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Abstract: Reliable assessment of grapevine productivity is a destructive and time-consuming process.
In addition, the mixed effects of grapevine water status and scion-rootstock interactions on grapevine
productivity are not always linear. Despite the potential opportunity of applying remote sensing and
machine learning techniques to predict plant traits, there are still limitations to previously studied
techniques for vine productivity due to the complexity of the system not being adequately modeled.
During the 2014 and 2015 growing seasons, hyperspectral reflectance spectra were collected using
a handheld spectroradiometer in a vineyard designed to investigate the effects of irrigation level
(0%, 50%, and 100%) and rootstocks (1103 Paulsen, 3309 Couderc, SO4 and Chambourcin) on vine
productivity. To assess vine productivity, it is necessary to measure factors related to fruit ripeness
and not just yield, as an over cropped vine may produce high-yield but poor-quality fruit. Therefore,
yield, Total Soluble Solids (TSS), Titratable Acidity (TA) and the ratio TSS/TA (maturation index,
IMAD) were measured. A total of 20 vegetation indices were calculated from hyperspectral data
and used as input for predictive model calibration. Prediction performance of linear/nonlinear
multiple regression methods and Weighted Regularized Extreme Learning Machine (WRELM) were
compared with our newly developed WRELM-TanhRe. The developed method is based on two
activation functions: hyperbolic tangent (Tanh) and rectified linear unit (ReLU). The results revealed
that WRELM and WRELM-TanhRe outperformed the widely used multiple regression methods when
model performance was tested with an independent validation dataset. WRELM-TanhRe produced
the highest prediction accuracy for all the berry yield and quality parameters (R2 of 0.522–0.682 and
RMSE of 2–15%), except for TA, which was predicted best with WRELM (R2 of 0.545 and RMSE of
6%). The results demonstrate the value of combining hyperspectral remote sensing and machine
learning methods for improving of berry yield and quality prediction.

Keywords: grapevine productivity; hyperspectral reflectance; stress; rootstock; vegetation indices;
WRELM-TanhRe; neural network; activation function

1. Introduction

Cultivating or phenotyping highly productive grapevine cultivars would be a solution to minimize
the effect of climate changes, but this may result in differences in the flavor profile, take a long time
for development, and there is a chance that new cultivars will be susceptible to other biotic or abiotic
stressors. Grafting is a common alterative for imparting stress resistance while maintaining fruit
characteristics, whereby growers use selected rootstocks (roots and lower stem onto which another
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variety is grafted) and scions (above-ground part of the plant the scion produces the stem, leaves,
flowers, and berries) to increase the performance of grapevines [1–3]. Therefore, grafting and the
development of new rootstock genotypes have become common practices in modern viticulture [4].

Rootstock-scion interactions, through the impact of rootstocks on gas exchange and water use of
scions, play a critical role in determining berry yield and quality [5]. Selection of the most productive
rootstock-scion combinations may become even more complicated when the potential for different
or variable vine water availability is considered. This selection process depends not only on the
amount of berry yield, but also on berry quality-related parameters, such as Total Soluble Solids
(TSS, ◦Brix), Titratable Acidity (TA, g tartaric acid L−1) and the ratio TSS/TA (maturation index,
IMAD). These factors were incorporated due to the fact that commercial fruit harvest is decided
on when fruit meets basic chemical requirements (i.e., needing a minimum TSS to produce enough
alcohol during fermentation and TA needing to have reduced to a level during ripening that will be
palatable). Additionally, these factors relate to the overall health and photosynthetic production of a
vine, as a productive and healthy vine is not only able to produce a larger crop but also have higher
quality fruit [6]. Given the fact that the best rootstock-scion combination is determined by several
berry yield and quality related factors, it is inefficient to employ conventional methods of yield and
quality measurements that are usually expensive, destructive, laborious and time-consuming [7]. It is,
therefore, critical to have methods that are rapid, non-destructive, accurate and available at low-cost.

Applications of hyperspectral remote sensing in the determination of plant health and estimation
of crop yield have been rapidly expanding [8–13]. However, studies exploring the potential of
hyperspectral data in fruit quality estimation are lacking, because most authors were primarily
seeking to optimize irrigation scheduling or plant health. In recent years, various hyperspectral
indices have been found to be useful for fruit yield and quality estimation. Martín et al. [14] and
Meggio et al. [15] demonstrated the potential use of pigment-based reflectance indices to estimate
berry quality in vineyards affected by iron deficiency. Serrano et al. [16] suggested the suitability of the
water index (WI) to predict the berry quality of grapevines grown in rainfed conditions. In addition,
photochemical reflectance index (PRI) [8], an indicator of epoxidation state of the xanthophyll cycle
pigments and non-photochemical quenching (NPQ), was found to be related to the fruit quality
parameter in citrus and pear orchards [17,18]. There is no consensus on the effectiveness of a single
index. Furthermore, when different indices are combined, the contributions of spectral indices to vine
productivity estimation have not been explored in a complex field environment where both different
irrigation treatments and scion-rootstock combinations have been implemented.

