
remote sensing  

Article

Microwave Vegetation Index from Multi-Angular
Observations and Its Application in Vegetation
Properties Retrieval: Theoretical Modelling

Somayeh Talebiesfandarani 1,2, Tianjie Zhao 2,*, Jiancheng Shi 2 , Paolo Ferrazzoli 3,
Jean-Pierre Wigneron 4, Mehdi Zamani 1,2 and Peejush Pani 1,2

1 University of Chinese Academy of Sciences, Beijing 100049, China; soma@radi.ac.cn (S.T.);
madiz@radi.ac.cn (M.Z.); peejush@radi.ac.cn (P.P.)

2 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese
Academy of Sciences, Beijing 100101, China; shijc@radi.ac.cn

3 Department of Civil Engineering and Computer Science Engineering, Tor Vergata University of Rome,
Via del Politecnico 1, I-00133 Rome, Italy; ferrazzoli@disp.uniroma2.it

4 INRA, Centre INRA Bordeaux Aquitaine, URM1391 ISPA, F-33140 Villenave d’Ornon, France;
jean-pierre.wigneron@inra.fr

* Correspondence: zhaotj@radi.ac.cn; Tel.: +86-10-6480-7981

Received: 9 February 2019; Accepted: 19 March 2019; Published: 26 March 2019
����������
�������

Abstract: Monitoring global vegetation dynamics is of great importance for many environmental
applications. The vegetation optical depth (VOD), derived from passive microwave observation,
is sensitive to the water content in all aboveground vegetation and could serve as complementary
information to optical observations for global vegetation monitoring. The microwave vegetation
index (MVI), which is originally derived from the zero-order model, is a potential approach to derive
VOD and vegetation water content (VWC), however, it has limited application at dense vegetation
in the global scale. In this study, we preferred to use a more complex vegetation model, the Tor
Vergata model, which takes into account multi-scattering effects inside the vegetation and between
the vegetation and soil layer. Validation with ground-based measurements proved this model is an
efficient tool to describe the microwave emissions of corn and wheat. The MVI has been derived
through two methods: (i) polarization independent (MVIP

B) and (ii) time invariant (MVIT
B), based on

model simulations at the L band. Results show that the MVIT
B has a stronger sensitivity to vegetation

properties compared with MVIP
B. MVIT

B is used to retrieve VOD and VWC, and the results were
compared to physical VOD and measured VWC. Comparisons indicated that MVIT

B has a great
potential to retrieve VOD and VWC. By using L band time-series information, the performance
of MVIs could be enhanced and its application in a global scale could be improved while paying
attention to vegetation structure and saturation effects.

Keywords: microwave vegetation index; Tor Vergata model; vegetation optical depth; vegetation
water content

1. Introduction

Vegetation plays an important role in our ecosystems and its interactions with the Earth system.
Vegetation properties such as biomass, coverage, and water content are widely studied. It is a challenge
to measure vegetation properties in global scale using traditional in situ techniques. Remote-sensing
techniques including various vegetation indices could serve as an important tool to derive the dynamic
spatial-temporal distributions of vegetation. An optical index, such as the normalized difference
vegetation index (NDVI) is related to the greenness of vegetation which depends on the leaf’s
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photosynthetic capacity [1–4]. However, NDVI shows lower sensitivity for a higher amount of
biomass [5–7] due to saturation in the red band, which may lead to underestimation of vegetation
productivity over dense vegetation cover. Saturation effects typically occur in multi-layer vegetation,
such as forests or agricultural crops [8].

Microwave range of the electromagnetic spectrum (1 cm to 1 m) is suitable for observation of the
vegetation volume and structure. In 1987, the microwave polarization difference temperature (MPDT)
was introduced, which was found to be correlated with NDVI and leaf water content. However, MPDT
is affected by physical temperature and surface reflectivity (soil moisture and roughness) [9]. Another
microwave index that can be used for vegetation estimation is the normalized microwave polarization
difference index (MPDI). MPDI is used to minimize the effect of physical temperature and reflects the
dielectric properties of vegetation canopy and soil. Both MPDT and MPDI have an inverse correlation
with vegetation water content [10]. The normalized polarization index (PI) is used for detecting
biomass and water conditions of agricultural crops. PI is based on the difference between normalized
brightness temperature (normalized by thermal infrared measurements) in two different frequencies:
10 and 36 GHz. Using this technique minimizes the impact of physical temperature on vegetation
properties [11]. However, all these microwave-based indices can be influenced by soil emissions.
This issue has restrained the application of global vegetation monitoring and further soil moisture
retrieval [5]. To overcome this drawback, Shi et al. [5] introduced a new multi-frequency passive
microwave vegetation index (MVI) by using the Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E) data, that can significantly minimize the surface emissivity signals [5,12].

