light from different directions to an event of
scattering in a new direction), namely,

Y(x,) — Y5(x) & [YI(R) - YS(R)]+

:’i‘; [AY(2+¢55><vk)—SAY(i—5S><Vk) w, (k) + AY(i-HSSka)—ZAzﬁgsgi)-&-AY(i—éska) w%(k) (106)
where “HS” and “LS” denote high and low stream-based RT runs, respectively, and AY = Y™ — Y5,

In this case, RT runs with low order streams are performed for all pixels and then corrected by
Equation (106). This methodology was proposed for a hyperspectral RT simulation [8] and adopted
here for the multi-pixel RT simulation. Compared to directly applying PCA to RT via Equation (105),
implementation of Equation (106) increases computational cost but captures more variance in the
image-scale radiation fields and achieves higher modeling accuracy.

Note that the above evaluation assumes the same view and azimuthal angles for all pixels across
the whole image, which is not strictly correct, as view angle varies pixel-by-pixel. To account for such
an effect, the R and T matrices are calculated for a few view and azimuthal angular grids for each
viewed image. Interpolation is then used to obtain the reflection and transmission matrices for an
arbitrary pixel before coupling them with the surface reflection (as we assume no correlation between
aerosol and surface reflection properties in this paper). Coupling of atmospheric radiation and surface
reflection to get the TOA radiance for fitting observation is formulated in the next section.

Using three PCs (Npc = 3), Figure 6 shows a comparison of PC based RT computation of radiance
(expressed as bidirectional reflectance factor, BRF) and degree of linear polarization (DOLP) for 30
super-pixels of an AirMSPI image against the RT computation obtained without using PCs. Here, BRF
is defined as Wlmeasdlz;s / 1oEo, where Iness is the measured radiance, dis is the Earth-Sun distance,
is the cosine of solar zenith angle, and s is the exo-atmospheric solar irradiance. A super-pixel has
the resolution of 1 km and is generated by aggregating 100 by 100 original AirMSPI pixels with 10-m
resolution. Running RT model over super-pixels can mitigate the errors from the independent pixel
approximation [20]. For a variation of aerosol loading up to 100%, the error in computed TOA, BRF,
and DOLP from PC-based RT computation is found to be less than ~0.5% and ~0.0025, respectively.
These values are smaller than typical instrument errors (e.g., ~4% for radiance and 0.005 for DOLP,
which are the instrument requirements for AirMSPI [33]).

Note that the PC-RT model formulated here assumes that aerosol properties are correlated. It is
possible, however, that some aerosol fields are not highly correlated. In this case, one can use more
PCs to capture the variance. In the worst case scenario of no correlation, the RT calculation defaults to
the pixel-by-pixel approach.
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Figure 6. (a) Pixel-resolved spectral aerosol optical depth (AOD) used in simulating the radiance
and degree of linear polarization (DOLP) in (b). The AODs for seven Airborne Multiangle
SpectroPolarimetric Imager (AirMSPI) spectral bands are plotted in different colors: pink (355 nm),
purple (380 nm), dark blue (445 nm), light blue (470 nm), green (555 nm), red (660 nm), and brown
(865 nm). b) The principal component based RT (PC-RT) simulation of radiance using three PCs (upper
left panel) and DOLP (lower left panel) at AirMSPI’s nine viewing angles within (—66°, +66°) range
around nadir, and the relative error of PC based RT simulation of radiance (top right) and absolute error
of DOLP (bottom right) as compared to direct RT computation pixel-by-pixel. Errors are estimated
by 100 x (YPC—RT - YDirect-RT)/ YDirect—RT for Y = radiance and by (YPC—RT - YDirect—RT) for Y = DOLP.
The viewing geometries are adopted from one of the scenes acquired by AirMSPI during the ACEPOL
field campaign. The unpolarized and polarized surface reflectance is calculated from the retrieved
BRDF and pBRDF parameters, respectively.

4.1.2. Coupling Atmospheric Radiation with Surface Reflection

Using the deterministic Markov chain RT model for a plane-parallel atmosphere ([28], or other
RT models), we calculate two sets of reflection and transmission matrices for the atmosphere,
(Ratmos, Tatmos) and (Riinoss Tammos), Which result from illumination at the top and bottom of the
atmosphere, respectively. We denote the surface reflection matrix by Ry, which consists of a
BRDF component (Rgyf, pror) and a pBRDF component (Rgyrf, pproF)- In accordance with the adding
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method [29], two matrices Q and S are defined to account for the interaction between the surface and
atmosphere, respectively,

Nmax
s=) Q, (107)
n=1
Qn =00, (108)
Ql = R:tmosRsurf (109)

Then the matrices for downwelling and upwelling diffuse light at the atmosphere-land interface are
given by
T,
D = Tatmos + S eXP(— %) ~+ STatmos (110)

where Tatmos is the optical thickness of the whole atmosphere, as contributed by all atmospheric
constituents, and the diffuse upwelling light from the surface is calculated as

U = Reuexp(— Ta;‘;"s ) + RguD (111)

The reflection matrix of the full CAS is,

T,
Rcas = Ratmos exp(— %)U + T mosU (112)

For simplicity in describing the conceptual scheme, the superscript “m” that denotes Fourier series
order is not shown in the above expressions. In actuality, the TOA radiation fields for the CAS system
are reconstructed from all orders of Fourier terms, namely,

[e)

BRFros =71, (2~ Som)REN 11 08 1y — o) (113)
qBRFo, =7t i@ (2 — Gom) R 1 cos m(py — o) (114)
uBRFop = 7 f;;o (2 — Som )RS 51 €08 11y — o) (115)
vBRFrop =7 io (2 — 50"1)Rg2>s,41 cos m(¢py — ¢o) (116)

where (¢y — ¢p) is the relative azimuth angle between the view and illumination directions.
Equations (113)—(116) describe TOA BRFs for total, linearly polarized, and circularly polarized
radiation. When DOLP is used to fit the observations, it is calculated as DOLP =

\/ qBRF%O AT uBRF%O A /BRF1oA, where we neglect the minor contribution of circular polarization
related term (vBRFypa) when it is excluded from polarimetric measurements.

4.2. Jacobian Evaluation

In an iterative way, the optimization algorithm adjusts the state vector that parameterizes aerosol
and surface properties to approach the solution. At each iterative step, RT calculations are performed
to obtain both the modeled radiation fields and their Jacobians, which describe how the radiation fields
vary in response to the small perturbation of state vector components and determine the direction and
step size to move for the iterative solution to converge. For an observation vector composed of a series
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of Nymeasurements (f] = [y1;y2; - - - ;yn,]) and a state vector of N; components (x = [x1;x2; - - ; xN,]),
the Jacobian matrix has the following structure,

. 9
dx1 dxo XN,
gﬂ gﬁ . aayz
X1 X2 XN,
K= , " 117)
N, YN, N,
axl sz E)xNﬂ Nf x N,

Each matrix element is evaluated by use of the finite difference method. Namely, the derivative of
modeled i-th data with respect to n-th state vector component is evaluated by,
i _ Yi(xn+ Axn) — yi(xn — Axy)

axy, - 2Ax;, (118)

The above equation applies to the calculation of the derivatives of Taer,tot, Taer,abs R, and T with
respect to the mean aerosol properties and pixel-resolved PC weights. Then, without applying the
finite difference method again, the derivative of quantity Y = {Taer tot, Taer,abss R, T} at pixel p with
respect to an element in k-th PC vector can be derived in a fast manner, namely, from the derivatives
with respect to the mean and to the PC weights associated with p-th pixel,

o, oY,
sor )~ ) (119)

Such a strategy further improves the Jacobian evaluation efficiency when multiple PCs
are retrieved.

5. Inversion of Aerosol and Surface Properties

Section 3 provided a general algorithm formulation to retrieve correlated and uncorrelated
parameters. This section describes practical specifics in using AirMSPI data to retrieve aerosol and
surface properties. In doing so, we assume correlations in aerosol properties, no correlation in surface
properties, and no correlation between aerosol and surface properties.