In addition to single index-based methods, there exist multiple regression approaches that
include more than one spectral index or wavelength as explanatory variables to improve estimation
performance of plant physiology, water status, yield, and quality. Multiple linear regression (MLR),
an extension of simple linear regression, generated better results than traditional spectral index or
single wavelength-based methods [11,19]. However, MLR suffers from multi-collinearity inherent in
hyperspectral datasets [20]. Alternatively, partial least squares regression (PLSR) has proved to be
an effective method in various applications by reducing the multi-collinearity of a large numbered
explanatory variables to a few non-correlated latent variables [11,21–23]. Nevertheless, grapevine
berry yield and quality are determined by complex interactions of many factors and the relationships.
Grapevine and remote sensing data may not always linear, and linear statistical methods fail to
approximate the non-linear relationships within the data. Thus, machine learning methods based
on artificial neural networks (ANNs) and random forest regression (RFR) have been utilized to
capture both linear and non-linear relationships that exist between remote sensing and vegetative
parameters [24–26]. Yuan et al. [27] and Zhu et al. [28] demonstrated that RFR was superior to ANNs
in leaf area index (LAI) prediction due to its suitability for a relatively small number of training
samples and insensitivity to noisy data [29]. Recently, Pôças et al. [30] demonstrated the power of
machine learning methods to support irrigation scheduling in vineyards using data from a handheld
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spectrometer. Hence, it is worth exploring the potential of machine learning methods in estimation
grapevine productivity using hyperspectral data.

Among machine learning methods, Extreme Learning Machine (ELM; [31]), and its variants with
different activation functions, have been successfully applied to a variety of research fields [32–37].
The activation function is the nonlinear transformation of the weighted input signals and bias [38].
ELM exhibits good generalization with commonly used activation functions [39]. For the first time,
Maimaitijiang et al. [40] used ELM in soybean phenotypic trait estimation from fused aerial images
and found that ELM was more capable to handle complex data than conventional regression methods.
Rocha Neto et al. [41] also reported that ELM performed better than ANNs in estimating soil electric
conductivity using hyperspectral data. Generally, ELM has been found superior to other machine
learning and conventional regression methods because it is easy to implement, has fast learning speed
and good generalization performance [31,39]. However, its application for assessing vine productivity
through hyperspectral data has not been exploited.

Non-destructive estimation of pre-harvest fruit yield and quality of perennial tree crops such as
grapevines is a challenging domain. To best of our knowledge, this is the first attempt on the application
of hyperspectral remote sensing and machine learning for berry yield and quality from standing plants.
The employment of novel machine learning techniques for remote sensing field has become a promising
avenue. Combination of remote sensing and machine learning can be valuable for improving berry
yield and quality estimation. Within this context, the main objective of this study is to develop robust
yield and fruit quality prediction models using canopy level hyperspectral data for grapevines grown
under different irrigation treatments and rootstocks conditions. To accomplish our goal:

(i) we developed berry yield and quality prediction models with MLR, PLSR, RFR and WRELM
using vegetation indices derived from canopy spectra;

(ii) we proposed a new activation function by fusing of hyperbolic tangent (Tanh) function and
Rectified linear unit (ReLU) for Weighted Regularized ELM (WRELM-TanhRe);

(iii) conducted comparative analysis between prediction models that were developed with existing
methods and our newly proposed method;

(iv) evaluated the relative importance of the vegetation indices to berry yield and quality estimation;
(v) discussed the model scalability and transferability.

2. Study Site and Data

2.1. Study Site

The experiment was carried out in an experimental vineyard located in Mount Vernon, Missouri,
USA (37◦4′27.17”N, 93◦52′46.70”W), at 376 m above mean sea level, during 2014 and 2015 (Figure 1).
The vineyard where the additional studies being conducted, one of which was a multi-year evaluation
of rootstock and irrigation impacts on the berry and wine quality. The vineyard has a continental
climate, in which rainfall occurs primarily during the start of the growing season, with an average
annual temperature of 15.6 ◦C and mean annual rainfall of 1066.8 mm. Soil texture is a combination of
sandy loam, silt loam, and loam, with an average pH of 6. The vineyard was 120 × 75 m in dimension
and planted as Chambourcin vines, either own-rooted or grafted on 1103 Paulsen, 3309 Couderc and
SO4 in 2009. Vine density was 504 vines ha−1 with 3 m row spacing and 3 m vine spacing, including
25 rows and 1034 vines in total. Vines were trained on a high wire cordon trellis and spur pruned.
The grass was sown between the rows to avoid soil erosion, but a weed-free strip was kept below
the vines. At establishment, six irrigation zones were installed allowing for randomization of plots
for both four different rootstocks and three different irrigation treatments. The irrigation treatments
were: (i) nonirrigated (NIR), (ii) full replacement of evapotranspiration (FIR) or (iii) irrigated at 50%
of potential evapotranspiration (INT). The irrigation treatments were applied on 9 rows for three
consecutive years (2013–2015) with data collection in this study only occurring in 2014 and 2015.
Each treated row consisted of 8 plots and 4 adjacent vines in each plot with the same rootstocks.
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There are 72 measurement plots in the vineyard, consisting of 9 irrigation treatment rows with 8 plots.
Figure 2 presents the vineyard weather conditions. Prior to 2013, all vines received irrigation to ensure
equal establishment. FIT and INT rows were irrigated using a drip irrigation system with a flow rate
of 604.15 l h−1 per treatment. To maintain the different treatments along the growing season, both
timing and amount of water were determined based on evapotranspiration (ET) calculated using the
weather data from a nearby weather station situated 270 m north of the vineyard.

In the vineyard, the maximum canopy height was 2.2 m and width of the canopy ranged
from 0.5 to 1.3 m. On the field measurement dates, average leaf area index (LAI) values were
1.5 and 1.3, respectively. LAI was determined using LAI-2200C Plant Canopy Analyzer (LI-COR
Inc., Lincoln, NE, USA).