MVI is as a function of vegetation fractional cover, vegetation water content, temperature, size,
orientation, and shape of vegetation scatter [13]. Zhao et al. [13] further derived the relationship of
MVI with vegetation water content, and this relationship allows us to separate vegetation and soil
information for better soil moisture retrieval. However, MVI is only evaluated based on zero-order
model simulations. The τ-ω emission model is a well-known zero-order solution of the radiative
transfer equations that simulate brightness temperature (TB) as a function of soil emissivity, single
scattering albedo, and optical depth. This model ignores multi-scattering effects inside the vegetation
and between the vegetation and soil layer. [14]. Generally, this model is only valid for wavelengths
larger than the physical dimensions of canopy components, such as leaf width. The τ-ω model
works well for grasslands, short height crops, and light-to-moderate vegetation at the L band [10].
Kurum et al. [15] compared the emissivity value simulated by the τ-ωmodel against the microwave
observation over the corn canopy. It considers different assumptions in the level of scattering within
the vegetation layer and has simulated the emissivity. The non-scattering term of the τ-ω model,
where the single scattering albedo was set to zero, represented the highest emissivity. The inclusion of
the single scattering albedo in the τ-ω model led to a reduction in the overall microwave emission.
They determined that the simulated emissions agreed with the observed values when adding a
new scattering term to the τ-ω model. Furthermore, Chai et al. [10] used MVI from a parametrized
first-order model for winter wheat and compared it with MVI from the τ-ω model, which reported
that the MVI from the parameterized first-order solution was larger than those from the τ-ωmodel
because the τ-ωmodel underestimated the brightness temperature.

In passive remote sensing, the attenuation of soil emission through vegetation is considered by
computing the vegetation optical depth (VOD) [16–18], which is dependent on frequency, incident
angle, and polarization of the wavelength. Studies have suggested that VOD and above ground
biomass are related to vegetation water content (VWC) [7,8,19–22]. Therefore, by obtaining the
theoretical relationship between MVI and vegetation optical depth, MVI is a promising approach for
global vegetation monitoring and soil moisture retrievals.

In multi-frequency MVI, the paired frequency is used, for instance, C-X, K-X, S-L band
combinations. The MVI technique is based on the specification that both frequencies in the pair
can penetrate the vegetation cover. When one or both frequencies cannot penetrate through the
vegetation, the derived MVI is expected to be unreliable [5]. However, MVI computed using two
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adjacent angles of the L band is less influenced by partial penetrating through the canopy, as compared
to multi-frequency MVI. Grant et al. [23] compared the Soil Moisture Observation Mission (SMOS)
VOD to AMSR-E VOD, which indicates that AMSR-E VOD has a higher correlation with the optical
indices than SMOS VOD. Studies have mentioned that lower frequencies of microwave spectrum are
more suitable for identifying the canopy volume than higher frequencies [16,24–27]. It can penetrate
through the vegetation more than higher frequencies. Cui et al., [19] presented a multi-angular MVI
approach and tested it with SMOS H-polarized multi-angular measurements. The retrieved VOD using
the MVI approach was compared with above-ground biomass, which showed a correlation of R = 0.726,
especially for shorter vegetation. The study considered a constant for vegetation single scattering
albedo, which may introduce uncertainties in the retrieval of VOD. Again, the applicability of this
approach on a global scale, especially validation over moderate and dense vegetation (>3 kg/m2),
lacks in evaluation from a theoretical viewpoint. Therefore, a comprehensive study on the deviation of
MVI from multi-angular observations of L-band in dense vegetation, and its evaluation using a more
rigorous theoretical modeling is necessary.

In this paper, MVI was calculated and evaluated based on the Tor Vergata model, which considers
multiple scattering effects inside the vegetation and interactions between the vegetation layer and
soil surface [28]. We simulated TB for corn and wheat as two typical crops with significant multiple
scattering effects using the ground observation. To solve the MVI function, two assumptions were
considered: the first assumption is considered as “no polarization dependent” (MVIP

B) and the second
one as “no vegetation changes during a time window” (MVIT

B). The purpose of this study was to
explore how multi-angular MVI at the L-band, as a zero-order model index, works in dense vegetation
with multiple scattering, and to provide new insights for developing future satellite missions and
algorithms. The following section describes the data, model and methods used for MVI derivations,
and Section 3 presents the results of MVI application in VOD and VWC retrieval. Section 4 gives a
further discussion of its advantages and limitations, and Section 5 summarizes the main conclusions.