The first guesses of PCs, PC weights, and mean aerosol fields are derived from a training dataset,
which contains all historical AirMSPI retrievals for selected scenes with the criteria of well-calibrated
measurements, clear-sky conditions, and collocated ground observations. The aerosol fields include
spectrally dependent real and imaginary parts of the aerosol refractive index, volume concentrations
of multiple aerosol size components, nonspherical particle fraction, and Gaussian profile-based
parameterization of aerosol layer height and standard deviation [19]. Constrained by the information
content in polarimetric observations, we retrieve aerosol properties by assuming a single layer, and an
“effective” set of aerosol properties for the single layer that fits the polarimetric observations is derived.

With these assumptions, the correlated aerosol parameters include volume concentration as a
function of five size components (Cy, Nec with Ngc = 5 as adopted in [19]), real and imaginary parts
of refractive index (1, and n;), Gaussian distribution-based vertical profile parameterized by central
height /1, and standard deviation s,, and the volume fraction of spherical particles (fy, sphere)- Then,
the parameter spaces described at the beginning of Section 3 are specified as follows,

T
7"[‘ — —
Xcorr,1 i;rorr/z Yi}rr,ﬁ% Xcorr,4 Xeorr,5 Xcorr,6
— AN N
Xeorr =108 | Cy1 -+ Cong Tl A1 T, A7, T, 217+ T, a7, Ba 0 Sa s fy sphere (120)

V= [V V) ... VN (121)
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with
T
VE,1 V{z Vg,s Via  Vis Vie6
N AN /N
Vi = |UkCa " UkCusr Pk, a1 77" Uk azr Ukni a7 kg az7 Pkhar Pkisar Uk fy, sphere (122)
W= W] Wy "'wNpixel]’ with w), = [ wp(1); wp(2); ---; wp(Npc) } (123)
Xp,uncorr = [Xp,uncorr,l;xp,uncorr,Z; T ;xP/uncorr/NTP,uncorr:| (124)

with NTp uncorr= 6 types of uncorrelated parameters, including the BRDF spectral weight a, (j = 1),
anisotropy parameter k, (j = 2), anisotropy parameter g, (j = 3), pBRDF weight €, (j = 4), shadowing
width k, (j = 5), and slope variance ¢ (j = 6), namely,

Xpuncorr, j=1 = [Ap(A1);ap(A2); -+ 5 ap(A7)] (125)
Xpuncorr, j=2 = [kp(A1)ikp(A2); -+ 5 kp(A7)] (126)
Xpuncorr, =3 = |&p(A1);8p(A2); -+ &p(A7)] (127)
Xpuncorr, =4 = [€p(M);€p(A2); -+ €p(A7)] (128)
Xpuncorr, j=5 = [Kqp] (129)
Xpuncors, j=6 = |02 ] (130)

In Equation (120), the natural logarithm is used to ensure non-negativity of the solution after dynamic
updates during the iterative optimization process. Though not noted here, the angular shape
parameter “g” with the RPV model needs to be offset by a constant before being transformed into
logarithmic space.

An overview of correlated multi-pixel inversion of aerosol properties and surface reflection
algorithm flow is shown in Figure 7. As part of the state vector, the PCs of the correlated aerosol
microphysical properties are derived from a training dataset from climatology or other sources.
As another part of the state vector, uncorrelated parameters (such as surface reflection properties)
are initialized to be static [19]. The inversion is stabilized by applying a priori constraints on smooth
variations of certain aerosol and surface properties in spatial and spectral dimensions. Iterations repeat
until convergence is achieved. For the retrieval tests in this study, it takes five to seven iterations for
the solution to converge.

As demonstrated in earlier POLDER and AirMSPI retrievals [6,19], imposition of temporal
constraints on the variation of surface reflectance can improve aerosol and surface retrievals. In this
case, multiple scenes acquired from revisits of a target have to be used. This functionality is not turned
on in the following retrieval tests to simplify the demonstration.



Remote Sens. 2019, 11, 746 29 of 51

[q=0: Initialized PC vectors v =[V, 1; Vg, ...; Von_poyls PC PCA of correlated fields in a training ]

weights w=[w ;, W, ,, .. W, pgy], mean fields (x dataset from climatology or other sources

q.1 q,corr.

[ Initial estimate of uncorrelated surface parameters (X, o) ]

b

X = [Xq a0 xqvS“'fl’ WRETE X aer ( A Evaluate modeled data
r |§ derived from (quco,,, W, vq) Forward RT model and cost function w2
1| via Eq.(1) _ l J kil
I
I
| . s A Spectral, angular &
! C?“fitFUCt constraints on Jacobian matrix (K) polarimetric observations
|3 Rgcom W V) @nd X o L ) from a groups of pixels
1 | regarding smooth aerosol and l
: surface property variations - ~
: b): sum-to-zero of PC weights |
i\ and orthogonality&unity of PCs >| Solve Eq.(87) for Ax, [«
I \ J
I
I
I
I

3 Update Xg.q gorrsVg+1 @Nd We.4 in
Cmm e Xt = Xg — tXAX, X,.1 by reapplying PCA to the
- constructed correlated fields

!

Forward RT model}

Evaluate cost
function w42

' Evaluate uncertainty for all
Output xrereved =x,,; H retrieval outpgt ]

Figure 7. Algorithm flowchart for correlated multi-pixel retrieval of aerosol and land surface reflection

properties. The interpretation of symbols used in the figure can be found in Table A1 of Appendix A.

5.1. AirMSPI Datasets

The retrieval algorithm is designed to retrieve column aerosol and surface reflection properties
from observations by AirMSPI, which flies on NASA’s ER-2 aircraft at an altitude of 20 km and operates
in eight spectral channels: 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm, with the asterisk denoting
polarimetric bands, in which the Stokes parameters Q and U are measured in addition to radiance I.
Images of each targeted area were obtained at 9 viewing angles: 0° (nadir), £29°, £48°, 59°, and
+66° in AirMSPI'’s step-and-stare mode. At nadir, the imaged area covers a 10 km x 11 km region and
the data are mapped to a 10-m spatial grid. Without using the water-vapor influenced band (935 nm),
a total of 117 signals per pixel are used, which include 63 radiances (transformed to logarithmic space
in retrieval) at nine angles and seven spectral bands, and 27 signals of q = Q/I and another 27 signals
of u = U/Iin the three polarimetric bands. Retrievals for all pixels of a surface area viewed from all
9 angles are performed simultaneously. The measurement errors are adopted as 4% for radiance (to
account for angle-to-angle and pixel-to-pixel uncertainties) and 0.005 for DOLP.

A wide range of atmospheric conditions and terrestrial environments have been covered by
AirMSPI during over a hundred flights in several airborne campaigns. In this paper, we use AirMSPI
data from the Polarimeter Definition Experiment (PODEX) (January to February 2013), Studies of
Emissions, Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC*RS)
(August to September 2013), CalWater-2 (January to March 2015), and Imaging Polarimetric Assessment
and Characterization of Tropospheric Particulate Matter (ImPACT-PM) (July 2016) campaigns.
From these, 27 AirMSPI step-and-stare data collection sequences were identified to be cloud-free
and collocated with AERONET sun photometers for retrieval validation. Locations of these AERONET
sites and AirMSPI/AERONET measurement times can be found in a previous study [19]. To control
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the strength of multiple types of constraints, the initial values of Lagrange multipliers for the two PCs
used in our retrieval are provided in Tables 3-5. Note that the difference between Tables 3 and 4 and
Table 5 is that Tables 3 and 4 are for constructing the smoothness constraints over the correlated fields
constructed from the combined set of PCs and PC weights. Table 5 is for constructing the smoothness
constraints over PC weights and PC vectors separately. Tables 3-5 also list the first guesses of the
relevant state vector components and the order of difference for imposing the smoothness constraints

on these components.

Table 3. Initial guess of image-effective (multi-pixel mean) aerosol parameters and uncorrelated

pixel-resolved surface parameters, and the order of difference and Lagrange multipliers for imposing

within-pixel smoothness constraints.