The average air temperature was 22.8 ◦C for both growing seasons of 2014 and 2015. The average
rainfall for 2014 season was 423 mm, which was 6 mm higher than average rainfall (417 mm) of
2015 season. Please note that, in 2014, most of the rainfall events occurred before and after the
irrigation treatment applied, while in 2015, frequent rainfall events happened before the irrigation
treatment initiation.
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Figure 2. Daily average minimum (Tmin, ◦C), maximum air temperature (Tmax, ◦C) and amount of
daily precipitation (mm) events (modified from Maimaitiyiming et al. [42]).

2.2. Field Data Collection

The field measurement dates were during the late veraison stage (19 August, DOY 231) in 2014
and the fruit ripening stage (21 September, DOY 264) in 2015. The growth stages were suggested by
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previous studies focusing on estimating berry yield and quality from remote sensing data [16,43,44].
The dates were determined based on the number of no-rain days after irrigation treatment initiation,
which was started later in 2015 due to the frequent early season rain compared to the prior year.

2.2.1. Field Spectroscopy Measurements

Reflectance measurements using a high-resolution full-range portable spectroradiometer PSR-3500
(Spectral Revolution, Inc., Lawrence, MA, USA) were performed between 11:00 am and 2:00 pm local
time. Measurements were taken under clear-sky conditions to minimize the disturbances from changes
in sun angle and canopy shadow. The spectroradiometer has a spectral range of 350–2500 nm with
a resolution of 3.5 nm in the 350–1000 nm range, 10 nm in the 1000–1900 nm range, and 7 nm in
the 1900–2500 nm range. Top-of-canopy radiance was recorded from an elevated platform holding
a 1.2 m long fiber optic with 25◦ circular field of view (FOV) attached to the Spectro radiometer.
The fiber optic head was held in a nadir orientation with a pistol grip above the canopy at an
average distance of 0.3 m. This resulted in an acquisition footprint of about 0.17 m. Care was taken
to ensure that the FOV of the spectrometer covered the grapevine canopy, reducing background
effects (e.g., soil). Canopy reflectance was calculated as the ratio between top-of-canopy radiance
and incident irradiance, which was measured over a 99% reflectance Spectralon calibration panel
(Labsphere, Inc., North Sutton, New Hampshire) before target measurement. Four vines within each
plot were measured 3–4 times for top-of-canopy radiances and averaged per plot. This means
72 spectral measurements in total and 6 spectral measurements for each “class” (3 irrigation and
4 rootstock treatments). The spectroradiometer was configured to average 40 readings automatically
per sampling, and the raw spectra bandwidth was interpolated to 1 nm. This resulted in 2151 individual
spectral bands. For further analysis, we only focus on the visible and near-infrared (400–1100 nm, VNIR)
region due to its high signal-to-noise ratio and easy accessibility from commonly available handheld
spectroradiometers, as well as from satellite sensors and unmanned aerial vehicles (UAVs) [30,42,45].

2.2.2. Determination of Berry Yield and Quality

Manual harvesting was carried out on Day of Year (DOY) 278 and 283 in 2014 and 2015,
respectively. Following the berry weight measurements on-site for each individual vine within
the plots (72 plots × 4 vines), the berries were sent to the lab in insulated coolers for fruit quality
determination. 100 berries for each vine were hand crushed and juice centrifuged. The extracted
juice was analyzed for total soluble solids (TSS, ◦Brix) and titratable acidity (TA, g tartaric acid L−1).
TSS was measured with an Atago RX-5000 digital refractrometer (Atago, Tokyo, Japan), while TA was
determined by titration with 0.1 N NaOH using a Mettler-Toledo G20 compact titrator and DG115-SC
probe (Mettler-Toledo, Schwerzenbach, Switzerland). The maturity index (IMAD) was computed using
the ratio between TSS and TA. All berry yield and quality data were determined for each individual
vine within the plot and averaged per plot, resulting 144 plots for two growing seasons.

3. Methods

A workflow for the development of berry yield and quality estimation models is given in
Figure 3. The methodology can be divided into three main steps. First, grapevine data preparation and
calculation of vegetation indices derived from the canopy reflectance. Second, calibration of prediction
models and validation. Third, analysis of variable importance.

3.1. Workflow for the Model Development

Four linear and non-linear multiple regression methods, including Multiple Linear Regression
(MLR), Partial Least Squares Regression (PLSR) and Random Forest Regression (RFR), and
Weighted Regularized Extreme Learning Machine (WRELM)-based machine learning methods, were
implemented to compare performance of proposed WRELM improved with dual activation function
(WRELM-TanhRe) in berry yield and quality prediction (Figure 3). For implementing independent
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validation, the whole dataset was randomly split into a calibration and validation set. Please note
that the split of calibration and validation samples is typically based on the data complexity and
the total number of samples. However due to the complexity of data and the limited samples
(144 in total) in our database, it was empirically found that an 80% (116 samples) calibration set and
a 20% (28 samples) validation set was sufficient. This was done by experimenting with different
splits of calibration and validation samples. These splits included 50–50%, 60–40%, 70–30%, 80–20%
and 90–10%. More details on the size of the training sample and its significance are provided in
Supplementary Tables S1–S5. All the regression models were run on the calibration dataset and the
associated parameters were optimized using five-fold cross-validation with 10 repeated experiments.
Five-fold cross validation was preferred over 10-fold cross validation because of the limited sample
size [28,46]. Finally, variable importance was determined to analyze the contribution of each predictor
variable to prediction accuracy of the best models.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 25 
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3.2. Calculation of Vegetation Indices

Previous studies have demonstrated the importance of spectral indices related to biochemical,
structural, physiological parameters and water stress as direct and indirect indicators of fruit yield and
quality [18,47–49]. Therefore, using the preprocessed canopy reflectance spectra, a total of 20 vegetation
indices were calculated, and all the indices were used to calibrate prediction models (Table 1).
The indices were divided into four categories including: (i) pigment, (ii) structure, (iii) physiology,
and (iv) water content. The correlations between the vegetation indices, berry yield, and quality were
assessed using the Spearman rank correlation [50], which accounts for both linear and non-linear
relationships between parameters.
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Table 1. Vegetation indices used in this study.