2. Data and Methodologies

2.1. Data

Data for wheat canopy were acquired in summer 1993 at the Institute National de Recherches
Agronomiques (INRA) test site near Avignon, France, from day of year (DOY) 90 (shortly after seeding)
to DOY 179 (shortly before harvest). Measurements were recorded for leaf width, length, and thickness;
stalk diameter and length; stalk and leaf moisture; soil and plant temperature; canopy height; stalk
length; leaf inclination angle (alpha, beta, and gamma); density; and volumetric soil moisture (SMC) at
different depths. Fresh and dry biomass, leaf area index (LAI), and VWC were also measured. Detailed
information about field data can be found in Ferrazzoli et al., [29]. The passive microwave sensor
system used to measure brightness temperature (TB) of wheat, was the Multi-Frequency Microwave
Radiometer (PORTOS). It has six different frequency (1.4, 5.05, 10.65, 23.8, 36.5, and 90 GHz) antennae
with dual-polarized (V/H) measuring ability. Regular calibration was performed over calm water
surfaces. The radiometer absolute accuracy was 3 K. More detail about the instrument, calibration,
and field data are provided in previous studies [1,7,8,29].

The data for the corn canopy were obtained in summer 2017 in Inner Mongolia, China, from DOY
155 (shortly after seeding) to DOY 195 (crop about to reach maximum height). A vehicle-mounted
microwave radiometer that contains three frequency bands, L (1.4 GHz), C (6.925 GHz), and X
(10.65 GHz), was used to measure the TB. Ground measurements included soil moisture, surface
roughness, VWC, and LAI. Geometric and physical parameters for corn were measured on selected
days. To represent the growth progress of corn, we used a crop growth model created at Tor Vergata
University. In this growth model, canopy variables are computed as a function of crop height and
crop type. This version of the growth model contains empirical relationships that were established
mainly based on ground measurements over sunflower and corn fields during several experimental



Remote Sens. 2019, 11, 730 4 of 20

campaigns [30]. The model was found to match the measurements recorded in China. Table 1
summarizes the input parameters for wheat and corn.

Table 1. Wheat and corn input data for the Tor Vergata model.

Wheat Parameter Unit Min. Max. Corn Parameter Unit Min. Max.

Leaf

Radius cm 0.2 0.56 Radius cm 1 4

Thickness mm 0.017 0.02 Thickness mm 0.2 0.4

Gravimetric Moisture % 0.66 0.81 Gravimetric moisture % 0.70 0.90

Angle Distribution degree 5 85 Angle distribution degree 5 85

Stalk

Radius cm 0.108 0.22 Radius cm 0.2 1.2

Length
Gravimetric Moisture

Angle Distribution

cm
%

degree

3.57
0.66

0

76.3
0.84

0

Length
Gravimetric Moisture

Angle distribution

cm
%

degree

4
0.60

0

140
0.85

0

Layer Mean Stalk Density
Layer Height

m2

m
80

0.16
600
99

Leaf density
Stalk density
Layer height

m2

m2

m

52
8

0.11

110
8
2

2.2. Radiative Transfer Model (Tor Vergata Model)

The Tor Vergata model developed by Ferrazzoli et al. [31] ncludes volume scattering and
interaction between vegetation volume and soil boundary [28]. The model describes the canopy
as a group of discrete scatters and the soil as infinite half-space with the rough interface.
The electromagnetic properties of the scatters are described by the absorbed cross-section and bistatic
scattering cross-section.

The Tor Vergata model is a discrete modeling approach. The descriptions of wheat and corn in
the Tor Vergata model are shown in Figure 1. This uses simple geometric elements (discs, cylinders,
and ellipsoids) to simulate the scattering matrix and extinction vector [31]. For wheat, the upper layer
of small vertical cylinders represents ears and the lower layer with randomly oriented discs represents
leaves. For corn, the upper layer with randomly oriented discs represent the leaves and the lower layer
with cylinders is the main stems. As corn and wheat leaves have a strip shape, the Tor Vergata model
treats them as several circular discs in an equivalent area. The model assumed that the disc orientation
is distributed over the Euler angles between: 0◦ < α < 360◦ and 5◦ < β < 85◦. To simulate the scattering
matrix and the extinction of discs, the General Rayleigh–Gans (GRG) approximation is used when the
frequency is under 2 GHz, and the physical optical (PHO) approximation is used when the frequency
is above 2 GHz [32,33]. For small cylinders (secondary stems and petioles), the scatter matrices and
the extinction vectors are computed using the Rayleigh–Gans (RG) approximation when the frequency
is under 2 GHz, and infinite length (IL) approximation when the frequency is above 2 GHz. The main
stem is another important component of corn with larger size and is mostly vertically distribution.
The infinite length cylinder approximation is adopted to simulate the stalk [32,33].Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 20 
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Figure 1. Wheat (left) and corn (right) descriptions in the Tor Vergata model.
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In the Tor Vergata model, the vegetation layer containing different types of scattering is divided
into n number of thin elementary sub-layers (∆zn) that are assumed to be symmetrical concerning
the azimuth (here, n = 10). In each sub-layer, the incident and scattering angles are divided into
several small intervals for considering directions as many as possible. For each incident angle, the
scattering matrix and transmission matrix at the nearby sub-layer can be obtained by radiative transfer
solution [34]. A combination is performed between ∆zn and ∆zn+1 to form a new sub-layer ∆z, so on
and so forth, till the combination reaches n = 10; finally, the total microwave scattering of the wheat
and corn layer can be extracted. For the soil surface emission, the advanced integral equation model
(AIEM) [35] was adopted to account for roughness effects. Then, the emissivity of the total vegetation
layer was finally computed.