Range

First Guess

Order of Finite

Difference for Spectral

Smoothness

Constraints (#uncorr,0)

Lagrange
Regularization
Factor ("/uncorr,o)

Aerosol parameters (scene-averaged)
Volume concentration of size components

(Cy 1.5, wm®/ um?) [1.0 x 1076,5] 0.002 - -
Central height of aerosol distribution

profile (ha, km) (0.05,10] 1 . )
Stan.dard deviation of aerosol distribution [0.5,2.5] 075 } B
profile (sa)

Real part of refractive index (ny(A)) [1.33,1.60] 1.50 1 0.1
Imaginary part of refractive index (nj(7)) [5.0 x 1077,5.0 x 1071] 0.005 2 0.01
Spherical particle volume fraction (fy sphere) [0.5,1.0] 0.95 - -
Surface parameters (pixel-resolved)

BRDF spectral weight (ay) [0,0.7] 0.015-0.1 3 0.1
Anisotropy parameter (kj) [0,1] 0.6 1 0.5
Anisotropy parameter (g») [-1,1] 0.1 1 0.5
PpBRDF weight (e)) [0,10] 0.01 - -
Shadowing width (k) [0,1] 0.75 1 0.1
Slope variance (05 ) [0.05,0.5] 0.075 - -

Table 4. Initial guess and the order of difference and Lagrange multipliers for imposing within-pixel

and across-pixel smoothness constraints on the correlated aerosol fields through the first two PCs.

Order of Finite Order of Finite
» Difference for Lagrange Differen'ce for Lagrange
Imt(lIa’ICCi;less Range (PC1) Initial Guess (PC 2) ?Ij‘é‘ng S:gsfl::ss Mulﬁlp]ier Smstﬂ) attk:;less Mugiplier
Constraints (eorr,o) Constraints Wcorr,A)
(mgi,0) mggi )
log(Cy, 1.5) 0.1-0.6 [<0.7540.75] -3 x 10717 x 101 [—1,+1] - - 1 1
log(ha) ~—1x 1071 [-0.9,40.9] ~5 x 1071 [—1,+1] - - 1 0.01
log(sa) ~—2 % 1072 [—0.4,+0.4] ~7 x 1072 [—0.4,+0.4] - - 1 0.01
log(n:(N)) ~3 %1073 [-0.1,+0.1] ~5 % 1073 [-0.1,+0.1] 1 0.1 1 10
logmi()  ~—2 x 1072 [—0.1,+0.1] ~2 x 1072 [—0.1,+0.1] 2 0.01 1 1
log(fysphere) 6 % 1073 [—0.05,+0.05] ~4 x 1073 [—0.05,+0.05] - - 1 0.1

Table 5. The order of difference and Lagrange multipliers for imposing within-PC constraints on the

first two PC vectors and for imposing across-pixel constraint on the PC weights.

Order of Finite Order of Finite
Difference for Lagrange Multiplier on Difference for Lagrange Multiplier
Initial Range (in Spectral Smoothness First (Second) PC Spatial Smoothness grang o
. . : . on PC Weights
Guess log-space) Constraints on First Vectors Constraints on First ar )
(Second) PC Vectors Yorr,o) (Second) PC weight corr,A
(mors,o) 018,0)
log(Cy, 1-5) —0.3-0.7 [-1,+1] - - - -
log(ha) ~5x 1071 [-1,+1] - - - -
log(sa) ~7 x 1072 [-0.4,+0.4] - - - -
log(n;(A)) ~5x 1073 [-0.1,+0.1] 1(1) 0.01(0.001) - -
log(i(A))  ~25x 1072 [-0.01,40.01] 2(2) 0.001(0.00001) - -
log(fysphere) ~4x 1073 [-0.05,+0.05] - - 1(1) 0.05(0.005)
wp 0 [-10,10] - - 1(1) 0.05(0.005)
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5.2. Retrieval Validation against AERONET Products

The retrieved AirMSPI AOD, SSA, size distribution, and refractive index are validated against
AERONET Level 1.5 aerosol products. We choose Level 1.5 AERONET product (cloud-screened
and quality controlled), as it reports more fields to validate our retrievals. Though the Level 2.0
AERONET product (quality-assured) has higher confidence, the SSA, refractive index, and aerosol
size distribution fields were not all generated in 27 test cases. However, for the fields reported by
both versions, negligible differences were observed. As a first check, a retrieval is performed using
AirMSPI observations acquired on September 9, 2013, over the AERONET Baskin, Louisiana, site
which is located at longitude = —91.738° and latitude = 32.282°. The left image in Figure 8a shows
nadir radiance using the spectral band combination of 445, 555, and 660 nm, while the right image
displays DOLP at 470, 660, and 865 nm. The retrievals are performed over the area viewed in common
at all 9 AirMSPI view angles, outlined by the yellow box. Figure 8b shows TOA BRF at 445, 555, and
660 nm in the left, middle, and right panels, respectively, for the retrieval area with spatial resolution
~1.0 km. Figure 8c shows maps of retrieved AOD, SSA, and surface albedo (Agy¢) at 555 nm in the
left, middle, and right panels, respectively. The retrieved AOD, SSA, and volume weighted aerosol
size distribution for the atmosphere above the super-pixel closest to the Baskin site is compared to the
AERONET reference data in the left, middle, and right panels of Figure 8d. Good agreement (quantified
below) is obtained for all of these quantities, except for the coarse particle size distribution, likely due
to the lack of bands longward of 1000 nm in AirMSPL Generally, the difference between AirMSPI
retrievals of AOD, SSA, and size distribution and AERONET reference data is within their retrieval
uncertainties. The AirMSPI uncertainties plotted in Figure 8d are estimated as the root mean square of
the retrieval uncertainties of these aerosol quantities and the standard deviation of their variations
over the whole image. The AERONET uncertainties consist of two parts: temporal variation within the
£~1-h window centered on the AirMSPI nadir overpass time, and aerosol measurement and retrieval
error [34]. A temporally closest AERONET reference data was identified compare to AirMSP]I retrieval
at the spatially closest pixel. To account for airmass change during the measurements, the +~1-h
window centered on AirMSPI nadir overpass time is used to calculate the AERONET uncertainty from
temporal variation.
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Figure 8. (a) High resolution AirMSPI nadir imagery of Baskin, Louisiana, acquired on
September 9, 2013. The left image is of radiance at 445, 555, and 660 nm. The location of the Baskin
AERONET site is marked. The right image displays DOLP in the three polarimetric bands (470,
660, and 865 nm). The yellow box indicates the area viewed at all 9 AirMSPI view angles, and
where data were used for retrieval algorithm testing. (b) Lower-resolution imagery (~1.0 km) of the
retrieval area after pixel aggregation. The left, middle, and right panels are images of BRF at 445,
555, and 660 nm, respectively. (c) Retrieved AOD, SSA, and surface albedo (A) maps at 555 nm in
the left, middle, and right panels, respectively. (d) The AirMSPI retrieved AOD, SSA, and volume
weighted aerosol size distribution at the pixel closest to the Baskin AERONET site, compared to the
AERONET-derived values.