Vegetation Index Acronym Equation References

Pigment

Anthocyanin (Gitelson) AntGitelson AntGitelson = (1/R550 − 1/ R700) * R780 [51]
Chlorophyll Index CI CI = (R750 − R705)/(R750 + R705) [52]
Optimized Soil-Adjusted Vegetation Index OSAVI OSAVI = (1 + 0.16) * (R800 − R670)/(R800 + R670 + 0.16) [53]
Red Green Index RGI RGI = R690/R550 [54]
Structure Intensive Pigment Index SIPI SIPI = (R800 − R450)/(R800 + R650) [55]
Transformed Chlorophyll Absorption in
Reflectance Index TCARI TCARI = 3 * ((R700 − R670) − 0.2 * (R700 − R550) *

(R700/R670)) [56]

TCARI/OSAVI TCARI/OSAVI [56]

Structure

Normalized Difference Vegetation Index NDVI NDVI = (R800 − R670)/(R800 + R670) [57]
Greenness Index GI GI = R554/R677 [54]
Green NDVI GNDVI GNDVI = (R750 − R540 + R570)/(R750 + R540 − R570) [58]
Simple Ratio SR SR = R900/R680 [59]
Modified Triangular Vegetation Index MTVI MTVI = 1.2*(1.2*(R800 − R550) − 2.5*(R670 − R550)) [60]

Physiology

Fluorescence Ratio Index 1 FRI1 FRI1 = R690/R630 [61]
Fluorescence Ratio Indices 2 FRI2 FRI2 = R750/R800 [62]
Fluorescence Ratio Index3 FRI3 FRI3 = R690/R600 [63]
Fluorescence Ratio Indices 4 FRI4 FRI4 = R740/R800 [63]
Fluorescence Curvature Index FCI FCI = R2

683/(R675*R691) [61]
Modified Red Edge Simple Ratio Index mRESR mRESR = (R750 − R445)/(R705 + R445) [64]
Normalized Phaeophytinization Index NPQI NPQI = (R415 − R435)/(R415 + R435) [65]

Water content

Water Index WI WI = R900/R970 [66]

3.3. Background on Extreme Learning Machines (ELMs) and the Developed Method

In this section, we first provide a brief review of ELM, RELM, and WRELM, and then introduce
the proposed WRELM-TanhRe. Table 2 includes the full names and acronyms of the frequently used
new terms in this section.

Table 2. Full names and acronyms of the frequently used new terms in Section 3.3.

Full Name Acronym

Extreme Learning Machine ELM
Regularized Extreme Learning Machine RELM

Weighted Extreme Learning Machine WRELM
Hyperbolic tangent function Tanh

Rectified Linear Unit ReLU
Combination of hyperbolic tangent and Rectified Linear Unit functions TanhRe

TanhRe -based Weighted Regularized Extreme Learning Machine WRELM-TanhRe

3.3.1. ELM

ELM is a single hidden layer feedforward neural network with randomly initialized input weights
and biases, whereas its output weights are analytically determined [31]. Due to its easy implementation,
fast learning and good generalization performance, ELM has gained more popularity compared to
other machine learning methods [31,39]. However, very few studies have explored the potential of
ELM in crop classification and estimation of phenotypic traits using remote sensing datasets [40].
For simplicity, we consider the basic setup of ELM for regression problems.

Given N training samples {xi, yi}N
i=1 where input xi ∈ Rd and the corresponding expected output

yi ∈ R. ELM tends to minimize the training error and the norm of the output weights, expressed as

min
β
‖ Y−Hβ ‖2

2 + ‖ β ‖2
2 (1)
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where Y is the expected output value for N training samples, β is the output weight vector, and H
refers to the hidden-layer output matrix. From Equation (1), the unknown parameter is the output
weight β, which can be obtained by the least squares solution [31].

3.3.2. Regularized ELM (RELM)

Since ELM aims to minimize the training error, it may lead to overfitting [67]. In contrast, RELM
alleviates this issue by introducing a regularization parameter C [68]; thus, Equation (1) can be
rewritten as

min C
β
‖ Y−Hβ ‖2

2 + ‖ β ‖2
2 subject to Y−Hβ = ε (2)

where ε represents the error variable. The detailed solution for Equation (2) can be found in
Huang et al. [69].

3.3.3. WRELM

Weighted RELM (WRELM) was proposed to weaken the influence of outliers [70]. Specifically,
samples with high training error are assigned with small weights while high weights are assigned
to samples with less training error [67]. This is achieved by weighing the RELM error variable ε by
weighting factors v. Thus, the ‖ ε ‖2

2 is changed to ‖ Vε ‖2
2, where V = diag{v1, v2, . . . , vi, . . . , vN}.

Subsequently, the output weight β̂ is given by [70]

β̂ = (HTV2H+
I
C
)
−1

HTV2Y (3)

A more detailed description of WRELM can be found in [67,70].

