
remote sensing  

Article

Identifying Mangrove Deforestation Hotspots in
South Asia, Southeast Asia and Asia-Pacific

Samir Gandhi 1,* and Trevor Gareth Jones 1,2,3

1 Blue Ventures Conservation, Level 2 Annex, Omnibus Business Centre, 39-41 North Road, London N7 9DP,
UK; trevor@blueventures.org

2 Department of Forest Resources Management, Faculty of Forestry, University of British Columbia,
2424 Main Mall, Vancouver, BC V6T1Z4, Canada

3 Terra Spatialists, Suite 800, 1199 West Hastings Street, Vancouver, BC V6E3T5, Canada
* Correspondence: samir@blueventures.org

Received: 26 January 2019; Accepted: 27 February 2019; Published: 26 March 2019
����������
�������

Abstract: Mangroves inhabit highly productive inter-tidal ecosystems in >120 countries in the tropics
and subtropics providing critical goods and services to coastal communities and contributing to
global climate change mitigation owing to substantial carbon stocks. Despite their importance, global
mangrove distribution continues to decline primarily due to anthropogenic drivers which vary by
region/country. South Asia, Southeast Asia and Asia-Pacific contain approximately 46% of the
world’s mangrove ecosystems, including the most biodiverse mangrove forests. This region also
exhibits the highest global rates of mangrove loss. Remotely sensed data provides timely and accurate
information on mangrove distribution and dynamics critical for targeting loss hotspots and guiding
intervention. This report inventories, describes and compares all known single- and multi-date
remotely sensed datasets with regional coverage and provides areal mangrove extents by country.
Multi-date datasets were used to estimate dynamics and identify loss hotspots (i.e., countries that
exhibit greatest proportional loss). Results indicate Myanmar is the primary mangrove loss hotspot,
exhibiting 35% loss from 1975–2005 and 28% between 2000–2014. Rates of loss in Myanmar were
four times the global average from 2000–2012. The Philippines is additionally identified as a loss
hotspot, with secondary hotspots including Malaysia, Cambodia and Indonesia. This information
helps inform and guide mangrove conservation, restoration and managed-use within the region.
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1. Introduction

Mangroves are distributed in >120 countries throughout the world [1]. Mangrove ecosystems
support high floral and faunal biodiversity and provide a diverse range of goods to coastal communities
(e.g., food, fuel, building materials). Mangroves also provide key services such as water filtration,
mitigating coastal erosion, and storm protection [2–25]. Mangrove forests often have greater carbon
stocks than their terrestrial peers, and are therefore important to global climate change mitigation
through CO2 sequestration [14]. Despite their value, global mangrove distribution continues to decline
primarily due to anthropogenic activities [26,27]. Annual global mangrove loss is estimated at 1%–2%
over the past several decades [7,28–32].

The region encompassing South (i.e., S) Asia, Southeast (i.e., SE) Asia and Asia-Pacific is home
to approximately 46% of the world’s mangroves [33]. Throughout this region, mangroves are
typically highly productive ecosystems, containing the oldest and most biodiverse mangrove forests
of the world [30,34,35]. Regional rates of loss are also the highest in the world, primarily due to
anthropogenic activities [36,37]. Anthropogenic drivers of loss stem from the underlying processes of
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population increase, industrialisation, urbanisation and globalisation, i.e., an increasing demand for
commodities [27,31]. Primary drivers include conversion of land to aquaculture, oil palm plantations
and rice paddies, coastal development, and over-extraction for woody materials [38–46]. Natural
phenomena, e.g., rising ocean temperatures and sea-levels and tropical storms also influence mangrove
dynamics [7,11,32,38,44,47–52].

While the overall trend in S Asia, SE Asia and Asia-Pacific is mangrove loss, the disparate
nature of anthropogenic drivers has resulted in variable dynamics [31]. Some mangrove areas remain
relatively intact, owing to characteristics such as remoteness and inaccessibility, or protected status [53].
Some mangrove areas are even increasing in extent following successful reforestation initiatives
and/or natural gain [54,55]. Within this region, sub-regions and countries experiencing relatively
substantial loss (i.e., mangrove deforestation hotspots) warrant closer attention and intervention
(i.e., loss mitigation activities). Up-to-date and accurate information regarding current and historical
mangrove distribution and condition is vital to inform conservation, restoration and managed-use.
Such information helps countries in their pursuit of environmental targets, e.g., as set out by
Millennium Development Goals or the Ramsar Convention on Wetlands [26,53,56]. Remotely sensed
data has been widely used to map mangrove distributions and their dynamics from global to local
scales and inform mitigation efforts [15,57]. Remotely sensed data is widely accessible and offers a far
cheaper alternative to field-based techniques which are only practical at the local-scale [58]. The ease
in which derived information can be updated (given the unrivalled temporal resolution of satellite
imaging) presents another advantage, and highlights the utility of remote sensing techniques for
large-scale mangrove monitoring projects [15,53,59]. Previous research has inventoried and compared
mangrove datasets derived from remotely sensed data [60,61]. Hamilton et al. [60] focused on the
Western Hemisphere and Oceana, and on datasets since 2000. Hu et al. [61] conducted an inventory at
the global scale for 1990–2016. No studies have simultaneously focused on inventory, comprehensive
description and comparison of datasets specifically for S Asia, SE Asia and Asia-Pacific, including all
historic datasets.

Here we focus on S Asia, SE Asia and Asia-Pacific, collectively referred to as the region of interest
(ROI). This report serves to (1) inventory, describe and compare single- and multi-date geospatial
datasets derived from remotely sensed data which provide information about the multi-national
and/or national distribution of mangrove ecosystems within the ROI, and (2) use multi-date datasets
to extract dynamics and identify a short-list of “hotspots” for mangrove loss based on countries which
have exhibited the most proportional loss. The findings inform mangrove conservation, restoration
and managed-use initiatives within the ROI through targeting deforestation hotspots in greatest need
of intervention.

2. Experimental Section

2.1. Region of Interest

The Region of Interest (ROI) includes 20 countries (Bangladesh, Brunei Darussalam, Cambodia,
Fiji, India, Indonesia, Kiribati, Malaysia, Marshall Islands, Micronesia, Myanmar, Palau, Papua New
Guinea, Philippines, Singapore, Solomon Islands, Thailand, Timor-Leste, Vanuatu and Vietnam) and
2 territories (Guam and Northern Mariana Islands) across three major sub-regions: S Asia, SE Asia and
the Asia-Pacific (Figure 1). Maldives, Nauru and the French territory of New Caledonia were added
due to their inclusion in referenced studies and geographic proximity. The ROI contains approximately
46% of the world’s mangrove ecosystems largely due to ideal climatic conditions and extensive
coastlines [30,33]. Regionally, mangrove ecosystems are exceptionally biodiverse—approximately
80% of all mangrove species are found within the Indo-Pacific between South India and Northern
Australia [62], and SE Asia alone boasts 51 species [30] compared to approximately 10 in Africa or the
Americas [63]. Throughout the ROI there exists a strong relationship between local coastal populations
and mangrove ecosystems [30].
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Figure 1. The Region of Interest (ROI) covering the three sub-regions of South Asia (green), Southeast 
Asia (orange) and Asia-Pacific (dark blue). Source: GADM v3.6 [64]. 