Figure 9 shows a comparison of retrieved pixel-resolved AODs, SSAs, and aerosol size
distributions (dV/dIn(r), in um?3/um?) from the correlated multi-pixel inversion with those retrieved
using original multi-pixel algorithm adapted for AirMSPI [19]. The AOD results for seven AirMSPI
spectral bands are plotted in different colors: pink (355 nm), purple (380 nm), dark blue (445 nm), light
blue (470 nm), green (555 nm), red (660 nm), and brown (865 nm). Linear regression is performed to
obtain slope 4, intercept b, as well as the coefficient of determination R2. The mean absolute difference
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(MAD) in AERONET and AirMSPI results is also calculated to measure the overall deviation. Strong
correlation and low bias (R2 > 0.88,a ~0.90, b < 0.05, and MAD < 0.02) are observed. It can also
be observed that a variation of aerosol loading by ~30% around the mean (namely in the range
0.28 < AODu45,,1; < 0.40 with mean value 0.32) across the retrieval area is captured by the correlated
multi-pixel inversion. Implementation of our approach using several datasets with even higher (~90%)
variation of aerosol loading over several smoke scenes acquired by AirMSPI during the recent Aerosol
Characterization from Polarimeter and Lidar (ACEPOL) campaign showed the algorithm to be capable
of capturing this variation. The regression in Figure 9b shows correlations and low bias of SSAs
(R2 >0.40, 2 > 0.60, b < 0.030, and MAD < 0.004) from the two inversions as well. Figure 9c shows
basic consistency in the retrieved aerosol size distributions: both algorithms find the peaks of fine and
coarse mode aerosol size to be around ~0.15 um and ~2 um, respectively. Due to the lower sensitivity
of AirMSPI’s longest wavelength 865 nm to coarse mode aerosols, some differences in coarse mode
aerosol size can be observed. This indicates the impact of insufficient observational information
about certain aerosol properties. Comparisons of pixel-scale AOD, SSA, and size distribution at other
retrieval cases show a similar quality of agreement.
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Figure 9. (a) Regression of pixel-scale AOD retrieved from correlated multi-pixel inversion (CMPI)
against the previous retrievals using multi-pixel inversion (MPI, [19]). The AirMSPI dataset used for
retrieval is the same as in Figure 5 over the AERONET Baskin site. The results for seven AirMSPI
spectral bands are plotted in different colors: pink (355 nm), purple (380 nm), dark blue (445 nm),
light blue (470 nm), green (555 nm), red (660 nm), and brown (865 nm). (b) The same as Figure 9a
but for SSA. (c) Comparison of image-mean volume-weighted aerosol size distribution retrieved from
correlated multi-pixel inversion and multi-pixel inversion.

Figures 10 and 11 compare AirMSPI and AERONET retrievals of AOD and SSA respectively.
Since the temporal variation of aerosol loading and properties is not constant, non-symmetric
AERONET error bars can be observed in Figures 10 and 11. Under the circumstance of no AERONET
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reference data before or after AirMSPI measurement, only AERONET measurement/retrieval error is
reported. Figures 12 and 13 compare real and imaginary parts of aerosol refractive index, respectively.
The AERONET spectral aerosol products were linearly interpolated in wavelength to match the
AirMSPI band centers. Comparisons of fine and coarse mode effective radii are shown in Figure 14.
To facilitate the comparison of aerosol size, an effective radius was calculated for fine and coarse
mode aerosols from AirMSPI retrievals using Equation (35) in a previous study [19]. For AOD, linear
regression is performed. Values of regression related parameters (4, b, R?) and MAD are indicated in
all panels. The AOD regression shows a spectral means of coefficient of determination 0.91, slope 0.93,
and intercept 0.03, reflecting high retrieval quality. While SSA and refractive index in Figures 11-13
show relatively larger differences between the AirMSPI and AERONET retrievals, the differences are
generally within their respective uncertainties, which in turn depend on AirMSPI and AERONET
observation errors and the sensitivities of the respective retrieval algorithms. Figure 14 shows a
maximum difference of 30% between AirMSPI and AERONET retrieved fine mode aerosol size,
whereas larger differences (up to 80%) are observed in coarse mode aerosol size. As noted above,
shortwave infrared spectral bands, which AirMSPI lacks, are necessary to constrain the coarse mode
aerosol size.
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Figure 10. Regression of AirMSPI retrieved aerosol optical depth (AOD) against AERONET measured
values. The upper three panels are for 355, 445, and 470 nm, and the lower three panels are for 555, 660,
and 865 nm. Linear interpolation is used to obtain AERONET AOD values at the AirMSPI wavelengths.
The AERONET uncertainties are from the +~1-h window around the time of AirMSPI overflight
plus measurement uncertainties (0.01), while the AirMSPI uncertainties are the root mean square
of the retrieval uncertainties and standard deviation of pixel-resolved AODs over the whole image.
Linear regression analysis yields values of slope a, intercept b, coefficient of determination R?, and
mean absolute difference (MAD). Values of each are indicated in all panels.
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Figure 11. Comparison of AirMSPI retrieved single scattering albedo (SSA) against AERONET
retrievals. The upper left and right panels are for 445 and 555 nm and the lower left and right
panels are for 660 and 865 nm. Linear interpolation is used to obtain AERONET SSA values at the
AirMSPI wavelengths. The AirMSPI errors are computed from statistics obtained over the whole image

plus the errors evaluated using the method in Section 3.3. Values of MAD are shown.
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Figure 12. Same as Figure 11 but for the real part of aerosol refractive index.
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Figure 13. Same as Figure 11 but for the imaginary part of aerosol refractive index.
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Figure 14. Same as Figure 11 but for the effective radii of fine and coarse mode aerosols.

Table 6 summarizes MAD in several key aerosol properties from correlated multi-pixel inversion
approach (this paper) and from the original multi-pixel inversion approach adapted to AirMSPI [19].
These properties include AOD, SSA, real and imaginary parts of refractive index (1, n;), and effective
radii of fine and coarse particles (Teff, fines "eff, coarse)- Lhe bias is evaluated by taking the mean of the
absolute difference between AirMSPI and AERONET retrievals at collocated pixels. The correlated
multi-pixel inversion has slightly higher MAD than that of original multi-pixel retrieval, namely by
~0.01, 0.015, 0.001, 0.002, and 0.05 for AOD and SSA in visible, #1y, 11;, Teff, fine, aNd eff, coarse, espectively.
The deviation of both correlated and original multi-pixel retrievals from AERONET reference data are
mostly within the retrieval uncertainties from our algorithms (see Sections 3.3 and 4.2 of the previous
study [19]) and those estimated for AERONET, as observed in Figures 10-14 of this work, as well as
Figures 4-8 in the previous study [19].

Note that to enhance the retrieval efficiency, two PCs are adopted to perform the retrieval and
achieve the retrieval quality in Table 6. Including more PCs in our retrieval would allow capturing more
spatial variations of aerosol properties across the imaged area and improve accuracy, but at a cost of
decreased retrieval efficiency. In correlated multi-pixel inversion, the retrieval efficiency is gained from
two aspects: (a) reduction of parameter space by retrieving PCs of correlated fields; (2) use of PC-based
RT model. For a case study with 22 correlated aerosol parameters and 30 uncorrelated (assumed)
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surface parameters per super-pixel, the correlated multi-pixel saves 50% CPU time by using two PCs.
The speed gain can be greater if we further capitalize the correlation in surface parameters, as well as
the correlation between aerosol and surface parameters. It is anticipated that correlated multi-pixel
inversion will save 90% CPU time if an image of 100 x 100 pixels is retrieved simultaneously and all
52 parameters are correlated with each other.

Table 6. Mean absolute bias (MAD) in key aerosol properties from correlated multi-pixel inversion
approach using two PCs (this paper) and from original multi-pixel inversion approach adapted to
AirMSPI [19]. The bias is calculated by taking the mean of the absolute difference between AirMSPI
and AERONET retrievals at collocated pixels. A total of 27 AirMSPI datasets are used. Interpolation is
used to calculate some AERONET parameters at central wavelengths of the AirMSPI spectral bands.
By performing regression against AERONET reference AOD, the coefficients of determination (R?) are
given in columns 3 and 5. The ranges of non-AOD parameters are too small and the sample size is
limited. Therefore a reliable regression analysis is not established and R? is reported only for AOD in

the table.
Parameters Correlated Multi-pixel Inversion Original Multi-pixel Inversion
MAD R? MAD R?
AOD355 nm 0.058 0.917 0.040 0.925
AODyy5 nm 0.035 0.927 0.024 0.955
AODy70 nm 0.030 0.933 0.021 0.960
AODs55 nm 0.020 0.933 0.016 0.960
AODgg0 nm 0.016 0.922 0.013 0.959
AODgg5 nm 0.015 0.815 0.014 0.851
SSA445 nm 0.035 - 0.030 -
SSAss5 nm 0.036 - 0.030 -
SSAg60 nm 0.040 - 0.032 -
SSAg65 nm 0.041 - 0.035 -
Ny 445 nm 0.052 - 0.039 -
Ny 555 nm 0.051 - 0.039 -
Ny 660 nm 0.046 - 0.036 -
Ny865 nm 0.038 - 0.037 -
Nj 445 nm 0.004 - 0.004 -
1Nj 555 nm 0.004 - 0.004 -
Nj 660 nm 0.005 - 0.004 -
Nj 865 nm 0.005 - 0.005 -
Teff fine (M) 0.024 - 0.022 -
Teff coarse (HM) 1.050 - 0.993 -