3.3.4. Proposed WRELM-TanhRe

The activation function is the nonlinear transformation of the weighted input signals and bias [38].
The activation function, in ELM, RELM, and WRELM is important because it can transform input
data to a nonlinear feature space which may help to improve the prediction accuracy. The frequently
used activation functions generally come from saturated functions such as hyperbolic tangent (Tanh;
Figure 4a) and its non-saturated counterpart Rectified Linear Unit (ReLU; Figure 4b) [71–73]. One of
the merits of ReLU is that it introduces sparsity by pruning the negative values to zero and retaining
the positive ones [73]. Sigmoid function is another popular activation function which has been widely
used in ELM and its variants [67,69,70]. However, it compresses the input data to non-negative
for next layer. In contrast, the Tanh function transforms the input values into both negative and
positive ones. Considering the abovementioned activation functions, we aim to design an activation
function which has the following properties: (1) replaces the negative part of the ReLU with a
nonlinear function, since it has been shown that this can improve performance of neural networks [74];
(2) introduces a semi-bounded activation function where negative parts are bounded and positive parts
are non-bounded. This eliminates issues of the dense reorientation of inputs as it exists in traditional
bounded activation functions (e.g., Tanh and sigmoid) [75]. Consequently, our proposed activation
function (i.e., TanhRe) combines ReLU and Tanh functions to produce a semi-bounded as well as
non-densed representation (Figure 4c), defined as

f (x) =

{
x, i f x > 0

tanh(x), i f x ≤ 0
(4)

where x is the input of the nonlinear activation f . Figure 4 shows the shapes of Tanh, ReLU and TanhRe.
From Equation (4), it can be observed that the positive values are maintained while the negative

values are transformed by Tanh function.
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And the output weight β̂ f is computed by

β̂f = (HT
f V2Hf +

I
C
)
−1

HT
f V2Y (5)

The other computation scheme is same as WRELM mentioned in Section 3.3.3.
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3.4. Comparison to other Modeling Methods

Several popular non-neural network regression methods were selected, including Multiple Linear
Regression (MLR), Partial Least Squares Regression (PLSR), and Random Forest Regression (RFR).
MLS utilizes the least squares method to account for two or more predictors that affect response
variables. However, MLR fails to deal with collinearity between the predictors and considers only a
few predictors for modeling proposes. PLSR regression, on the other hand, was proposed to reduce
collinearity within the predictors by selecting non-correlated latent variables or components using
principle component analysis [23,76,77]. It identifies a linear relationship between a set of dependent
(response) variables and a set of predictor variables [78]. Even though previous studies have showed
the linear relationship between spectral indices and grapevine productivity, there may exist a nonlinear
relationship. Therefore, another regression method, RFR, an ensemble technique-based machine
learning algorithm, may be better able to model data with nonlinearity and complex relationships
between predictors and response variables. RFR uses a bootstrap sampling method to construct a
large number of independent decision trees to obtain the minimum sum of squared residuals [29,79].
Each decision tree is created using randomly selected predictive and responsive variables. Nodes of
the decision tree are divided based on the random subset of the predictive variables. This randomness
and requiring no assumption of the probability distribution in predictive variables, increase model
prediction accuracy and robustness against over-fitting [80,81]. Finally, an optimal prediction model is
generated by aggregating all the “trees” that form the “forest” [82,83].

3.5. Model Performance Analysis

The predictive power of the best performing calibrated models per berry yield and quality
parameters were subsequently evaluated on an independent dataset. Predictive power and robustness
of the models were assessed by common evaluation metrics. These metrics include coefficient of
determination (R2) between the predicted and observed parameters, Root Mean Square Error (RMSE)
and normalized RMSE (RMSE/average of observed parameter × 100; RMSE%) [84–86].

3.6. Variable Importance

To reveal the vegetation indices that contribute most to the development of prediction models,
we carried out variable importance analysis. Specifically, each vegetation index is sent to the proposed
WRELM-TanhRe model as a predictive feature for berry yield and quality, then the prediction result in
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terms of coefficient of determination R2 is calculated, where the importance of the indices is obtained
by ranking their corresponding R2 from high values to low values.

4. Results

4.1. Descriptive Analysis of Berry Yield and Quality

Between the years, yield, TSS, and IMAD were higher in 2014 than in 2015, while the opposite
was true for TA (Table 3). In this study, only mild water stress was observed in 2014 due to the season
having consistent rainfall [42], and level of stress was not high enough to reduce the yield significantly.
In 2015, all the berry yield and quality parameters presented higher coefficient of variation (CV) than
in 2014 owing to a greater range yield under different irrigation regimes. The berry yield had the
highest degree of variation, while TSS was the most stable in both years, which is to be expected as
harvest was partially decided by meeting industry TSS requirements. Similarly, in the pooled dataset,
the berry yield showed the largest variability (CV = 19%), followed by IMAD, TA, and TSS (CV = 12%,
CV = 11%, and CV = 3%). Overall, the data ranges were similar to those observed in different regions
and this was especially true for the berry quality parameters [16,87,88].

Table 3. Descriptive statistics of the berry yield and quality parameters.

Berry Yield and Quality Parameters Year Number of Samples Mean Max. Min. SD CV (%)

Yield (kg/vine)
2014 72 14.51 21.49 8.48 2.58 18
2015 72 14.21 22.31 7.94 2.79 20
Total 144 14.36 22.31 7.94 2.68 19

TSS (◦Brix)
2014 72 21.86 22.70 20.20 0.46 2
2015 72 21.14 22.60 20.00 0.53 3
Total 144 21.50 22.70 20.00 0.62 3

TA (g tartaric acid L−1)
2014 72 5.85 6.41 5.14 0.31 5
2015 72 6.83 9.35 5.63 0.60 9
Total 144 6.34 9.35 5.14 0.68 11

IMAD (TSS/TA)
2014 72 3.75 4.28 3.29 0.22 6
2015 72 3.12 3.94 2.29 0.28 9
Total 144 3.43 4.28 2.29 0.40 12

Each sample value is the mean of a plot of four individual vines with same rootstock. SD: standard deviation; CV:
coefficient of variation.