Approximately 5.8% of the world’s mangroves are found specifically in the S Asia sub-region 
[33], distributed primarily in sporadic coastal pockets [19]. This sub-region includes the world’s 
largest mangrove ecosystem, the Sundarbans, covering approximately 1,000,000 ha at the India-
Bangladesh interface [65]. Throughout this sub-region, loss is attributed to land-cover conversion, 
pollution, over-harvesting for timber and natural drivers including cyclones, tsunamis and coastal 
erosion [66]. 

SE Asia contains approximately 35.6% of the world’s mangroves and notably contains the 
greatest mangrove diversity representing 51 of the world’s known 73 species [30,33,36]. In this sub-
region, 30% of all mangrove loss between 2000 and 2012 was attributed to conversion for aquaculture 
[28,31]. Conversion to rice agriculture has also been a major driver in certain countries, such as 
Myanmar, whilst in Malaysia and Indonesia loss is mostly attributed to conversion for palm oil 
plantations [31]. Situated within a highly seismically active zone mangroves here are subjected to 
tsunamis, as well as other natural loss drivers such as hurricanes and cyclones [62]. 

Mangroves in the Asia-Pacific make up 4.8% of the world’s mangroves distributed across 
numerous Pacific islands, many of which are volcanic with mountainous terrain which limits low-
elevation intertidal areas suitable for mangrove establishment. Mangroves here are typically found 
in deltas and estuaries of established river systems, the largest of which are in Papua New Guinea, 
Solomon Islands, New Caledonia and Fiji. Given the low-lying nature of many Pacific islands, climate 
change, sea-level rise and coastal erosion pose significant threats to the mangroves of this sub-region 
[62]. 

2.2. Inventory, Acquisition and Description of Datasets 

All global, multi-national and national-level mangrove datasets providing single or multi-date 
coverage within the ROI—up until January, 2019—were inventoried through an exhaustive internet-
based search and literature review, and contacting experts with regional experience. Where possible, 
freely available datasets were obtained from online repositories. For datasets not available through 
repositories, authors were contacted. Table 1 lists the pertinent datasets (or subsets of datasets) that 
were not acquired as part of this process, providing author details and the names and status of their 

Figure 1. The Region of Interest (ROI) covering the three sub-regions of South Asia (green), Southeast
Asia (orange) and Asia-Pacific (dark blue). Source: GADM v3.6 [64].

Approximately 5.8% of the world’s mangroves are found specifically in the S Asia sub-region [33],
distributed primarily in sporadic coastal pockets [19]. This sub-region includes the world’s largest
mangrove ecosystem, the Sundarbans, covering approximately 1,000,000 ha at the India-Bangladesh
interface [65]. Throughout this sub-region, loss is attributed to land-cover conversion, pollution,
over-harvesting for timber and natural drivers including cyclones, tsunamis and coastal erosion [66].

SE Asia contains approximately 35.6% of the world’s mangroves and notably contains the greatest
mangrove diversity representing 51 of the world’s known 73 species [30,33,36]. In this sub-region,
30% of all mangrove loss between 2000 and 2012 was attributed to conversion for aquaculture [28,31].
Conversion to rice agriculture has also been a major driver in certain countries, such as Myanmar,
whilst in Malaysia and Indonesia loss is mostly attributed to conversion for palm oil plantations [31].
Situated within a highly seismically active zone mangroves here are subjected to tsunamis, as well as
other natural loss drivers such as hurricanes and cyclones [62].

Mangroves in the Asia-Pacific make up 4.8% of the world’s mangroves distributed across
numerous Pacific islands, many of which are volcanic with mountainous terrain which limits
low-elevation intertidal areas suitable for mangrove establishment. Mangroves here are typically
found in deltas and estuaries of established river systems, the largest of which are in Papua New
Guinea, Solomon Islands, New Caledonia and Fiji. Given the low-lying nature of many Pacific islands,
climate change, sea-level rise and coastal erosion pose significant threats to the mangroves of this
sub-region [62].

2.2. Inventory, Acquisition and Description of Datasets

All global, multi-national and national-level mangrove datasets providing single or multi-date
coverage within the ROI—up until January, 2019—were inventoried through an exhaustive
internet-based search and literature review, and contacting experts with regional experience. Where
possible, freely available datasets were obtained from online repositories. For datasets not available
through repositories, authors were contacted. Table 1 lists the pertinent datasets (or subsets of datasets)
that were not acquired as part of this process, providing author details and the names and status of
their corresponding datasets. For those datasets that were unavailable to acquire, inventorying and
description was possible by referring to relevant literature.
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Table 1. Datasets not available from online repositories/acquirable from authors, including those yet
to be published.

Organisation Website Applicable
Sub-Regions/Countries Dataset Availability

Aberystwyth
University

www.
globalmangrovewatch.

org

Entire region of
interest (ROI) GMW v2.0 [53]

2010 global distribution currently
downloadable; 1996, 2007–2010 and

annually from 2015 not yet
published

Salisbury University www.salisbury.edu Entire ROI CGMFC-21 v1 [67] 2000–2014 currently downloadable;
2015 not yet published

Mangroves for the
Future (MFF)

www.
mangrovesforthefuture.

org

South (S) Asia;
Southeast (SE) Asia Forthcoming Not yet published

National University
Singapore (NUS) www.nus.edu.sg SE Asia 2000–2012 loss [31] Forthcoming

US Geological Survey
Earth Resources
Observation and

Science (EROS) Center

www.usgs.gov/
centers/eros Bangladesh, India 2000–2012 [19] Forthcoming

Forest Survey of India
(FSI) www.fsi.nic.in India State of Forest Map

1987–2017 [55] Available to purchase

National Institute for
Environmental Studies www.nies.go.jp Myanmar 2000–2014 change

dataset [68] Forthcoming

US Geological Survey
Earth Resources
Observation and

Science (EROS) Center

www.usgs.gov/
centers/eros Philippines

1990, 2000 and 2010
mangrove distribution

maps [69]
Forthcoming

Once inventoried, all single- and multi-date datasets were described based on the following
criteria: brief summary of dataset, spatial and temporal coverage, imagery source(s), mapping methods,
resulting land-cover classes, accuracy assessment, mangrove distribution, dataset limitations and
details of how dataset was acquired.