6. Summary and Outlook

Without utilizing correlations among aerosol parameters, optimization-based retrievals are
confronted with a high-dimensional parameter space. However, certain types of aerosols or certain
combinations of aerosol fields generally prevail within a targeted area, and consequently some aerosol
parameters are correlated with each other (in other words, have high linear dependency, as captured by
PC analysis). Due to the lack of accurate physical models, however, it is hard to quantify the physical
processes and accurately quantify the correlations between all parameters. To mitigate the influence of
model assumptions, a priori information about aerosol correlation informed by ground or other types
of measurements is helpful. This motivates our development of PC-based aerosol inversion approach
to improve the inversion stability and efficiency by reducing the number of retrieval parameters.
The algorithm makes use of multiple types of constraints, including across-pixel smoothness constraints
transformed to be imposed on the PCs to retrieve zero sum of the PC weights, and orthogonality
and unit norm conditions on PC weights and PC vectors, respectively. While applying smoothness
constraints to the PCs instead of the individual aerosol parameters, the regularization (smoothness)
remains faithful to both aerosol correlations and smooth spatial and spectral variation within the
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scene. To accelerate the multi-pixel retrieval, a PC-based RT model is developed, which capitalizes on
the aerosol correlations and mutual orthogonality of the PC vectors. The retrieval methodology was
tested by comparing aerosol retrievals from 27 AirMSPI datasets acquired between 2012 and 2016 with
collocated aerosol reference data reported by AERONET. Mean absolute differences between AirMSPI
and AERONET retrievals are found to be ~0.029 and 0.038 for AOD and SSA, respectively.

The correlated multi-pixel inversion established in this paper is informed by prior estimates of
aerosol properties within the retrieval in order to generate initial guesses for the PC vectors and to
calculate the co-variance of a priori. Potential sources of such information can include AERONET
climatologies, chemical transport model results, or satellite-based aerosol inversion output obtained,
for example, from the MISR operational aerosol retrieval [13,14], and the near-real time POLDER
aerosol retrieval [35]. Though not implemented in this study, it would be interesting to further impose
on retrieval the correlations in surface properties and the correlations between aerosol and surface
properties. To derive a priori of the correlations in surface properties, PC analysis can be performed over
a surface reflectance dataset, such as the one based on the Multi-Angle Implementation of Atmospheric
Correction (MAIAC) algorithm [36,37], the ASTER spectral library [38], and the U.S. Geological Survey
(USGS) digital spectral library [39]. To impose the correlation between aerosol and surface, however,
one might encounter a complex surface condition over a targeted area (e.g., with co-existence of
multiple types of surfaces such as soil, water, snow, forest, etc.). Under such circumstances, surface pixel
classification can be performed to identify surface types first, either from existing surface climatology or
from various indices for vegetation, snow, soil, water, etc. based on their spectral difference. Then one
can assign surface-type dependent sets of PCs to pixels, each set containing a small number of PCs.
Finally, these surface-type dependent sets of PCs are retrieved simultaneously with the imposition of
the constraints regarding smooth variations of relevant aerosol/surface properties in spatial, spectral
and/or temporal directions. To account for dependent sets of PCs in a state vector, some modifications
are necessary in formulating the smoothness constraints. Using such a strategy is expected to gain
more retrieval efficiency than if one directly relaxes more PCs in retrievals to capture strong spatial
variations of surface properties.

While the correlated multi-pixel approach developed here allows a retrieval of both PC vectors and
PC weights, another way to capture regionally limited variability in aerosol type is to use a traditional
lookup table (LUT) based aerosol retrieval. This approach is implemented in some operational aerosol
retrievals employed by, e.g., Multi-angle Imaging SpectroRadiometer (MISR) [13,14] and Moderate
resolution Imaging Spectroradiometer (MODIS) [40], and has extremely high retrieval efficiency.
With reliable estimates of aerosol properties from other sources as noted above, a “smart” LUT can be
generated, which then serves as the basis for a reliable set of PC vectors. If there is high confidence
in the representativeness of these PCs, the retrieval could be confined to the PC weights only, which
will be faster than the combined inversion of PC vectors and PC weights. Such an approach would
compensate for the weakness in traditional LUT approach, namely that aerosol mixtures are confined
to a discretized aerosol parameter space. Further testing of these ideas are planned using multi-angle
satellite observations from MISR [41].
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Appendix A Symbols and Abbreviations

Table A1l. List of symbols and abbreviations.

Symbol/Abbreviation Description
a Slope of a regression line
a Mean slope of a set of regression lines
a Spectral weight of surface BRDF
A Coefficient for a basic smooth function shape, e.g., “g(z) = Az 2 + Bz + C” for a parabola
A Fischer matrix
AERONET Aerosol Robotic Network
AirMSPI Airborne Multiangle SpectroPolarimetric Imager
AOD Aerosol optical depth
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
Agurt Surface albedo
Intercept of a regression line
b Mean intercept of a set of regression lines
B Coefficient for a basic smooth function shape, e.g., “g(z) = Az 2 + Bz + C” for a parabola
BRDF Bidirectional reflectance distribution function
BRF Bidirectional reflectance factor (BRF) associated with Stokes vector component I
c Constant column vector that weight correlated fields in PC analysis
C Coefficient for a basic smooth function shape, e.g., “g(z) = Az 2 + Bz + C” for a parabola
C; Covariance matrix of i-th type of constraint
Caxrand Covariance matrix of random errors in the measurements
Cy sphere Column volume concentration of spherical aerosols
Cy ot Total column volume concentration of aerosols
d Differentiation array
dgs Earth-Sun distance
DOLP Degree of linear polarization
dV/dIn(r) Volume weighted aerosol size distribution
Ey Exo-atmospheric solar irradiance
f; Column vector of i-th type of constraint
f; Column vector that contains model prediction to fit i-th type of constraint
Af] Column vector that contains the errors of i-th type of constraint
ffine Fine mode aerosol fraction
£\, sphere Volume fraction of spherical aerosols
g(z) Smooth function with variable z
S Spectral anisotropy parameter of surface BRDF
GRASP Generalized Retrieval of Aerosol and Surface ProperEes
h Cartesian coordinate in the direction &
ha Central height of aerosol vertical profile (constrained by Gaussian profile)
I First Stokes vector component
I Identity matrix
Imeas Measured radiance
kp Spectral anisotropy parameter of surface BRDF
ko Shadowing width of polarized BRDF
K Jacobian matrix
K; The Jacobian matrix associated with i-th type of constraint
L(j) Length of j-th type of correlated parameters (fields)
m Order of difference in constructing smoothness matrix
M Number of types of constraints imposed on retrieval
MAD Mean absolute difference
MAIAC MultiAngle Implementation of Atmospheric Correction
MISR Multi-angle Imaging SpectroRadiometer
MODIS Moderate Resolution Imaging Spectroradiometer
ng Real part of refractive index at j-th wavelength
n j Imaginary part refractive index at j-th wavelength
Na Total number of retrieval parameters
N Total number of a priori estimate of parameters

N Total number of constraints imposed on retrieval
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Table A1. Cont.