4.2. Relationship (in Absolute Terms) Between Grape Yield Parameters and Hyperspectral Vegetation Indices

When berry yield and quality parameters were compared, these parameters were moderately
related (Figure 5). Yield correlated well with TA and IMAD (r = −0.56 and r = 0.57, respectively),
implying that higher yield is linked to lower TA and higher IMAD. Additionally, there was a moderately
positive correlation between yield and TSS (r = 0.47).

Berry yield and quality showed moderate to relatively strong correlation with the vegetation indices
from each category included in Table 1. Apparently, there were frequent and strong correlations between
structure and water content-based indices. Individual vine yield showed the strongest correlation with
WI (r = 0.67), which was closely followed by MTVI and GNDVI (r = 0.64 and r = −0.53, respectively).
Physiology-based indices were consistently related to all the yield-related parameters and FIR4 was
the best correlated with vine yield (r = 0.48). Very similar correlation patterns were observed for fruit
quality as where observed for yield parameters. However, the correlations tended to have lower r
values for fruit quality parameters than yield parameters. Specifically, IMAD had the best correlation
with WI (r = 0.66), which was followed by RGI and GI (r = −0.61 for both). WI appeared to be the best
index for TSS and TA, as it had the highest r values of 0.55 and −0.66, respectively. The second highly
correlated indices with TSS and TA were MTVI and RGI (r = 0.48 and r = −0.63, respectively).
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4.3. Model Performance and Accuracy Assessment

The results of the predictive models when using calibration and validation datasets are presented
in Table 4. To increase the samples size and develop more robust and transferrable models, the
data from different years, irrigation treatments, and rootstocks were pooled and randomly split into
calibration and validation datasets. Validating the performance of prediction models using broadly
ranged independent dataset helps identify reliable models with reduced uncertainty. The model
performance evaluation was conducted by comparing the evaluation metrics (R2, the RMSE, and
the RMSE%) derived from the five models for the respective berry yield and quality parameters.
The model performance was assessed based on: (1) sample data used for model calibration; and (2) the
independent validation dataset.

Calibration dataset-based assessment. As presented in Table 4, RFR models outperformed all
other models in the calibration, with the highest R2 of 0.845–0.884 and the lowest RMSE% = 1–12% for
berry yield and quality parameters. This was followed by MLR models with R2 of 0.328–0.551 and
RMSE% = 2–24%. PLSR and ELM-based models produced similar results with R2 of 0.257–0.512 and
RMSE% = 2–26%. In general, all the calibrated models tended to have higher prediction accuracy (i.e.,
higher R2, lower RMSE, and RMSE%) for yield and IMAD compared to TSS and TA.

Independent validation dataset-based assessment. Table 4 also presents model evaluation metrics
for the independent validation dataset (20% of the dataset). In contrast to the performance of the
prediction models in calibration, our proposed WRELM-TanhRe generally performed better than
the other models, achieving the highest prediction accuracy for yield, TSS and IMAD with an R2 of
0.522–0.682 and RMSE% of 2–5%, while WRELM (activation function is ReLU) produced the best
prediction for TA with R2 of 0.545 and RMSE% of 6% (Figure 6). To the best of our knowledge,
this study is the first to introduce ReLU into WRELM. The best performance of the RFR models
in calibration was not confirmed in independent validation dataset and showed some tendency to
overfitting. Nevertheless, RFR models performed better than the MLR and PLSR in predicting berry
yield and quality parameters with relatively high R2, low RMSE, and RMSE%.
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Table 4. Results of the model performance for predicting berry yield and quality. Bold fonts for the
best prediction models in validation.

Berry Yield and
Quality Parameters

Evaluation
Metrics

Calibration Dataset
(n = 115)

Independent Validation Dataset
(n = 29)

MLR PLSR RFR WR
ELM WRELM-TanhRe MLR PLSR RFR WR

ELM WRELM-TanhRe

Yield
(kg/vine)

R2 0.458 0.413 0.859 0.412 0.383 0.200 0.474 0.632 0.623 0.682
RMSE 3.008 3.130 1.535 3.132 3.209 2.943 2.386 1.995 2.019 1.856

RMSE% 24 25 12 25 26 24 20 16 17 15

TSS
(◦Brix)

R2 0.328 0.279 0.845 0.283 0.257 0.421 0.435 0.449 0.352 0.522
RMSE 0.475 0.492 0.228 0.490 0.499 0.547 0.541 0.534 0.579 0.497

RMSE% 2 2 1 2 2 3 3 2 3 2

TA
(g tartaric acid L−1)

R2 0.510 0.348 0.873 0.426 0.371 0.320 0.407 0.522 0.545 0.535
RMSE 0.458 0.528 0.233 0.496 0.518 0.497 0.464 0.417 0.407 0.411

RMSE% 7 8 4 8 8 8 7 7 6 6

IMAD
(TSS/TA)

R2 0.551 0.512 0.884 0.459 0.453 0.548 0.643 0.631 0.647 0.653
RMSE 0.247 0.258 0.125 0.271 0.272 0.268 0.238 0.242 0.237 0.235

RMSE% 7 7 4 8 8 8 7 7 7 7Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 25 

 

 

Figure 6. Observed versus predicted grapevine berry and quality parameters with the best ELM-based 
models using independent validation dataset. 

4.4. Variable Importance for Model Performance 

In general, WI derived from canopy reflectance was the most important vegetation index in the 
prediction of berry yield and quality, with the exception of TA (Figure 7). The contribution of other indices 
changed depending upon different berry parameters. 