2.2.1. Single-Date Mangrove Distribution

Single-date mangrove distributions were extracted for each country/territory from all inventoried
datasets. Where provided, distribution values were extracted from publications and supporting
materials (including for those datasets listed in Table 1 already published). For inventoried datasets
for which data were actually available/acquired, distribution values were extracted from the
actual datasets based on country/territory boundaries. The borders of countries/territories were
geographically defined by combining political boundaries with corresponding exclusive economic
zones (EEZ). Country polygons were sourced from the Global Administrative Boundaries database
(v3.6, www.gadm.org) [65] and EEZs from Marine Regions (v10 World EEZ, www.marineregions.
org) [70]. Country polygons and EEZs were merged and persisting gaps in coverage removed using
GIS software to define distinct boundaries for which mangrove extent was calculated.

2.2.2. Multi-Date Mangrove Dynamics

Differences between single-date studies were not used to calculate mangrove dynamics, as results
would likely be influenced by disparate mapping methodologies and accuracies. This is backed up
by findings in [53], in which the authors identify significant (and variable) discrepancies between
different global products ([30,33,53]) at regional and sub-country levels. Therefore dynamics were
only extracted and reported on from multi-date mangrove distribution datasets i.e., extracted from
publications/supporting material, or directly from datasets, for each associated country/territory as
defined by combined country and EEZ polygons.

Building on reported accuracies, accuracy was further qualitatively assessed for acquired
multi-date datasets through cross-checking against high-spatial resolution satellite imagery viewable
in Google Earth Pro (GEP). The qualitative accuracy assessment (i.e., QAA) of multi-date datasets
allowed for a more meaningful assessment of mangrove representation, providing a further indicator

www.globalmangrovewatch.org
www.globalmangrovewatch.org
www.globalmangrovewatch.org
www.salisbury.edu
www.mangrovesforthefuture.org
www.mangrovesforthefuture.org
www.mangrovesforthefuture.org
www.nus.edu.sg
www.usgs.gov/centers/eros
www.usgs.gov/centers/eros
www.fsi.nic.in
www.nies.go.jp
www.usgs.gov/centers/eros
www.usgs.gov/centers/eros
www.gadm.org
www.marineregions.org
www.marineregions.org
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of reliability of this study’s dynamics assessment. QAA was only possible when datasets were acquired.
Table 1 refers to four multi-date datasets that were not available from online repositories nor acquired
from authors ([19,31,68,69]), a further dataset not acquired due to associated cost [55], and two more
yet to be (wholly or partially) published ([53,67]). Furthermore QAA was not conducted unless datasets
explicitly mapped mangrove forest.

When available, multi-date datasets were typically acquired in raster format, and in a range of
coordinate systems necessitating several pre-processing steps to enable QAAs. These steps included
(1) extracting the mangrove class from the raster layer, (2) converting mangrove class into a vector
layer, (3) aggregating vector layer from multipart features to single part feature layer, (4) applying
distinctive symbology fit for the GEP interface, and (5) converting symbolised layer into a KML file
for bringing into GEP. In addition, the limited processing power of GEP (regardless of computing
power) required simplifying large multi-featured datasets, causing GEP to freeze indefinitely, or
run with an unmanageably slow response rate. Extensive trial and error identified a maximum
number of 40,000 features at which QAA could be reasonably undertaken. Each QAA was based
on 100 × 100 km areas of interest (AOIs) divided into 10 × 10 km boxes. Depending on geographic
coverage and initial observations of the internal variability of mangrove ecosystems, 1-2 AOIs were
used per dataset. Working from NW to SE, every fourth 10 × 10 km box containing mangroves
was selected for spot-checking, such that 25% of each AOI was systematically assessed. For each
spot-check, mangrove coverage was assessed against GEP imagery as close to the dataset’s date as
possible. If imagery was not available within five years of the mangrove dataset’s temporal focus,
QAA was not undertaken. In some instances, part of an image was cloud-covered or low quality,
again limiting the ability to conduct QAA (a limitation noted by Estoque et al. [71]). Drawing on
canopy-cover definitions described in Jones et al. [72], four mangrove classes were assessed for each
spot-check: (1) closed-canopy: tall, mature stands, >60% closed, (2) open-canopy: medium, short or
stunted stands, 30–60% closed, (3) sparse/dwarf: short or stunted stands <30 % closed, often found on
the margins of mangrove habitats, or in colder/less favourable climates/conditions, (4) fringing/strip:
thin, linear stands typically along coastlines or small inward channels. Each class was assessed as
either well-, under- or over-represented. The results of QAA and overall suitability (i.e., temporal and
spatial coverage) help contextualise the use of multi-date datasets for assessing dynamics.

3. Results and Discussion

3.1. Inventory and Description of Datasets

Five global datasets (i.e., A–E), four sub-region-wide datasets (i.e., F–I), three multi-national
datasets (i.e., J,K,M) and four single-nation datasets (i.e., L,N–P) are inventoried in this study (Table 2).
For all datasets, single- and multi-date mangrove distributions are partitioned according to discrete
mangrove coverage (i.e., presence versus absence) versus representations of continuous attributes
(i.e., canopy cover). As continuous measures are comparatively lower than discrete measures, the data
is split by type of measure to avoid masking patterns within the data.

Table 2. Inventory of global, multi-national and national mangrove datasets available for S Asia, SE
Asia and Asia-Pacific.

Data-Set Type Spatial Coverage
within ROI Temporal Coverage Author(s) Discrete/Continuous

(A) Global Entire ROI 2000 Giri et al. [33] Discrete
(B) Global Entire ROI c. 2000 Spalding et al. [30] Discrete

(C) Global Entire ROI
2000–2017 for loss
(annually); 2000,

2012 for gain
Hansen et al. [73] Continuous

(D) Global Entire ROI 2000–2014 (annually) Hamilton and
Casey [67] Continuous
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Table 2. Cont.

Data-Set Type Spatial Coverage
within ROI Temporal Coverage Author(s) Discrete/Continuous

(E) Global Entire ROI 2010 Bunting et al. [53] Discrete
(F) Multi-national S and SE Asia 2000 Stibig et al. [74] Discrete
(G) Multi-national S Asia 2000, 2012 Giri et al. [19] Discrete

(H) Multi-national SE Asia 2000, 2012 Richards and
Friess [31] Continuous

(I) Multi-national Asia-Pacific 2000 Bhattarai and Giri [62] Discrete

(J) Multi-national Bangladesh and
Myanmar 1975, 1990, 2000, 2005 Giri et al. [75] Discrete

(K) Multi-national Bangladesh and
Myanmar 1999 Blasco et al. [76] Discrete

(L) National India 1987–2017 (every
2 years over period)

Forest Survey
India [55] Discrete

(M) Multi-national
Myanmar, Thailand,

Cambodia and
Vietnam

2014 Clark Labs [77] Discrete

(N) National Myanmar 2000, 2014 Estoque et al. [68] Discrete
(O) National Philippines 1990, 2000, 2010 Long et al. [69] Discrete
(P) National Papua New Guinea c. 2002 Shearman et al. [78] Discrete