2.3. Multi-Angular Microwave Vegetation Index (MVI)

In the MVI technique, TB from the τ-ω model is rearranged and linearly linked to the soil
emissivity by two vegetation components, transmission (Vt(θ)) as slope and emission (Ve(θ)) as
intercept at specific incident angle (θ), and their relationship is explained as:

TBP(θ) = Ve(θ) + Vt(θ).Es
p(θ). (1)

where, TBP(θ) is the total TB simulated and Es
p(θ) is the soil surface emission at a specific incident

angle (θ) and polarization (p):

Ve(θ) =
[

Fv.Ev
p(θ).

(
1 + Lp(θ)

)]
.Tv (2)

Vt(θ) =
[
1 − Fv + Fv.Lp(θ)

]
Ts −

[
Fv.Ev

p(θ)Lp(θ)
]
.Tv (3)

where Ev
p is the vegetation emission, Lp(θ) is the one-way attenuation in the specified incident angle

and polarization, Fv is the vegetation fraction, and Tv and Ts are vegetation and soil temperature,
respectively. To minimize the effect of the soil emission signal, the bare soil emission signals at different
angles are evaluated through numerical simulations from the AIEM model. The bare soil surface
emissivity at two adjacent angles are highly correlated and the linear function can be expressed as:

Es
p(θ1) = a(θ1, θ2) + b(θ1, θ2) · Es

p(θ2) (4)

where the coefficients b(θ11, θ2) and a(θ1, θ2) are constant, only dependent on the pair of angles to
be used [7]. Here, for 40◦ and 50◦ incident angles a is 0.087 and b is 1.035. By using Equations (1)
and (4) to eliminate the soil emissivity, total TB observations at two adjacent angles can be described
as a linear function as shown in Equation (5). The intercept, Ap(θ1, θ2), and slope, Bp(θ1, θ2), of this
linear function are the microwave vegetation indices as shown in Equations (6) and (7). This technique
minimizes the surface emission signal and maximizes the vegetation signal [13] More information
about the MVI technique can be found in Shi et al. [5].

TBp(θ2) = Ap(θ1, θ2) + Bp(θ1, θ2).TBp(θ1) (5)

Bp(θ1, θ2) = b(θ1, θ2).
Vt(θ2)

Vt(θ1)
(6)

Ap(θ1, θ2) = a(θ1, θ2).Vt(θ2) + Ve(θ2)− Bp(θ1, θ2).Ve(θ1) (7)

The slope and intercept of the linear relationship of TB (Equation (5)) in two adjacent angles are
MVIB and MVIA, which is represented as Bp(θ1, θ2) or MVIB and Ap(θ1, θ2) or MVIA, respectively,
from Equations (6) and (7).
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2.3.1. Derivation of Multi-Angular MVI

In this study MVI was derived through two different assumptions:

(1) No polarization dependence (MVIP
B)

At the passive microwave footprint scale, there are numerous different types of vegetation
canopies with different scatter sizes, shapes, and orientations. Under these circumstances, it can
be assumed that there is no considerable impact of the polarization dependence [5,36,37]. By this
assumption, the slope (B) of the linear relationship of TB (Equation (5)) in two adjacent angles, MVIP

B,
can be calculated from the ratio of polarization difference in two adjacent angles, as shown in Equation
(8). Detailed information of this method can be found in Shi et al. [5].

B(θ1, θ2) =
TBv(θ2)− TBh(θ2)

TBv(θ1)− TBh(θ1)
=

(
Es

v(θ2)− Es
h(θ2)

)
.Vt(θ2)(

Es
v(θ1)− Es

h(θ1)
)
.Vt(θ1)

= b( f1, f2).
Vt(θ2)

Vt(θ)1
(8)

(2) No vegetation changes in a certain time window (MVIT
B)

The second method to drive MVI was based on Equation (5). MVI is independent of underlying
soil surface signals and dependent only on vegetation properties [10,19,38]. By assuming that
vegetation is not changing in a short time window, the soil moisture changes will generate a series
of different TBs. Figure 2 presents the TB simulation results with linear fit in vertical polarization.
As noted, the slope and the intercept of each fitted line are MVIT

B and MVIT
A, respectively. As the

canopy height increases, the slope (MVIT
B) increases and the intercept (MVIT

A) decreases.
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angle for wheat (left) and corn (right).