Symbol/Abbreviation Description
Neorr Number of correlated parameters (fields)
N¢ Total number of observations (all pixels are accounted)
N; Total number of i-th type of constraint
Npc Total number of principle components
Npixel Total number of pixels
Nsc Number of aerosol size components
NTP uncorr Total number of types of uncorrelated parameters
Constraining matrix that reflects zero-sum of PC weights
pBRDF Polarized BRDF
P Probability distribution function (PDF)
PC Principal component
PCA Principal component analysis
POLDER Polarization and Directionality of Earth’s Reflectance
q Ratio of Stokes components Q and I
q Iterative step during optimization
qBRF10A Top-of-atmosphere BRF associated with Stokes vector component Q
Q Second Stokes vector component
r Radius of aerosol
Teff coarse Effective radius of coarse mode aerosols
Teff fine Effective radius of fine mode aerosols
Reflection matrix
R? Coefficient of determination
Ratmos Reflection matrix for atmosphere associated with light illumination from top of the atmosphere
Rlimos Reflection matrix for atmosphere associated with light illumination from bottom of the atmosphere
Rcas Reflection matrix for the coupled atmosphere-surface system (CAS)
RPV Rahman-Pinty-Verstraete (surface BRDF model)
Rourf Surface reflection matrix
Rgurf, BRDF Depolarizing part of surface reflection matrix
Rsurf, pBRDF Polarizing part of surface reflection matrix
RT Radiative transfer
Sa Standard deviation of aerosol vertical profile (constrained by Gaussian profile)
Sim Differentiation matrix of m-th order for i-th type of constraint
SSA Single scattering albedo
t Temporal coordinate
T Transmission matrix
Tatmos Transmission matrix for atmosphere associated with light illumination from top of the atmosphere
T Transmission matrix for atmosphere associated with light illumination from bottom of the
atmos atmosphere
TOA Top-of-atmosphere
u Cartesian coordinate in the direction u
u Ratio of Stokes components U and I
uBRFroA Top-of-atmosphere BRF associated with Stokes vector component U
o) Third Stokes vector component
8] Constraining matrix that reflects the unit length of a PC
USGS U.S. Geological Survey
v Cartesian coordinate in the direction v
v PC matrix containing Npc columns PC vectors
vBRF10A Top-of-atmosphere BRF associated with Stokes vector component V
Vi The k-th PC vector
Vstate Column vector containing all PC vectors
w PC weight matrix containing Nyixel column vectors containing PC weights
w; Weight matrix for i-th type of constraint
Wy Column vector containing PC weights for p-th pixel
Wstate Column vector containing all PC weights
X Column state vector including all retrieval parameters
x? priori a priori of state vector
Xcorr Column vector containing spatial and temporal mean of correlated parameters (fields)
Xcorr,p Column vector containing correlated parameters (fields) for p-th pixel
Xg,aer The vector consisting of correlated aerosol properties — calculated from the solution at g-th iteration
N The vector consisting of uncorrelated surface reflection properties — containing in the solution at g-th
qsurf iteration
xretrieved Retrieved column state vector
Axgyst Systematic error in retrieval
Xuncorr,p Column vector containing uncorrelated parameters (fields) for p-th pixel
xtrue Column state vector associated with true solution
Xwv Column vector including PC weights and vectors

(Ax)j

The retrieval error in j-th parameter
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Table Al. Cont.

Symbol/Abbreviation Description

Yi i-th observational signal

YHS Output of RT calculation with high stream approximation

Y Output of RT calculation with low stream approximation

z Variable of a smooth function

Zmin Lower bound of z

Zmax Upper bound of z

z Number of observations per pixel

) Kronecker delta

Os Scale factor that perturbs a PC vector

€rand Random error in measurements

€\ Spectral weight of pBRDF

& First diagonal element of C;

Sé User-specified threshold value to diagnose the convergence of optimization
e Expected variance due to measurement errors

0o Solar zenith angle

Oy View zenith angle

A Wavelength

Ho Cosine of solar zenith angle

Yi Lagrange factor for i-th type of constraint

$o Solar azimuthal angle

Y; Objective cost function for i-th type of constraint

Yiotal Overall objective cost function

VY; Gradient of the objective cost function for i-th type of constraint
V¥ total Gradient of the overall objective cost function

O; The smoothness matrix associated with i-th type of constraints
QRa The rearranged smoothness matrix from Q.

Quncorr The smoothness matrix imposed on uncorrelated parameters (fields)
X . The smoothness matrix imposed on spatial and temporal mean of correlated parameters (fields)
()48 Smoothness matrix imposed on pixel resolved PC weights

(). Smoothness matrix imposed on a PC vector

Qe Smoothness matrix imposed on correlated parameters (fields)
Uspatio—temporal, x Standard deviation of a correlated field x

Oe, x Uncertainty estimate of a correlated field x

Os Slope variance of polarized BRDF

Taer,tot Total aerosol optical depth

Taer,abs Total absorption aerosol optical depth

Tatmos Atmospheric optical depth

r Constraining matrix that reflects the mutual orthogonality in PCs

Appendix B Smoothness Matrix to Constrain Uncorrelated Parameter Retrieval

To explain construction of the smoothness matrix for PC vectors and weights, we start
by describing the smoothness matrix used in the original multi-pixel algorithm formulated by
Dubovik et al. [6]. This appendix forms the basis for extension to PC-based smoothness matrix,
described in Appendices C and D. Two major classes of constraints are imposed on the PC retrieval:
across-pixel (spatial) constraints and within-pixel (e.g., spectral) constraints. The following matrix
incorporates both across-pixel and within-pixel constraints for a set of uncorrelated aerosol parameters:

'Yuncorr,onuncorr,l 0 ce 0
0 “Yuncorr oQuncorr2 - 0
YuncorrQuncorr = ’Yuncorr,AQuncorr,A + (Al)
0 0

“Yuncorr,o Quncorr,Npixel

where Yuncorr,AQuncorr,a 15 @ block matrix that includes across-pixel smoothness constraints,
Yuncorr,o Quncorr,0,p 18 @ block matrix that includes within-pixel smoothness constraints over the
parameters associated with p-th pixel, and 0 is the zero block matrix. Pixel resolved matrices
Yuncorr,o Quncorr,0,p d0 Not interfere with each other, so they are arranged along the diagonal axis
of the large matrix on the right-hand-side of the above equation. To facilitate the use of YuncorrQuncorr
calculated via Equation (A1), the uncorrelated parameters are grouped together in the order

of Xuncorr = [Xx(t1);x(t2); -+ ;x(tn,)], where X(tj) = [X(Ul;tj)}x(vz) tj)}‘ : ~;x(va;tj)}, x(v;; tj) =
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[x(ul;vi,‘ tj);x(uz; vi; tj); s x(un,; v t]«)}, and x(uy;v;; tj) is a vector that contains uncorrelated
parameters for the pixel (i, v;) observed at temporal point t;. Evaluations of Yuncorr,A Quncorr,a and
Yuncorr,o Quncorr,o,p are discussed in Appendices B.1 and B.2, respectively.

Appendix B.1 Across-Pixel Smoothness Matrix
The across-pixel constraints that ensure smooth variation of a parameter in space and time is

expressed by,

“Yuncorr,A Quncorr,A = Yuncorr,u Quncorr,u + “Yuncorr,v Quncorr,v + ')’uncorr,tnuncorr,t (AZ)

To simplify the explanation, consider an image of N;, pixels along the horizontal spatial dimension u,
two pixels along the horizontal spatial dimension v (N, = 2) and two successive measurements in time
(N = 2) of some parameter x. The construction of a smoothness matrix along the vertical direction is
neglected for simplicity. In this case, the single-column state vector is arranged as,

x(up;oh) continued
x(up;v1;t) x(uy;01;t2)
x(uz;v1;t) x(ug;v1;t2)
: x(uz; v1;t2)
x(un,;v1;t) :
Xuncorr = x(uq;v2;t1) x(un,;v1;t2) (A3)
x(up;v2; 1) x(uy;v2;t2)
x(uz;v2; 1) x(ug;v2; 1)
: x(u3;v2; t)
x(un,;v2;t)
to continue L x(un,;v2;t2)

The corresponding smoothness matrix constraining the horizontal and temporal variation of x is
given by,