(A) Mangrove Forests of the World, 2000, Giri et al. (2011) [33]

The most widely-used and referenced global mangrove dataset is Mangrove Forests of the World
(MFW) by Giri et al. [33]. Giri et al. [33] was the first comprehensive global assessment of mangrove
distribution produced using satellite imagery, providing spatially explicit information at a moderate
spatial resolution (i.e., 30 m) for all countries/territories in the ROI circa 2000. The global dataset
was produced using approximately 1000 Landsat images (specific sensor information not reported),
subset to include areas where mangroves were likely to occur. A hybrid supervised/unsupervised
classification approach, using the (Iterative Self-Organizing Data Analysis) ISODATA clustering
algorithm, generated 50–150 spectral clusters and four land-cover classes: mangrove, non-mangrove,
barren lands and water. The resulting database was evaluated against existing datasets (findings not
reported), whilst qualitative validation by local experts employed high spatial resolution QuickBird
and IKONOS imagery. Geometric correction reduced root mean square (RMS) error to ±1/2 pixel.
MFW estimated 6,068,096 ha of mangrove within the ROI in 2000. Given (A) [33] is a single-date
dataset, QAA was not undertaken. Due to the moderate resolution of Landsat data used, small patches
of mangrove (<900–2700 m2) were not well captured in the results. Country-level mangrove extent
was extracted from both the dataset (vector format from the UN Ocean Data Viewer [79]; raster format
from NASA’s Socioeconomic Data and Applications Centre (SEDAC) [80]) and from figures reported in
Giri et al. [33]. There are discrepancies between mangrove extents as calculated from the downloaded
dataset versus figures published for seven of the countries in the ROI. Discrepancies are <5% except
in Indonesia where downloaded data presents 13% less mangrove extent, and Malaysia where data
presents 10% more (Table 3). As such (and where possible), figures reported in [33] are favoured over
those extracted from the data. Country extent figures are presented in Table 4, Figure 2a,b.

Table 3. Examples of discrepancies between figures extracted from publications versus from actual
available/acquired datasets.

Country Sub-Region Giri et al. [33] (E) Bunting et al. [53]

Bangladesh S Asia 2.2% 0.0%
India S Asia 4.9% 0.0%

Indonesia SE Asia −13.0% 0.0%
Malaysia SE Asia 9.8% −0.6%
Myanmar SE Asia 2.5% 0.0%

Philippines SE Asia −1.6% N/A
Papua New Guinea Asia-Pacific 1.4% 2.1%
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(B) World Atlas of Mangroves (WAM) v3, Spalding et al. (2010) [30]

Spalding et al. [30] incorporated numerous sources including national- and regional-scale
mapping to produce a global atlas of mangroves circa 1999–2003. Where gaps in coverage remained,
(A) [33] was used to complete coverage. Of interest to this report are the remote sensing-derived
national extents, of which two such studies contribute substantially to WAM. Corcoran et al. [81] used
Landsat Thematic Mapper (TM) and Enhanced TM (ETM+) scenes for 1999–2001 to produce mangrove
distribution maps over Western and Central Africa. This was later replicated by Spalding et al. [30]
over Papua New Guinea and Vietnam. The authors employed an unsupervised classification approach,
however information regarding methods (i.e., clustering algorithm, land-cover classes) is limited
and error metrics are not provided. Cloud-removal pre-processing was not undertaken, resulting
in probable inaccuracies. Rosati et al. [82] harnessed the experience of the United Nations Food
and Agriculture Organisation’s (FAO) Environmental Climate Change and Bioenergy Division by
employing Landsat ETM+ scenes to map mangroves across 31 countries (including 12 within the
ROI). Mangrove forest was identified and digitised through qualitative interpretation using bespoke
software, rather than through image classification techniques. No error metrics or shortcomings
were reported however considerable qualitative validation was conducted by experts with detailed
field knowledge, with feedback suggesting a high mapping accuracy and a low level of amendments
required. Within the ROI, WAM estimated mangrove extents of 1,034,400 ha in S Asia; 5,104,900 ha
in SE Asia; and 571,700 ha across what is a more broadly defined as ‘Pacific’ (Table 4, Figure 2a,b).
Given (B) [30] is a single-date dataset, QAA was not undertaken. The complete WAM layer can be
downloaded from the UN Ocean Data Viewer [79].

(C) Global Forest Change database, 2000–2017, Hansen et al. (2013) [73]

The Global Forest Change (GFC) database employed Landsat ETM+ satellite imagery to produce
a global map of percentage tree cover per pixel (i.e., a general ‘forest’ class) for year 2000 at a spatial
resolution of 30 m. A supervised (bagged decision tree) classification was used to identify tree cover
and change, making use of parallel processing in Google Earth Engine. The database therefore also
calculates annual deforestation from 2000–2017 showing stand-replacement disturbance or complete
removal of canopy-cover (i.e., forest cover loss), and the inverse (i.e., forest cover gain) as a twelve year
total between 2000 and 2012. A validation exercise used probability-based stratified random sampling.
Global accuracy is reported as 99.6% for areas of forest loss or no loss, and 99.7% for forest gain or no
gain. Gain was assigned to pixels in which non-forest changed to forest, with tree crown cover densities
> 50%. For tropical regions these accuracy figures are 99.5% and 99.7% respectively [73]. Change
dynamics for mangrove forest are calculated and reported by (D) [67], and extracted for the ROI in
this study (Table 5, Figures 3 and 4). Positional accuracy is not reported by the authors. QAA was not
undertaken, with priority given to mangrove-focused datasets, however there are notable limitations
with this dataset. Firstly, “forest” includes all forests, making no distinction between terrestrial and
mangrove. Richards and Friess (H) [31] further cite the inclusion of plantations or semi-natural forests
as a limitation. Secondly, forest is defined using a threshold of >5 m wherein lower-stature mangroves
are under-represented or completely left out. Testing the GFC over Ambaro-Ambanja Bays (AAB) in
NW Madagascar confirmed this limitation—the GFC displayed no mangrove deforestation, wherein
multiple studies confirm loss here is extensive [25,67,83]. The complete GFC layer can be downloaded
from the GFC’s Data Download page [73].