The overall importance of pigment-based indices for yield prediction was lower compared to structure 
and physiology indices. Within the pigment-based indices category, TCARI was the most important index 
for berry yield and it was less important in the prediction of TSS, TA, and IMAD, for which RGI was the 
most important. In addition, RGI was noticeably more important than the next important indices. 

Figure 6. Observed versus predicted grapevine berry and quality parameters with the best ELM-based
models using independent validation dataset.



Remote Sens. 2019, 11, 740 13 of 23

4.4. Variable Importance for Model Performance

In general, WI derived from canopy reflectance was the most important vegetation index in the
prediction of berry yield and quality, with the exception of TA (Figure 7). The contribution of other
indices changed depending upon different berry parameters.

The overall importance of pigment-based indices for yield prediction was lower compared to
structure and physiology indices. Within the pigment-based indices category, TCARI was the most
important index for berry yield and it was less important in the prediction of TSS, TA, and IMAD, for
which RGI was the most important. In addition, RGI was noticeably more important than the next
important indices.

The most important index in the structure category for yield and TSS prediction was MTVI,
followed by NDVI and GI in the prediction of yield and TSS, respectively. GI turned out to be the most
important in TA and IMAD prediction, closely followed by GNDVI.

Among the stress-based indices, fluorescence related indices were shown to be markedly more
important than others. In particular, the most important index for yield, TA and TSS prediction
was FRI4, consistently followed by FRI2. In contrast, FRI2 was the most important index in IMAD
prediction, and FRI4 was negligibly less important than FRI2.
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5. Discussion

5.1. Overall Performance of the Berry Yield and Quality Models

Vine productivity parameters, including berry yield and quality, were best estimated using
machine learning-based prediction models. Previous studies have shown that there exist many factors
that can non-linearly affect the relationship between canopy reflectance factor spectra and vegetation
traits [89,90]. Compared to MLR and PLSR, the robust performance of RFR and the ELM-based machine
learning models was most likely attributed to the existence of a non-linear relationship between
grapevine productivity parameters and the hyperspectral vegetation indices. Although MLR and PLSR
are widely used in statistical predictions, their limitation in handling non-linear relationships between
vegetation traits and reflectance data has been noted in the literature [90–92]. However, the better
performance of the PLSR models compared to MLR models demonstrated the power of the PLSR in
developing prediction models using principal component analysis (PCA) when there are many highly
correlated independent variables [78].

In general, as indicated by evaluation metrics, the RFR models were superior to MLR and PLSR
models. However, the RFR models could be overfitting in the prediction of berry yield and quality
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parameters. It was obvious from a significant decline in R2, and an increase in RMSE and RMSE%
at the same time. Previous studies have demonstrated the potential of the RFR in the prediction of
various plant traits from remote sensing observations by comparison with vegetation indices and linear
regression methods [93–95]. On the other hand, researchers have reported the poor performance of the
RFR [96,97]. These varying performances of RFR may be explained by noise in data caused by indirect
spectral responses of target parameters and several samples used for model calibration [27,97,98].

In similar studies, a simple linear relationship established between berry yield/quality parameters
and hyperspectral vegetation indices derived from visible and near-infrared spectral region [15,16].
Despite the undesirable prediction ability of RFR in the validation, the results of RFR in the calibration
(R2 of 0.845–0.884 and the lowest RMSE% = 1–12%) alone are greatly improved relative to previously
conducted similar studies. When the independent validation dataset is considered, ELM-based machine
leaning methods are evaluated to be the best performing algorithms (R2 of 0.522–0.682 and RMSE% of
6–15%). It must be noted that compared to grapevine health, considerably fewer fruit quality estimation
studies have been reported. One reason for this is the relatively indirect and complex relationship
between the nadir remote sensing observations of canopy vegetation and fruit, which is on the lateral
side of the canopy and not fully exposed to the sun [87]. Alternatively, machine learning methods can
reveal this complicated relationship by relating remote sensing data with fruit quality parameters.

In this contribution, the comparison of the different models indicates that ELM-based machine
leaning methods, especially our newly proposed WRELM-TanhRe method, lead to the best results for
the prediction of the berry yield and quality parameters with independent validation dataset. This is
mainly due to two reasons: (1) our proposed nonlinear activation possesses the merits of ReLU and
tanh, which are two widely used activations; (2) we suggest using WRELM-based regression due to its
insensitivity to outliers in the data, when compared with basic ELM.

5.2. Contribution of Vegetation Indices to Berry Yield and Quality Estimation

The importance of WI in the prediction of berry yield and quality further confirmed the findings
of [16], who reported the ability of WI with respect to yield and berry quality prediction in rainfed
commercial vineyards, as grapevine productivity is strongly impacted by vine water status.

There was a significantly strong correlation between leaf pigment concentrations and fruit
quality [14]. Meggio et al. [15] found that indices designed to estimate carotenoid and anthocyanin
could have more potential for the prediction of berry quality of vines affected by iron chlorosis than
traditional structural and pigment-based indices, e.g., NDVI and TCARI/OSAVI. Mild water deficit
and no visible signs of stress were reported for the vineyard under study by Maimaitiyiming et al., and
De Jong et al. [42,99] demonstrated the early response of RGI to drought and heat stresses, which affect
leaf pigment concentrations and photosynthetic efficiency, and thus berry yield and quality. This may
explain why RGI was the most important index among the pigment-based indices in developing a
model for predicting berry qualities.