2.4. Optical Depth

The definition of optical depth is the ratio of the natural logarithm of the incident to the transmitted
radiant power through a material. Absorption, reflection, scattering, and other physical processes in
the medium affect the value of optical depth, which is dimensionless. The VOD is used to describe
the attenuation properties of the vegetation cover [10,39]. VOD is a function of vegetation dielectric
properties, responding strongly to the vegetation water content. Its value depends on vegetation type
and the wavelength used. Optical depth at lower frequencies, which can penetrate more in vegetation,
can provide unique information about vegetation biomass and water content [40].

2.4.1. Optical Depth Simulation

For the forward scattering theorem of vegetation transmissivity (λp(θ) = e−τpsecθ) function, τ is
vegetation optical depth, which is given by (VODp(θ) = kep(θ)d), where θ is the observation angle
from the nadir and d is canopy layer height. The average vegetation extinction coefficient is defined by
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(ke(θ) = 4π/K0 ∑
α

ρα Im
{〈

f (α)f pp

〉}
) [41], where ρα is the number density of the scatter type α and K0 is

wave number. Here, K0 = 2π/λ0 and λ is the wavelength. The angular bracket in this function defines
the ensemble average over the angularity and size of particles. For leaves, the average size of a circular
disc is based on orientation angles. No averaging is performed for trunks because they are vertical
and have a typical size. f (α)f pp is the forward scattering amplitude of the αth group of scatters [42].
The optical depth obtained by this theoretical function is hereafter called VODS in this paper.

2.4.2. Optical Depth and Vegetation Water Content (VWC) retrieval from MVI

According to the MVI function in Equation (6) and the vegetation transmission in Equation (3),
we have:

MVIB = b(θ1, θ2).

[
1 − Ev

p(θ1)
]

Lp(θ1)[
1 − Ev

p(θ2)
]

Lp(θ2)
(9)

where Ev
p is vegetation emissivity, Ev

p = (1 − ω)
(
1 − Lp

)
. To derive optical depth from MVI, we

assumed the emissivity of vegetation was approximately equal at two adjacent incident angles, given
by Ev

p(θ1) = Ev
p(θ2). By rearranging Equation (9), we acquired a simple formulation for the optical

depth:

VOD = ln
[

MVIB

b(θ1, θ2)

]
/(secθ1 − sec θ2) (10)

where b(θ1, θ2) is calculated using Equation (4). The soil surface emissivity is extracted from the AIEM
model. VODT and VODP can be obtained through MVIT

B and MVIP
B for wheat and corn.

According to the VOD and VWC relationship (VOD = b·VWC), VWC can be estimated from
VODT and VODP and compared with measured VWC. Here b is a parameter depending on vegetation
structure, microwave frequency, and polarization and it is obtained from literature [18,43].

3. Results

3.1. The Validity of the Tor Vergata Model and MVI Technique

We simulated TB using the Tor Vergata model under different soil moisture and roughness
conditions. Ranges of volumetric soil moisture (0.05–0.35 m3/m3, intervals 0.05 m3/m3) and roughness
parameters (root mean square height 0.5–1.5 cm, intervals 0.5 and correlation length 5–15 cm, intervals
of 5) were used. Based on field observations and the growth model, we completed TB simulations
from the lowest to highest canopies.

The Tor Vergata model simulation has been validated several times using field data for corn and
wheat [29,31,44–46]. Figure 3 indicates the comparison results of measured TB from radiometer and
simulated TB from Tor Vergata model at L band at incident angle of 40◦ for wheat and corn. Correlation
coefficients between measured and simulated TB for wheat is 0.93 in both polarizations and 0.78 and
0.83 for corn at V and H polarizations, respectively.

The results provide a satisfactory level of accuracy for the Tor Vergata model to be accepted as the
theoretical basis for this study.

One of the theoretical bases of simulated MVI by the τ-ωmodel is the linear relationship of TB

with soil emissivity. This linear relationship was evaluated using the Tor Vergata model simulations,
as shown in Figure 4. Only simulations for a constant canopy height (corn at 150 cm and wheat at
70 cm) are shown. We found the linear relationships between TB and bare soil emissivity were valid in
all angles. The coefficients of determination were high (more than 0.95) over all incident angles. The
sensitivity of TB to soil emissivity decreases with an increase in the incidence angle, as more vegetation
is visible over a longer penetration path. This angular effect is not so significant for wheat at H-pol, as
wheat is vertical structure dominated vegetation.
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3.2. Multi-Angular MVI for Corn and Wheat

Multi-angular MVI at the L-band was derived using the two methods based on the Tor Vergata
model simulations. In the first method, assuming no polarization dependence on vegetation signal,
vegetation emission components were eliminated while calculating MVIP

B using the ratio of TB

polarization difference at two adjacent angles. The result shows that MVIP
B increases with an increase

in canopy height (θ1 being < θ2).
The second method to derive MVI is based on the linear function of TB at two adjacent angles,

such that the slope and intercept of these linear relationships are MVIT
B and MVIT

A, respectively. MVIT
B

and MVIT
A can be derived by simulating TB in various soil parameters in two angles. By increasing

canopy height, MVIT
B value is increased (θ1 < θ2).