(D) Continuous Mangrove Forest Cover for 21st Century (CGMFC-21), Hamilton and Casey (2016) [67]

The CGMFC-21 product builds on (C)’s [73] use of Landsat ETM+ imagery to map global
mangrove change from 2000–2014, at a spatial resolution of 30 m. Two global mangrove extent
products were produced by masking GFC using (1) (A) [33] and (2) the Terrestrial Ecoregions of the
World (TEOW) [84]. TEOW was not compiled using remote sensing methods so is not considered
in this study. Areas of forest and annual change within the masked extent were identified from
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GFC annually to produce maps of canopy-cover (m2), resulting in continuous (rather than discrete)
mangrove coverage. Areas of mangrove change outside of the baseline area (i.e., (A) [33]) are therefore
excluded. Accuracy was tested by way of comparison with the only other study reporting similar
resolution continuous forest cover available, the USGS National Land Cover Dataset [85] over the
United States. Comparison for mangroves in Florida identified a 3.6% disagreement, providing
some assurance of accuracy for CGMFC-21. The positional error of the CGMFC-21 product is that of
MFW [33], i.e., a published RMS error of ±1/2 pixel. The product estimated 4,477,769 ha of mangroves
in the ROI in 2000, falling to 4,310,725 ha by 2014 (Table 5). This equals a 3.7% decline in extent
between 2000–2014, or 0.27% per annum. However, pixels containing just 0.01% forest canopy cover
are included as mangrove—this falls well below commonly used minimum canopy-cover definition
of 30% for mangrove forest [e.g., [25,67,83]. Initial comparisons with known areas of mangrove loss
(e.g., AAB, Madagascar) indicate that due to the aforementioned limitations, mangrove loss is often
under-represented. QAA was further conducted for 2014 data over two AOIs in the ROI: North
Sulawesi, Indonesia and the Irrawaddy Delta, Myanmar, confirming that low-stature-mangrove forest
was under-represented. Dynamics for 19 countries and one territory are presented in and were
extracted from (D) [67] (Table 5, Figures 3 and 4). The complete CGMFC-21 layer can be downloaded
from its website (http://faculty.salisbury.edu/~{}sehamilton/mangroves/).

(E) Global Mangrove Watch 2010—a fused optical with SAR approach, Bunting et al. (2018) [53]

The Japan Aerospace Exploration Agency’s (JAXA) Global Mangrove Watch (GMW) initiative has
generated a baseline global mangrove extent map for 2010. Phased-Array L-band Synthetic Aperture
Radar (PALSAR) data from the Advanced Land Observing Satellite (ALOS) was used due to its global
coverage and sensitivity to the physical characteristics of mangrove forest [59]. Due to limitations with
L-band SAR (difficulties in distinguishing mangrove from other forms of vegetation at the landward
margin), SAR was fused with Landsat TM and ETM+ data resulting in a global map at 25 m spatial
resolution. This project is notable for primarily using SAR data in contrast to most other studies that
utilise optical datasets, thus exploiting cloud-free, seamless coverage. The methodology involved four
stages: (1) extracting a coastal mask, (2) generating a mangrove “habitat” layer where mangrove can
plausibly exist, (3) using PALSAR data to generate an initial baseline, and (4) incorporating Landsat
composites to refine and eliminate errors in the baseline. The “habitat” layer was defined and generated
using five input variables: (1) longitude and latitude, (2) distance to water, (3) surface elevation,
(4) distance to an oceanic layer and (5) distance to existing global mangrove classifications (i.e., (A) [33]
and (B) [30]). The authors encourage subsequent mapping efforts to make use of this “habitat” layer,
though it is yet to be published on the GMW website [53]. Supervised classifications were produced
using the Extremely Randomized Trees classifier which defined 500 estimators, generating water,
mangrove and terrestrial non-mangrove classes. A stratified random sampling accuracy assessment
identified an overall accuracy of 95.3% (based on 53,878 sample points). The authors do not report
on the map’s positional accuracy. GMW estimated 5,835,322 ha of mangroves within the ROI as of
2010, however no coverage was included for Fiji, Guam, Kiribati and areas east of the antemeridian
due to satellite data unavailability (Table 4, Figure 2a,b). QAA was not undertaken given this is
a single-date dataset. However, the authors note that due to the moderate resolution of satellite
datasets used, fine-scale features were commonly miss-classified, for example aquaculture features,
riverine environments, and coastal fringes. The authors suggest a minimum mapping unit of 1 ha for
end-user mapping. From early 2019 the GMW initiative plans to provide additional annual maps for
years including 1996 using the “map-to-image” method presented by Thomas et al. [86], and using
time-series radar imagery e.g., from JERS-1 and ALOS-2 PALSAR-2. GMW 2010 baseline extents for six
countries within the ROI are presented in Bunting et al. [53]) and the remaining extents were extracted
from data downloaded from the UN Ocean Data Viewer [79] (Table 4, Figure 2a,b). The complete layer
can be downloaded from the UN Ocean Data Viewer [79].

http://faculty.salisbury.edu/~{}sehamilton/ mangroves/
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(F) Land-cover map for South and Southeast Asia, Stibig et al. (2007) [74]

This study used coarse (1 km) resolution imagery from the VEGETATION (VGT) 1 Earth observing
sensor aboard SPOT-4 to map land cover classes for S and SE Asia circa 1998–2000. 26 land cover
classes were identified using an unsupervised maximum likelihood classification, including “mangrove
forest”. Class assignment was validated using Landsat TM images, field knowledge and existing
land-cover maps. The classification achieved a mapping accuracy of 72% for the dominant classes of
‘forest’ and ‘cropland’, though no error metrics were reported specifically for mangrove. Geometric
fidelity is reported as within 500 m. The land-cover map identified 4,820,000 ha of mangrove across
the ROI. Whilst VGT’s coarse spatial resolution of 1 km makes the study useful at a regional scale,
the authors acknowledge an evident impact on accuracy at the national level. This is exacerbated by
the fragmented, fringing nature of mangrove habitat, resulting in a complete absence of identified
mangrove for much of the ROI. For this reason, this study’s areal extents are not included. The data is
available to download from European Commission’s Joint Research Centre website [87].

(G) Distribution and dynamics of mangrove forests of S Asia, Giri et al. (2015) [19]

This study employed Landsat ETM+ to assess mangrove cover change between 2000–2012 in
Bangladesh, India, Pakistan and Sri Lanka. Three case studies were also assessed in greater spatial
and thematic detail: Indus Delta (Pakistan), Goa (India) and Sundarbans (India and Bangladesh).
A supervised Classification and Regression Tree (CART) algorithm was employed in Google Earth
Engine, generating mangrove, water and ‘others’ (i.e., combined barren land, agriculture, habitation)
land-cover classes. Visual validation by local experts using existing mangrove distribution datasets and
high resolution QuickBird and IKONOS imagery helped to improve classification results. Quantitative
accuracy assessment was not undertaken, however positional error was successfully reduced to an
RMS of less than half a pixel. Mangrove extent for 2000 was estimated as 421,091 ha in Bangladesh
and 371,431 ha in India, falling by 2012 by 2.3% (to 411,487 ha) and 7.6% (to 343,065 ha) respectively
(Table 4, Figure 2a). Post-classification change analysis identified mangrove dynamics and attributed
change to natural or anthropogenic causes. The data was not available/acquired, therefore QAA was
not possible. No notable limitations specific to this study are reported by the authors [19].