3 (muncorr,u v ) T 3 (muncorr,u v >
'7unc0rr,u/v/tQuncorr,u/v/t = [dlag(\/ 'Yuncorr,u/v/tsuncorr o )] [ dlag(\/ '7unc0rr,u/v/tsuncorr o ) ] (A4)

where Yyncorr,u/v/t controls the strength of smoothness constraint, which varies for different types of
parameters. Specifically, the component that ensures the smooth variation of x in the direction u is
expressed as,

( ) s (muncorr,u ) 0
Muncorr,u uncorr,u
Suncorri’ = \/Yuncorr,u ’ A5
\/’YuTorr,u UNCOrT, U “Yuncorr,u 0 (Muncorr) ( )
uncorr,u
where
dgmuncmru) (1) dgmummw) 2) T dgm""“’"'") (Muncorru + 1) 0 e 0
(Muncorru) (Muncorr,u) (Muncorru)
st = 0 &) ) = ") (1 yncorg +1) 0 (A6)
0 0 o muncorsa) —(q gUMuncors) () 1

As an example, the differentiation array for the first order of difference in above equation is,

(muncorr/ltzl) _ _1 __1
d; = 55 =m0 (A7)
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where A1 (j) accounts for the distance between neighboring pixels in the direction u and is evaluated
by Equation (40), and for the second order of difference,

(muncorr,uzz) _ 2 _ 2 2
d; = [ OB IMGID T MOMGTD MG A G } (A8)

Moreover, the smoothness matrix in the direction v is,

s (muncorr,v ) 0
muncorr v _ uncorr,v
\Y4 /Yurlcorr UsunCOrr v IV ,Yuncorr,v (muncorr Z)) (A9)
0 Suncorr,v
where
dgmuncm,n) ) 0 . 0 dimuncmr,w) (2) 0 o 0
(m -1 0 dgmuncun,v) (1) . 0 0 dgmuncorr,v) <2) . 0
Suncorn,g. = . . (Al 0)
. (Muncorr,o) . (muncorr,0)
0 0 d; (1) 0 0 d; (2)

where we assume Myncorr,y = 1 and the calculation of the differentiation array d accounts for the
distance between neighboring pixels in the direction v and is evaluated by Equation (40).
The smoothness matrices in the direction ¢ is,

dYnm‘cou,v) (1) 0 00 0 - 0 dgmuncorr,t) @) 0 0o --- 0 0 - 0

et _ [0 a0 000 0 e 00 @) 0 00 e 0| (A7
uncorr, ¢ dimunccrr,') (1) 0 00 0 - 0 dgmuncon',f) ) 0 o --- 0 0 - 0
0 dgmm\corr,l) 1) 00 0 - 0 0 dgmuncorm) 20 -0 0 - 0

where we assume Myncorr,t = 1 and the calculation of the differentiation array d accounts for the
temporal gap between successive measurements and is evaluated by Equation (40).

Note that the above formalism applies to all uncorrelated but smoothly varying parameters.
The incorporation of these smoothness matrices for different parameters into an overall matrix
Yuncorr,AQuncorr,A 18 designed to account for the locations of these parameters in a retrieval state vector.

Appendix B.2 Within-Pixel Smoothness Matrix

Certain types of parameters, such as the spectral weight of the microfacet model-based pBRDF
function and spectral shape parameters in the RPV model-based BRDF function as a function of
wavelength, are subjected to inherent smoothness. The smooth variation of such a type of within-pixel
parameters is ensured by

(’)/uncorr,o Quncorr,o ) 1 0 ce 0
0 ('Yuncorr,o Quncorr,o ) 2 0
Yuncorr,o Quncorr,o = . (A12)
0 0 e (rYuncorr,o Quncorr,o) N,

pixel

where for any pixel p,

( “Yuncorr,o Quncorr,o ) [ v/ Yuncorr,o Sunrzggf‘grroo :| [W(muncorr’o ) } |: v/ Yuncorr,o Sunrzgcn)‘;?rroo :| » (A13)

where
C;muncorr,o(l)) (1) 0
0 C;muncorr,o () (2) . 0
[\/ “Yuncorr quﬁgz)‘ff;tm p = . (A14)
uncorr,& N uncorr
0 0 e C;m o TP, ) (NTP,uncorr)
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with the following submatrix for j-th type of uncorrelated parameters,

d;”z“““""“m)(l) dzlm\ o () dgm.m;m,w)](m“nmrm(” +1) 0 0
(m . Muncor

om0 () = \/orencome ()

where we assume j-th parameter belongs to [TPuncorr(j)]-th type of uncorrelated parameters, the
calculation of the differentiation array d accounts for the distance between neighboring wavelengths
and proceeds in the way as expressed in Equations (A7) and (AS8).

The weight matrix in Equation (A13) is expressed as,

Wrtuncorro (1)) (1) 0 0 0
0 W (uncorr,o(2)) (2) 0 0
Wncorr) — 0 0 W(uncom(3)) (3) 0 (Al6)
. . . . 0
0 0 0 0 w("’uncon,o(NTP,uncorr)) (NTP,ur\corr)
where
1 0 e 0
Amuncorr,<> (i) ( ) 1
W(muncorr,o(i)) (l) — Amuncorr,o(i) (2) (Al 7)
0 0

AV”uncorr<> (L( i) — Muncorr, o (1))

where A, (j) is evaluated by Equation (40).

To generate X, QX .. (see Equation (50) for QX ,), the evaluation of smoothness matrix of the
correlated fields in the column vector X containing multi-pixel mean fields proceeds in a similar way
as formulated for the within-pixel constraint.

Appendix C Smoothness Matrix for Correlated Parameters

As shown in Appendix B, the original multi-pixel inversion algorithm imposes smoothness
constraints directly on the aerosol fields. In the correlated multi-pixel inversion, the correlated
parameters are not directly retrieved; the retrieval involves the PC vectors, PC weights, and multi-pixel
mean fields. Therefore, the smoothness constraints must be imposed on PCs and PC weights. Like the
implementation for uncorrelated parameter retrievals, the overall smoothness matrix includes both

across-pixel (7¢0y, Aoy, o) and within-pixel constraints (v, Qeorr,0), namely,
WYV OOWV AWV Qwv
’)/COI'chorr,l - ’)/corr,AQcorr Al + ’YCOII‘ &= “corr,o,1 ( Al 8)
WV WV AWV WV =+ WV
Ycorr corr,2 r)/corr,A corr,A,2 r)/COrl‘/<> corr,o,2

The explicit forms of y¢[T A QET A and Y&l o Qor, o Will be given in the Appendices C.1 and C.2.

COrT,.

Appendix C.1 Across-Pixel Smoothness Constraints

To simplify the discussion, the formalism given in this and the next section assumes that the
smoothness constraint applied to a parameter x occurs in the dimension u. It can be easily extended to
enable construction of smoothness matrices in other spatial dimensions.
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. . - . . Wy o
To constrain across-pixel variation of a certain parameter, the 'ycorr,AQcorr,A matrix in
Equation (A18) is given by
N o) 01T 072 )
wy o Owv _ f:" wv A8y Xi) wv Ay i)
’)/corr,A corr,A,1 — Y lycorr,A dx; 7corr,A dx;
1=
(A19)

THWV
NCorr ( corr,A ) .

T
v Sy 1 Xi) v oMo a)
WV WV _ WV WV, i WV corr,A
’Ycorr,AQcorr,A,Z - 1,;1 [ ’Ycorr,A dx; ’Ycorr,ASwv,i

where the column vector x; has the same length as that of the state vector and contains all-pixel PC

(mz\tl)\;r,A)

WV, i
includes two matrix components B and C that account for the contributions by PCs and PC weights,

respectively, in the following form,

weights and the i—th elements of all PC vectors (all rest elements of x; are zero), and , / 'yz‘(’)‘;r, AS

where the first column of zero matrices accommodate the multi-pixel mean of correlated parameters,
and the explicit form of B matrix is expressed as,

(M n) /. mWY (i ) mWY (i . mWY (i) ,.
Bw,c?;)rr,A (Z) — |: B;(a corr,A( ))(l, w(l)) Bp corr,A( ))(l, T/U(2)) e B; corr,A( ))(l, ZU(NPC)) :| (A21)
with
' s (4 1)y (k) 0 0
B;,"'n"”'ﬁw(i,w“ ) = y/m 0 ’”fjign(”dfy'”?u‘ﬂ(ﬂ)(m+l)w}77”'(k) 0 (A22)
0 0 H’?‘SI:A(‘)di,’"‘t“”'ﬂ(‘))(rrl+l)wﬁ,,,(k)

where the i-th correlated parameter.
The matrix C is a null matrix except its i-th row has fill-in values, namely

o 0 - 0
C;mz\g‘;r,A) (m/’ Z) _ /,Yr(/)\;r’A (l)d;m‘cl‘cl);r,A(l)) (m/) 01 (1) (%) (l) © UNpe (1) (A23)

(m‘CA(])‘;r,A )

Moreover, Equation (59) is implemented to evaluate d(S,,*

x;)/dx; in Equation (A19).