A high coefficient of variation (CV) for MVIs denotes a higher sensitivity to vegetation change, as
vegetation changes significantly from sowing to harvesting according to experimental data. Table 2
indicates the CV values for two MVI types for a different pair of angles of wheat and corn. The CV
of MVIT

B is greater than that of MVIP
B. In deriving MVIP

B, we assumed there was no polarization
dependence on the vegetation signal and the effect of the vegetation emission component was
eliminated. This may have caused a lower CV value in MVIP

B compared to MVIT
B. We also found that the

CV of MVIT
B in V-pol was more than that in H-pol. As Ferrazzoli et al. [29] indicated, L-band emissivity

at V-pol is more sensitive to vegetation than at H-pol. In fact, MVIT
B in V-pol could better display

vegetation changes than others and it is a superior indicator for monitoring vegetation properties.

Table 2. The coefficient of variation value for microwave vegetation indices (MVIs).

Wheat MVIP
B MVIT

B, V-pol MVIT
B, H-pol

MVI (10◦, 20◦) 0.016 0.054 0.001
MVI (20◦, 30◦) 0.045 0.112 0.002
MVI (30◦, 40◦) 0.067 0.178 0.005
MVI (40◦, 50◦) 0.082 0.256 0.010

Corn MVIP
B MVIT

B, V-pol MVIT
B, H-pol

MVI (10◦, 20◦) 0.060 0.101 0.072
MVI (20◦, 30◦) 0.070 0.072 0.070
MVI (30◦, 40◦) 0.090 0.095 0.078
MVI (40◦, 50◦) 0.104 0.162 0.085

Figure 5 demonstrates the changing trend in daily MVIP
B & MVIT

B (40◦ and 50◦ incident angle)
with crop growth for wheat (a) and corn (d). 40◦ and 50◦ [40,47] are considered in this study because
the effect of vegetation at higher incident angles is more significant compared to lower incident angles.
Figure 5a shows a promising increase in MVIT

B with the growth of wheat, while MVIP
B has fewer

variations during the growth of wheat. Figure 5d represents similar response of MVIT
B only during the

growth stage of corn. Canopy height and VWC were also compared for wheat (b) and corn (e). Since
MVI is based on total brightness temperature, the trend in TB is also represented for wheat (c) and corn
(f). Figure 5a–c displayed a consistent change in MVIs, VWC and TB with plant height. Even VWC
data was only available for a limited duration of the early growth stage of corn, it showed a significant
change with the canopy height (Figure 5e). Figure 5d–f also indicated similar results of MVIs, VWC
and TB with respect to corn height. Figure 5f interestingly shows a relatively higher rate of change
in TB till the canopy height of corn reached 1m. The rate of change decreases and TB becomes nearly
constant for height above 1m.
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3.3. Application for Vegetation Optical Depth (VOD) and VWC Retrieval

Microwave signals are sensitive to vegetation properties, including above-ground biomass, VOD,
and VWC, which are liked with each other [7,8,19]. As mentioned in Section 2.4.2., VOD can be
retrieved through its relationship with MVIB, which may serve as a good indicator of global vegetation
properties monitoring. In this section, we further explore the use of MVIT

B for VOD and VWC retrievals.
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Figure 6 provides the VODS of corn and wheat at different incident angles in V- and H-pol.
In general, optical depth increased with incident angle and canopy height. With increasing incident
angle and canopy height, the extinction of vegetation and optical depth also increased [42]. In other
words, when vegetation was growing, vegetation attenuation increased, especially for denser
vegetation [31,44]. Vegetation canopies with a structure dominated by vertical stalks, like corn and
wheat, were shown to be strongly polarization-dependent [17,48–50]. The figure show generally the
optical depth values at H-pol were less than those at V-pol [29].
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Figure 6. VODS at V- and H-pol and several incident angles (top: wheat, bottom: corn).

To validate and explore the applicability of MVI to retrieve VOD, VODT was calculated at the
L-band and compared with VODS, as shown in Figure 7. The correlation coefficients of VODS and
VODT for corn and wheat were both as high as 0.99. But RMSE value of wheat figure was less
than RMSE value of corn figure. The color bar shows the single leaf area of wheat and corn (cm2).
It is found that the retrieval accuracy decreases as leaf area increases, especially for corn. VODT is
underestimated comparing to VODS for corn. It is believed that the assumption, the emissivity of
vegetation was approximately equal at two adjacent incident angles, may introduce underestimation
in VODT retrieval.
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single leaf area (cm2)

The VOD measured by passive microwave signals is an indicator of both VWC and structural
effects. Estimating VWC is also critical for many vegetation applications [14,51–53]. As ground
measurements of wheat and corn included fresh and dry biomass (g/m2), LAI, and VWC, here, we
simulated VWC from VODT and compared with measurement one.