(H) Mangrove deforestation in SE Asia, Richards and Friess (2016) [31]

Building on the methodology adopted by (D) [67], this study assessed the rates and drivers of
mangrove deforestation across ten countries in SE Asia: Brunei-Darussalam, Cambodia, Indonesia,
Malaysia, The Philippines, Singapore, Thailand and Vietnam from 2000–2012. The methodology
cross-referenced deforested pixels from (C) [73] (making use of Landsat ETM+ scenes) within a mask
defined by (A) [33], therefore did not account for mangrove gain. Reported figures reflect rates
of mangrove loss rather than net mangrove change, which is likely to have reduced areal figures.
Deforestation pixels for each year were subtracted from the previous year’s total to estimate annual
mangrove distribution. A supervised land-use classification method was then used to identify land-use
in mangrove deforestation pixels (as identified by masking (C) [73] by (A) [33]). A 100 bootstraps
model was used to assess land-use classification accuracy with a median Cohen κ value of 0.62
and a median accuracy of 68%. Six land-use classes were generated including mangrove-regrowth,
thereby providing an alternative measure of mangrove gain, and mitigating against the effects of
only extracting loss pixels from GFC. As with (D) [67], the positional accuracy is that of (A) [33], i.e.,
a published RMS error of ±1/2 pixel. Mangrove extent across these countries totalled 4,627,128 ha
in 2000, falling to 4,564,371 ha by 2012 (a 1.4% fall over the period, or 0.1% per annum) (Table 5,
Figures 3 and 4). Limitations concerning the use of continuous forest cover measures apply here as
with (D) [67], however post-processing removed some anomalous deforestation pixels by applying
a “clump function” meaning only deforested pixels adjacent to other deforested pixels forming
minimum patches of 0.5 ha were retained. The data was not available/acquired therefore QAA was
not undertaken.
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(I) Mangrove Assessment in the Pacific, Bhattarai and Giri (2011) [62]

This study used Landsat ETM+ data to produce a baseline map of mangrove extent across the
Pacific circa 2000 including: American Samoa, Fiji, French Polynesia, Guam, Hawaii, Kiribati, Marshall
Islands, Micronesia, Nauru, New Caledonia, Northern Mariana Islands, Palau, Papua New Guinea,
Samoa, Solomon Islands, Tonga, Tuvalu, Vanuatu and Wallis and Futuna Islands. Classification and
validation methods were similar to those outlined in (A) [33] and (G) [19], generating mangrove,
non-mangrove and water land-cover classes, and achieving an overall accuracy of 93%. Mangrove
extent within the ROI was estimated to be 569,350 ha with the vast majority in Papua New Guinea
(480,121 ha). Given (I) [62] is a single-year dataset, QAA was not undertaken. The authors could not
perform atmospheric correction due to the lack of data regarding atmospheric conditions in the Pacific
region, thereby potentially introducing error into results. Distributions for nine countries and three
territories are presented in and were extracted from (I) [62] (Table 4, Figure 2a,b). The data was not
available to download and was not acquired.

(J) Mangrove dynamics (1975–2005)—tsunami-affected regions of Asia, Giri et al. (2008) [75]

This study mapped mangrove extent in regions of S and SE Asia affected by the 2004 tsunami.
Approximately 700 Landsat images (Multispectral Scanner System (MSS), TM and ETM+) were used
to produce four maps for years 1975, 1990, 2000 and 2005 across only tsunami-affected areas of six
countries within the ROI: Bangladesh (entire country), India, Indonesia, Malaysia, Myanmar (entire
country) and Thailand. Classification and validation methods are similar to those outlined in (A) [33],
i.e., use of a hybrid supervised/unsupervised classification approach, using the ISODATA clustering
algorithm to generate 50 spectral clusters and identify mangrove classes. Additional ground control
points were selected to reduce RMS error to ±1/2 pixel. Quantitative accuracy assessments were
not undertaken due to a lack of ground-truth data for historical dates, whilst a visual qualitative
accuracy assessment by local experts using high-resolution QuickBird and IKONOS helped to correct
significant errors. In 1975 mangrove extent was estimated at 448,073 ha in Bangladesh and 851,452 ha
in Myanmar, falling by 2005 to 438,764 ha and 551,361 ha respectively (Table 4, Figure 2a,b, Figure 4).
Whilst the reduction in extent over this period was minimal in Bangladesh (2%), the fall in Myanmar
was substantial at 35%. Change analysis was conducted using a post-classification technique, which
compared classification results from each of the four imaged years. Shortcomings with this approach
as noted by (J) [75] include semantic differences in class definitions, positional and classification errors.
Mangrove patches smaller than 1 ha were not mapped, likely reducing distribution figures. Maps
were acquired from the authors but analysis was hindered due to unresolved dataset issues stemming
from original analysis having been conducted >12 years ago. QAA was performed for the 2005 dataset,
the most contemporary year of focus. One AOI was selected for each of the six countries studied. GEP
imagery was available within two years of the temporal focus in nearly all cases, except Indonesia
wherein the timeliest imagery was from 2012. Increasingly variable results were observed as mangrove
cover became more open/sparse. Over-representation was identified in places, particularly where
mangrove had been converted to palm oil plantations (e.g., in Malaysia), or clear-cut for agriculture
(e.g., Malaysia and India). Whilst mangrove was generally well represented in India, Bangladesh,
Myanmar and Indonesia, large stands were missing from Thailand and Malaysia. Dynamics for
Bangladesh and Myanmar are presented in and were extracted from (J) [75] (Table 4, Figures 2 and 4).

(K) SPOT ‘Quick-look’ map for Bangladesh and Myanmar, Blasco et al. (2001) [76]

The authors presented this study as the first nationwide estimate of Myanmar’s mangrove extent,
with Bangladesh also mapped. The study referred to 150 ‘quick-look’ scenes from SPOT 1, 2 and 3 HRV
sensors, for c. 1999, to produce mangrove classifications. Due to the modest performance of such a
method, ‘quick-look’ scenes were cross-checked against SPOT1 HRV and RESURS genuine scenes from
1999, using a combination of visual interpretation and supervised classification methods (minimum
distance and maximum likelihood [88]). Finally, field surveys were conducted across 25 check plots.
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The result was eight mangrove classes, expressed in the published findings as “dense”, “degraded” and
“reforested”. The authors do not report on classification accuracy assessment or positional accuracy.
Mangrove extent in Bangladesh amounted to 495,000 ha and in Myanmar 690,000 ha (Table 4). Given
(K) [76] is a single-year dataset, QAA was not undertaken. The authors acknowledge limitations with
use of ‘quick look’ data due to modest technical performance, and further investigation on their use is
required. They also state that classification accuracy could be improved by 10% if NDVI and empirical
thresholds were included. This dataset was not available/acquired.