Appendix C.2 Within-Pixel Smoothness Matrix

The overall within-pixel smoothness matrix 1, . Q¢ory o in Equation (A18) is expressed as,

wv NTP,corr d(s(m‘ch(’)‘;r,o)x_) T (mwv ) -1 d(s("’g)‘;r,o)x_)
— wv wv
’Ycorr,<>0<>,1 - 121 AV ’YZ‘Q{r,o ax; ' {W corro } VvV r)/z\(,)‘r/r,o ax; .
= A24
NTP,corr d(S(mg%'O)x-) T ( wv ) -1 (mwv ) ( )
’YZ\(I)\;r,OQO,Z = X VvV ’Yg\grlr,o W‘ij. . Weorro vV ,)/X\c,;r]r,oSWVCO”/<>
=1 i
i=

where the column vector x; has the same length as that of the state vector and contains all-pixel PC
weights and the i-th type of correlated fields included in all PC vectors (all rest elements of x; are zero),
and the weight matrix W that has a similar structure as Equations (A16) and (A17) (but for the i-th
type of correlated parameters and is expanded to account for the number of pixels). To account for the
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smooth variation of a type of correlated parameters, the contributions of PC vectors and weights are

coupled in the following way,

WY S(mé“é‘%r,o) WY S(mXYXr,o) 0 0
V feorr,oPv v/ Yeorr,oPw
(mr(,)‘;r 0) mcorr 0
WV ,
WV S mmrm) _ vV ')/corr,osv 0 corr o 0
\V [corro -
mcorro (mg)\;r,o)
V/ Veorr,eSv 0 V/ Vet Sw
where
(m&ore,o) (M@, o k=1) (m¥y o k=2) (m¥y. o k=Npc)
WV s — corr,o 7 corr,o” corr,o7 PC
vV torr,o Sy = | V/7&Sy /Y&, Sv /Y0 Sv
with
(i, (1))
Vo (1)Sv (1) 0 0
, (Mo, (2).k)
(M ) 0 V0 (2)Sy ) 0
V4 7corr,<>sv !
Mt (NTPcorr ) K)
0 0 ’yxglir,o(NTP,corr)sE' ’ TP ) <NTP,c0rr)
4" ) ) e ey e 0 0 0 0 0
Si'rv:;‘;,‘,'w,k)(j) = wp(k) x 0 d;mmm)(l) d;rﬂmn«)(z) d;mcmm("’g’\m F1) - 0 0 0 0
0 0 0 (e +1)

In Equation (A25), /7% Sg\,ngm) is expressed as,

Ve (1)s
VT (2)Suy "

WV WV
S ( corr,o ) _ wv g (mcorr,o) wv g (mcorr,o )
COrr <> - ’YCOI‘I‘,O W1 r)/corr,o W2
with
V18 (DsU Y ) o D472 ()
e _ v/wrs;r,o<2>sEL’,‘f“‘”(2)* @) @ )
(M50 (NP corr ) k=1) (w‘“ o(NTPcore ) k=2) (N“J ) .

/%mo(Nu corr)Sw, " '(Nw,mn) \/ éto (NTP corr) S,

(mEorr,o (NTP,core ) k=Npc)
V Y E¥%e,0 (N1P corr) S,

(mCOK‘I' 0)
vV ’Ycorr oSwN el ]

p

o (1) k=Npc)
) Ouncorr,p

o(2) k=N,
) (2) Ouncorss

(NtPcorr)  Ouncorr,p

with the column vector for j-th type of correlated parameter described by,

Mmoo (f)+1

L

i=1
m‘c%rr Q(])+l

(Y () K) : X
o (1SS DM iy — e () =

Mmoo (1) +1

i=1

Moreover, Equation (59) is implemented to evaluate d (S

Appendix D Decoupled Smoothness Constraints

dgm&‘r'r,o ) (1)

X Uy

dém‘c%‘;r,o ) (1)

X Uy

(meote,o (7))
L (] ) - m‘c"(’;‘{"r,o

(m‘cAQ;r A)

(i) X vy

x;)/dx; in Equation (A24).

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

Smooth variations are often directly observed in PC weights and elements in a PC vector associated

with a certain type of parameter. Direct imposition of smoothness helps stabilize the first few iterations
when a priori information about the PC vectors and weights is insufficient. In an integrated form, the
across-pixel and within-PC smoothness matrix is expressed as

’)/CO/VQ?(,)élY = 0)

,YCOI‘I'

v v
corr + ’YCOI‘I‘QCOI‘I‘

(A32)
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where Y Q8 and 7o Qorr Fepresent the matrix form of smoothness constraints imposed on PC

weights and PC vectors, respectively. The explicit forms of ¢ Q.. and % Qo are given in the

Appendices D.1 and D.2, respectively.

Appendix D.1 Across-Pixel Smoothness Constraints on PC Weights

The smoothness constraints imposed directly on PC weights is expressed as

w w NPC W (mr{)rr K) T W (m‘cA:)rr k)
YeorrVeorr = 3 |/ VooerxSw < (k) 7o ek Sw 7 (k) (A33)
k=1

where

v g Meora)
TS ) =
0 0 Cu(LK) Oucorrpt Cpi(2K) Ouncormpe
0o 0 o 0 Cp(Lk) Oweomp  Cpa(2K) Ouncore 5

’ ] (A34)

0 0 0 0 ChNpiat =% (1K) Ouncorr Nyt

where the first two columns of zero matrices are to accommodate the multi-pixel mean of correlated
parameters and PC vectors, and C(i, k) is calculated by

Cp (' k) = a5 () Joe | 0k 1) 6k 2) e+ Sk, Nec) (A35)
0 0 0

Nbpixel X Npc

where the delta function §(k, k') = 1 for k = k" and 0 for k # K/, respectively, and the differentiation arrays
are expressed similarly as Equations (A7) and (A8), except that an extra subscript “k” is introduced
to the differentiation arrays d to allow different strength and orders of difference of smoothness
constraints to impose on a specific (k-th) principal component.

Appendix D.2 Within-PC Smoothness Constraints

The matrix form of within-PC smothness constraints imposed directly upon a PC is evaluated by,

NPC v T — v
(mcorr, ) v 1 (mcorr, )
Vo = 1 |\ 0| [WOB)] | 805 0) a6
where
[ WZorr,kST““”‘)(k)} =0 T ) TURe@) o TR (Ne) 0 0| (A%)
v

where the first zero matrix accommodates the multi-pixel mean of correlated parameters, the last
two zero matrices accommodate the PC weights and uncorrelated parameters, and T("Core) (k) is
evaluated by,

C(mZDrr,k(l)’k)(l) 0 o 0
. 0 C(mzorr,k(z)’k) (2) e 0
T(mcorr,k)(k) _ . (A38)
0 0 L C(mZorr,k(NTp/CO")’k) (NTP,COIT)
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where o
At gl
1) ™ @)

(A39)

Clmoes D) ) = \/“/Em,k(i)

where d depends on the type of correlated parameters and is expressed in Equations (A7) and (A8).
It can also vary as a function of a specific principal component. The weights matrix Weork) in

Equation (A36) is evaluated in the same way as for within-pixel constraints for uncorrelated parameters
(see Equation (A16)).
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