Vegetative biophysical parameters including leaf area index (LAI), biomass and vigor can be
estimated using structural indices, and these parameters are known to be critical for producing sugars
and acids in fruits through photosynthesis [100,101]. Several relevant studies have shown a strong
relationship between structural indices calculated from airborne multispectral datasets and fruit
quality [17,102]. Compared to traditional structural indices, e.g., NDVI and SR, MTVI has been proven
to be sensitive to variations in biophysical parameters by minimizing the asymptotic saturation effect
caused by high density of vegetation [92,103]. Similarly, García-Estévez et al. [103] found a strong
performance of canopy reflectance-based GI for fruit quality estimation in their recent work, and this
is confirmed in the current study.

In addition to heat dissipation and photochemical quenching, actively emitting absorbed excess
light energy as sun-induced fluorescence (SIF) in the 600–800 nm spectral region is another important
photoprotection process for plants [104,105]. Therefore, SIF has been considered as a proxy for plant
health even though SIF signal is weak and only accounts for only 2–5% of the absorbed light energy.
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SIF is featured with two relatively strong emission peaks in the red (around 680–690 nm) and far-red
(730–750 nm) spectral regions [106]. The red portion of the SIF emission is usually reduced substantially
at leaf and canopy level because the red peak region overlaps with the chlorophyll absorption region,
while the far-red peak is minimally affected [107]. Additionally, physiological, biochemical and
structural factors jointly control the amount of SIF emission, and hyperspectral reflectance contains
all these information [108–110]. This may explain why reflectance-based FRI2 and FRI4 that use the
far-red peak as a measurement band appeared to be more important in vine productivity production,
especially under the condition that there was no significant reduction in chlorophyll concentration
within the canopy.

5.3. Model scalability and transferability

Our findings are of great significance, because, traditionally, there is no reliable approach
for predicting berry yield and quality before harvest [111–114]. Here we recommend that the use
of hyperspectral sensors, especially imaging hyperspectral sensors mounted on UAVs, will be
faster and more computationally inexpensive compared to traditional methods. When satellite or
aircraft-based observations are used, soil/background, canopy architecture and shadow may hinder
the applicability of the method due to coarse spatial resolution [45,115–118]. This is particularly true
for highly heterogenous fields of tree crops (orchard and vineyards), where plants are discontinuously
row-structured [47,119,120]. Furthermore, high cost, low revisit frequency and potential cloud
occurrence limit the suitability of satellite remote sensing in agriculture, while operational complexity
presents a major constraint for manned airborne platforms [121–123]. Indeed, high spatial resolution
images collected at low altitude have favorable signal-to-noise ratio, and it is possible to eliminate soil
and shadow pixels with high confidence [40,124–126]. Additionally, image information (radiance and
reflectance) extracted from pure vegetation pixels is likely to reduce the effects of shadows and
background soils.

However, in this study, the spectral measurements were made by the spectroradiometer, which
reduces the noise, needs no atmospheric correction and allows very fine spectral sampling. This is not
the case for aerial hyperspectral imagery. Therefore, aerial imaging campaigns need to be designed
in a way whereby rigorous atmospheric and geometric correction can be carried out to minimize
the negative effects of atmosphere and platform instability. Additionally, most of the common
UAV-friendly hyperspectral cameras cover the 400–1000 nm domain, and 450–950 nm or an even
narrower region could be used for further analysis because of the sensor-inherent noise at longer
wavelengths. Care must be taken to reduce or eliminate noise for calculation of WI, which uses 970 nm.
When such noise is present or cannot be removed, the crop water stress index (CWSI) retrieved from
thermal images acquired concurrently with hyperspectral images can be used to capture canopy
water status.

Improved transferability and generalization of machine learning-based models are dependent
upon on the variability of the calibration and independent validation dataset [127]. To increase
the transferability of the developed prediction models in this study, care was taken to ensure that
berry yield and quality parameters were representative of various conditions. This was done by
involving different irrigation regimes and rootstock in the experimental vineyard. Furthermore,
neural network-based machine learning methods benefit from a large sample size [31]. The power
of WRELM-TanhRe and other machine learning methods may not have been fully exploited due
to the relatively small sample size in our case. Nonetheless, we believe this is an encouraging first
step towards developing more generalized global models. With an increased number of samples,
future studies should focus on generalizing the predictive models at regional scale and other deep
learning-based machine learning techniques should be used to explore their superiority over traditional
machine learning methods for the prediction of berry yield and quality parameters.
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6. Conclusions

Non-invasively predicting grapevine productivity is of great significance in serving the precision
viticulture. In this regard, the main goal of this study was to calibrate robust prediction models
for improving grapevine productivity using hyperspectral data and machine learning methods and
develop a new algorithm that can overcome model overfitting. Therefore, we developed an ELM-based
machine learning method, which possesses the advantages of the Tanh and ReLU as a dual activation
function for the in-depth study of the complex relationship between the vegetation indices and vine
productivity. Compared to the commonly used MLR, PLSR and RFR methods, ELM-based machine
learning methods outperformed in all cases. The newly proposed WRELM-TanhRe method appeared
to be the most robust in the prediction of berry yield, TSS, and IMAD, while TA was best predicted
by WRELM. Variable importance analysis revealed comparable contributions of indices in each of
the considered categories, and WI was consistently selected as the most important index in general.
To conclude, the current study has implication for ensuring the broader applicability of the previous
studies focusing on the application of hyperspectral vegetation indices in the prediction of berry yield
and quality. Importantly, the findings of this contribution provided the great potential for combining
hyperspectral remote sensing and machine learning methods for prediction of berry yield and quality
under different irrigation treatments and rootstock-scion interactions. The future work of this study is
to scale up the models developed in the current work to UAV-based observations.
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