(L) National-level mapping of India’s mangrove forests from 1987 to 2017, Forest Survey of India
(2017) [55]

The Forest Survey of India (FSI) has been using remote sensing techniques to map the country’s
forest extent (including mangroves) since 1987, on a two-year cycle. The first assessment was
undertaken visually at 80 m spatial resolution (minimum mapping unit of 400 ha), using Landsat
MSS imagery. FSI have gradually employed more sophisticated remote sensing methods, switching
from visual to digital analysis, and utilising imagery from increasingly more modern Landsat and IRS
sensors. The 2017 assessment used imagery from the IRS-Resourcesat-2 LISS-III sensor with a spatial
resolution of 23.5 m. A hybrid methodology was employed in which unsupervised classification
was aided by visual interpretation undertaken by expert analysts with a strong understanding of the
local environment—although the authors state mangrove forest was classified separately owing to
their distinct tone and texture in imagery, without detailing further. Three mangrove classes were
produced: “Very Dense”, “Moderately Dense” and “Open”, generating a total extent of 492,100 ha for
2017 (up from 404,600 ha in 1987). This equates to a 0.6% increase per annum over this period (Table 4,
Figure 2a). The FSI website provides further detail on their mapping efforts, although no error metrics
or shortcomings are provided. The datasets were not acquired due to the associated cost, therefore
QAA was not undertaken. Maps and data are available to purchase from their website [55].

(M) Baseline mapping of aquaculture and coastal habitats, Clark Labs (forthcoming) [77]

Clark Labs (Worcester, USA) [77] produced a baseline land-cover map for Myanmar, Thailand,
Cambodia and Vietnam to inventory pond aquaculture and coastal habitats using Landsat data
circa 2014. Supervised classification techniques were applied to Landsat OLI scenes to generate
32 land-cover classes, including mangrove. Full methods, error metrics and shortcomings are to
be reported in forthcoming publications. Mangrove extents for the four countries were extracted
from data downloaded from the Clark Labs website [77], and are as follows: 29,089 ha in Cambodia,
604,057 ha in Myanmar, 259,678 ha in Thailand and 180,784 ha in Vietnam (Table 4, Figure 2a,b). With a
pan-sharpened spatial resolution of 15 m, this dataset offers a superior resolution to the other datasets
described (most are at 30 m), but is limited in its spatial and temporal coverage within the ROI. Given
(M) [77] is a single-year dataset, QAA was not undertaken.

(N) Mangrove forest maps over Myanmar for years 2000 and 2014, Estoque et al. (2018) [68]

Estoque et al. [68] used Landsat TM, ETM+ and OLI imagery to produce mangrove forest maps
over Myanmar for years 2000 and 2014 to assess change in mangrove ecosystem services. The study
employed the ISODATA algorithm to conduct an unsupervised classification, generating 200 spectral
clusters to identify mangrove and non-mangrove classes. Visual assessment was undertaken using
Google Earth imagery with the help of technical experts from Myanmar’s Forest Department.
A classification accuracy assessment was based on the collection of 400 mangrove field validation points,
plus 400 non-mangrove validation points from Google Earth to produce confusion matrices for map
years 2000 and 2014. Overall accuracies were computed as 91% and 97% respectively. The authors do
not report on positional accuracy of the maps. The study estimated Myanmar’s mangrove distribution
to be 666,759 ha in 2000, declining to 475,637 ha in 2014, representing a 28.66% loss over the period [68]
(Table 4, Figure 2a). The findings are further broken down by state. No notable shortcomings are
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reported by the authors. Due to the recent publication of this paper, the data was not acquired,
therefore QAA was not conducted.

(O) Mapping and monitoring the Philippines’ mangrove forests from 1990 to 2010, Long et al. (2014) [69]

This study assessed Landsat TM and ETM+ imagery to produce mangrove distribution maps
across the Philippines for years 1990, 2000 and 2010. Data and findings from a previous study
(i.e., Long and Giri [89]) provided a distribution for 2000, based on an unsupervised classification
which employed the ISODATA algorithm for 2000, whilst a supervised decision tree classification
approach mapped distributions for 1990 and 2010. Three land-cover classes i.e., mangrove, water,
terrestrial non-mangrove were generated. High resolution IKONOS and QuickBird data were used
for validation purposes, and an accuracy assessment using stratified random sampling indicated a
user’s accuracy of 99% and overall accuracy of 93%. The authors do not report on positional accuracy
of the map. The study reported a nationwide baseline extent of 268,996 ha in 1990, 256,185 ha in 2000,
and 240,824 ha in 2010, indicating a downward trend throughout the period, equaling a 10.5% decline
(Table 4, Figures 2a and 4). The authors state a need for future studies to address the misclassification
of mangrove as water, particularly around small <900 m2 stands. This was cited as the most common
classification error in this study. The data was not available/acquired, therefore QAA was not possible.

(P) Creation of a forest map in Papua New Guinea, c. 2002, Shearman et al. (2009) [78]

Shearman et al. [78] produced a land-cover map over Papua New Guinea (PNG) for c. 2002, as part
of a study to quantify forest conversion and degradation in the country. Use of Landsat ETM+ scenes
was supplemented by Landsat TM, SPOT 4 and 5 where adequately cloud-free ETM+ imagery could
not be acquired. Due to the strong tendency for cloud-cover in PNG, imagery could not be acquired for
a single year. 2002 is however the proposed imaged year, accounting for 62% of images used. Images
were segmented into spectral clusters using ‘eCognition’ software and the resulting polygons classified
through expert visual interpretation. This generated nine land-cover classes including mangroves.
Validation was undertaken using low-flying aerial photographic surveys, and identified an overall
image classification accuracy of 97.7%. The authors report the positional accuracy of imagery enabled
change detection over areas spanning 60–100 m. National mangrove extent was estimated at 574,876 ha
(Table 4, Figure 2a). However a lack of wall-to-wall coverage from a narrow period is likely to have
undermined results, given the heterogeneous nature of forest change across tropical landscapes such
as this [78,90]. However, similarly to (C) [73], forest was defined as having a canopy height of >5 m,
which is likely to have under-represented lower-stature trees, including mangroves. Given (O) [69] is a
single-year dataset, QAA was not undertaken. This dataset was not available/acquired.

3.2. Comparison of Datasets

Whilst studies (A), (B), (E), (F), (G), (I), (J), (K), (L), (M), (N), (O) and (P) report mangrove area
in discrete terms i.e., presence or no presence, datasets (C), (D), (H) represent mangrove area using
a continuous mangrove cover measure, reporting % forest canopy-cover. Measures of continuous
cover result in reduced calculated area. In any given pixel, if mangrove is detected, a discrete measure
is likely to represent the entire pixel’s area as mangrove e.g., 900 m2 out of 900 m2 represented as
mangrove. A continuous mangrove cover measure will represent the pixel in terms of % canopy cover,
which if 50% would equal 450 m2. This equates to a 450 m2 difference in that single pixel, resulting
in significant discrepancy when assessed at the landscape-level. The presence of sparse or degraded
mangrove forest accentuates this effect. This explains the difference in areal extent: figures reported by
(C) [73] were on average 38% lower than those reported by (A) [33] for the same year of focus (2000).
However another reason for this is likely the omission of mangroves <5 m in height, as per (C) [73].
When compared to (H) [31], figures reported by (D) [67] for the year 2012 were on average 31% lower
per country. As well as being lower in absolute terms, rates of mangrove loss were on average roughly
double those reported by (H) [31]. There remains a broader question on which measure is more suitable
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for calculating mangrove distribution. Hamilton et al. [60] propose that discrete, presence versus no
presence pixel measures may be inadequate for applications such as establishing mangrove carbon
stocks for programmes such as REDD.