Figure 8 illustrates the comparison of estimated VWC from VODT and measured VWC for wheat
and corn at V-pol. The Pearson correlation coefficients of measured and simulated VWC for corn and
wheat were both high, 0.99 and 0.98 at V- and H-pol respectively. But similarly, MVI retrieved VWC
was underestimated.
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4. Discussion

In this study, the MVI was derived at the L-band from multi-angular observations. The original
derivation of MVI was based on the zero-order model, and its validity over dense vegetation was not
clear. Previous studies [10] have shown that the MVI from the zero-order model is underestimated
due to ignoring the vegetation volume scattering. Here, we continued to evaluate its validity and
applicability in VOD and VWC retrievals based on the Tor Vergata model, which includes multiple
scattering effects and is closer to reality compared with the zero-order model. In this section hereafter,
we discuss the assumptions of MVI and its sensitivity on vegetation properties.



Remote Sens. 2019, 11, 730 14 of 20

4.1. Assumptions

We made two assumptions to solve the MVI function: no polarization dependence on vegetation
signal (MVIP

B) and no vegetation changes during MVI derivation (MVIT
B).

The first method assumes that microwave signals are polarization-independent as various types
of vegetation contain scatters with different sizes, shapes, and orientations. So, in the MVI function, the
ratio of polarization difference at two adjacent angles can eliminate the soil contribution. However, this
assumption could introduce errors for the stalk domain canopy [54]. For vegetation with a preferred
orientation structure such as corn, the no polarization dependence assumption is not reasonable.
The vertical structure of the stalks leads to a strong polarization dependence, as predicted by the
model and supported by experimental observations [5,55]. By using this method to derive MVIP

B,
the effects of the vegetation emission component are eliminated, which may cause error because
emission component is polarization-dependent for vegetation with significant multi-scattering effects.
This method of MVI derivation may work better for real microwave satellite data (coarse resolution)
rather than the model simulations, as there can be various vegetation scatters within a satellite
microwave footprint.

In the second method, a series of TB observations with different soil conditions (multi-temporal
information) was used to calculate MVI. The slope and intercept of this linear function were MVIT

B
and MVIT

A, respectively. Based on the results, MVIT
B is a better indicator for monitoring vegetation

properties. Applying the second method of MVI derivation to satellite images is possible by assuming
no vegetation changes during a certain time window (2–4 days). However, the method also has
limitations, as solving the function will be difficult if soil moisture does not change much. The accuracy
of MVIT

B calculation is compromised over areas having less soil moisture content. Thus, use of this
method in areas with limited soil moisture content is restricted. Also, a constant temperature is an
important parameter during MVI derivation in a specific time window.

There is another method for retrieving vegetation properties by Konings et al. [56], using
multi-temporal information, which is referred to as the multi-temporal dual channel algorithm
(MT-DCA). By using dual-polarized observations at L-band Soil Moisture Active Passive (SMAP),
simultaneous retrievals of vegetation optical depth, effective single scattering albedo, and soil dielectric
constant could be achieved. The method is also applicable to SMOS sensor. However, the ground
parameters are retrieved based on the iteration algorithm, which may have multiple solutions without
prior knowledge. The main difference or advantage of our method is that it is an analytical solution
to retrieve vegetation properties. However, we need further requirement of significant soil moisture
changes (no soil moisture changes will also lead to noisy retrievals for MT-DCA method), and our
method is only applicable to multi-angular observations, such as SMOS. Both methods assume that no
vegetation changes during a certain time window and artifacts may happen when sudden changes in
vegetation happen, such as fire or harvest.

4.2. Sensitivity of MVI to Vegetation Properties

It is expected that vegetation optical depth can be as an indicator of vegetation growth.
Chaparro et al. [16] analyzed SMAP MT-DCA VOD for one year and compared with in-suit crop
yield data. They indicated the minimum value of VOD accrued during crop emergence, and when the
crops were mature the maximum value of VOD occurred. Patton and Hornbuckle [25] found optical
depth changes of the crop in the growing season is related to crop yield. They indicated the SMOS
optical depth increased in the late spring and early summer and decreased while the crop slowly dried
out. Similarly, in Figure 9, the MVI derived VOD corresponds to literatures in terms of the trend and
the time of maximum and minimum value of VODT, which is correlated to measured VWC and LAI.
In the case of corn, unfortunately measured VOD and LAI did not span through the entire crop season
and the figures are represented from sowing to maximum canopy height.
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It should be noted that results (Figure 5) indicated the maximum value of MVIT
B for wheat was

more than that of corn. This issue can be explained by paying attention to how wheat and corn have
been described in the Tor Vergata model. In the wheat model, upper layers of small vertical cylinders
represent ears, while in the corn model the upper layers of randomly oriented disks represent leaves
(Figure 1). As Ferrazzoli et al. [35,37,44] confirmed (not only by model but also by radiometer data),
discs generate a significant scattering directed toward the upper half of the space and reduces the
overall emissivity of corn. Wheat cylinders that represent ears are mainly absorbers and can increase
the emissivity. Wheat acts like an absorption layer, which is different from wide leaf crops. For corn,
the contribution of the lower vertical cylinder is strongly attenuated by the upper layers. In fact, MVI
is strongly dependent on vegetation structure and leaf shape. The distribution of dielectric discs and
cylinders significantly affect the absorption and scattering characteristics of vegetation components.
The dependency of MVI on the vegetation structure requires more research.

Another point that should be noted is saturation effects that can happen in a microwave signal.
Vegetation indices suffer saturation, especially for multi-layer dense vegetation like corn with a lot
of leaves on top. Many studies have been done on microwave responses to corn canopies [57–59].
They indicated crop canopies can saturate at higher LAI or biomass and the exact point of saturation is
dependent on crop types and frequency. It has been reported that the saturation level of L-band was
found to vary between 40 and 150 ton

ha For corn. [60,61] Steele-Dunne et al. [57] and Zhao et al. [58]
showed that microwave brightness temperature becomes saturated when LAI exceeds 3. We confirmed
this in our results that saturation started from LAI more than 3 with height more than 1 m. As it is clear
from the Figure 10 for corn, the brightness temperature is increasing as LAI increases, but brightness
temperature started saturation while corn became dense and LAI exceeded around 3. This is because
of the strong scattering effects when leaf size is comparable to the wavelength. This could strongly
affect corn emissivity and reduce the sensitivity. In fact, vegetation like corn with many large leaves on
top anticipate saturation [44].

It is interesting to note that not all vegetation types had reported saturation. Prevot et al. [62]
indicated winter wheat backscatter continue to be sensitive to crop development throughout the season.
Figure 10 (left, wheat) also indicated brightness temperature was increasing by increasing LAI and
no saturation was observed during the wheat growth period. Thus, a saturation event in the canopy
should depend on frequency and vegetation structure.
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Figure 10. Comparing LAI trend with brightness temperature and canopy height (left: wheat,
right: corn).

Further investigation on comparing the result with satellite L-band VOD estimates is necessary
and future work for improving MVI-derived VOD estimation should be done. However, it should be
very difficult to find a pure corn footprint from satellite observations and is out of the scope of this
theoretical investigation.

5. Conclusions

Passive microwave-derived VOD is a useful indicator of vegetation properties, especially at lower
frequencies. VOD increases during the growing stage when plants grow and water content rises and
decreases during maturity. Hence for an agricultural crop that changes basically from planting to
harvest, VOD has great potential in monitoring vegetation grow stage, phenology and water stress.
Therefore, in this paper, we conducted a theoretical study on how to improve and use the MVI
technique to retrieve VOD, which is correlated to vegetation properties. In this study, we simulated
TB based on the Tor Vergata model for corn and wheat at the L-band. The validity of the Tor Vergata
model and MVI technique was evaluated based on ground-based observations. It is found that the
Tor Vergata model had satisfactory accuracy and should be an effective tool for simulation microwave
emission from those two kinds of crops. It is also found that the MVI technique is robust under the
descriptions of the Tor Vergata model, that the overall brightness temperature is linearly correlated
with soil emissivity with coefficients depending on vegetation properties. Results indicated that the
MVI should work better at V-pol due to its sensitivity to vegetation.

We calculated MVI under two different assumptions of (1) no polarization dependence: MVIP
B,

and (2) no vegetation changes in a certain time window: MVIT
B. The first method of MVI derivation

is suitable without a preferred orientation for vegetation. The second method is a new development
compared with previous studies. MVI from both of those two methods were found to be correlated
with vegetation water content, and the MVIT

B, which is derived based on multi-temporal information,
could achieve larger variation with vegetation changes and has a great potential to be used to retrieve
vegetation properties.

By comparing theoretical VODS with VOD derived from MVIT
B, it has been found that the retrieved

VOD has a very high correlation with theoretical ones. Good results were obtained by using the MVIT
B

to retrieve VOD and VWC for wheat. However, this also indicated that VODT is an underestimation of
VODS for corn. The percent of leaves and cylinders in vegetation canopy, structure and wavelength
can be effective parameters in VOD response. The same result was obtained when comparing retrieved
VWC from VODT with the measurements. Regardless of the method that we used to derive VOD,
vegetation structure and saturation effects may change the vegetation emission characteristics and
affect the MVI.
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Obtaining the theoretical relationship between MVI and VOD, make MVI a promising index for
global vegetation monitoring and soil moisture retrievals. The suitability of the MVIT

B is dependent on
vegetation structure and soil moisture changes. The accuracy of MVIT

B retrieval is compromised, over
areas having less soil moisture content. Thus, use of this method in areas with limited soil moisture
content is restricted. Hence, more investigation needs to be done to resolve those issues in real satellite
data applications.
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