Regardless of the methodology adopted, defining mangrove area spatially is challenging as
mangroves often co-exist with other similar coastal habitats (e.g., salt marshes and tidal freshwater
forests) [30]. Numerous studies (e.g., [15,53,67,68,91,92]) have noted the lack of consistency in how
mangroves are defined (e.g., mangrove forest only; mangrove habitat inclusive of water bodies).
This reiterates the need to develop robust and standardised, well-reported methods for accurately
quantifying mangrove distribution [89,91–93], and is highly likely to be somewhat responsible for
the variability in areal estimates. Likewise, with regards to studies (A) [33] and (E) [53], which were
intended to provide global baselines of mangrove distribution for 2000 and 2010 respectively, the papers
or supporting material have not provided baseline breakdowns for all countries. Study (A) [33]
published figures for the 15 most mangrove-rich countries in the world, whilst (E) [53] published
mangrove extents for the top 10. In both cases full geospatial data has been made available on the
UN Ocean Data Viewer [79], thus figures for all remaining countries are extractable as undertaken
in this study (Table 4, Figure 2a,b). However, for both (A) [33] and (E) [53], in the absence of a full
methodology explaining how country boundaries were determined, boundaries produced in this study
were potentially defined using disparate approaches (e.g., input datasets; projections), resulting in
discrepancies as high as 13% (A) [33] between reported values and extracted values (Table 3). This
could have negative consequences on decision-making when used to inform intervention. It would
be valuable to resource managers and decision makers for future (and existing) studies to present
mangrove distributions by region, sub-region, country and country administrative boundaries e.g.,
provinces/districts—either in-paper or within supplementary materials. Universal use of an agreed
and recognised high-resolution boundary dataset e.g., GADM v3.6 [64] could help facilitate this.

Patterns of mangrove extent change can be drawn from the dynamics data. Of the 15 studies
identified, only eight (C), (D), (G), (H), (J), (L), (N), (O) involved multi-year distributions/data from
which mangrove dynamics could be calculated. Of the 25 countries/territories within the ROI,
mangrove extents in Bangladesh, Brunei, Fiji, Papua New Guinea, Solomon Islands, Thailand and
Vietnam have remained relatively steady, exhibiting <3% loss over the time periods studied. Loss
in countries and territories with mangrove area <10,000 ha (Maldives, Micronesia, New Caledonia,
Palau, Singapore, Timor Leste and Vanuatu) was <2%, but only reported on by (H) [31] and/or
(D) [67]. Both of these datasets report continuous rather than discrete mangrove distribution. Whilst
this is pertinent for country comparisons in absolute terms (due to the comparatively low coverage
of continuous coverage figures), in proportionate terms, when measuring % change between two
points in time, the impact is likely to be minimal. Therefore whether a dataset reports coverage in
discrete or continuous terms is not regarded as being of significance to the reliability of this dynamics
assessment. It should also be noted that (H) [31] potentially underestimates mangrove distribution by
only accounting for mangrove loss pixels from GFC (C) [73], and not mangrove gain pixels, whilst
(D) [67] was found to under-represent low-stature mangrove forest in the QAA exercise. Both datasets
also rely heavily on the MFW (A) [33] and GFC (C) [73] datasets in their methodologies, thereby
introducing their respective shortcomings into these studies. Dynamics were not available for Guam,
Kiribati, Marshall Islands, Nauru and the Northern Mariana Islands. Furthermore, as most studies
presenting dynamics have used temporal intervals of ten years or greater, it is difficult to understand
intra-interval change. This makes it difficult to develop a clear understanding of the process of
mangrove extent change, and as such more regular intervals (such as the annual global updates
proposed in study (E) [53]) would assist in building up that understanding [61].

Of all countries in the ROI, Myanmar exhibited the greatest rate of loss in mangrove extent. (J) [75]
reported a 35% decrease from 1975–2005, whilst between 2000–2014 (N) [68] reported a 28.7% decline
in distribution. The two studies combined represent a time period of approximately 40 years, thereby
capturing longer-term change dynamics and trends. Furthermore, the findings from (N) [68] are
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backed up by strong results in accuracy assessments, and findings from (J) [75] are considered reliable
given the QAA exercise that found mangroves in Myanmar to be generally well represented. Whilst
studies based on continuous measures of mangrove forest cover reported a notable drop in the rate of
overall deforestation from 2000, rates of mangrove loss of 5.5% from 2000–2012 [31] and 10.2% from
2000–2014 [67] are still comparatively high post-2000 when compared to other countries in the ROI.

In India a 7.6% decline in mangrove distribution was reported from 2000–2012 (G) [19], again
comparatively high for the period. However this figure was heavily influenced by the Sundarbans,
the largest contiguous mangrove ecosystem in the world, of which 40% is in India. Literature indicates
that the Sundarbans remained relatively stable between 1973 and 2000 with a reported loss in areal
extent of approximately 1.2% [66]. The Indian Sundarbans represents approximately 50% of India’s
total mangrove extent, thus it could be assumed that mangrove loss in India’s other mangrove habitats
was significantly higher than the nationwide loss of 7.6% as reported by (G) [19]. This is backed up
by Thomas et al. [36], who categorise Western India as a “hotspot of mangrove change [ . . . ] which
should be prioritised for future monitoring” by using multi-temporal radar mosaics as indicators of
change. Conversely, Giri et al. (G) [19] also identify continuous mangrove gain between 1973–2011
when reporting on a case-study over Goa, an area of “substantial mangrove extent” within Western
India. (L) [55] (a Government organisation responsible for the assessment and monitoring of forest
resources) has identified a broadly upward trend in India’s mangrove extent since 1987. Their two-year
cycle of remote sensing-based forest assessments has identified increases in national mangrove extent
for 10 of 14 updates until 2017, representing a 21.6% gain between 1987–2017. Indeed the latest FSI [55]
report in 2017 identified an 18,100 ha increase in mangrove extent since 2015’s assessment (a gain
of 3.8%). (C) [73] noted in their Supporting Information that India reports “forest gains that are not
readily observable in time-series satellite imagery, including this analysis”. However the FSI provides
a comprehensive breakdown of change dynamics in each of the 12 coastal states, and furthermore
dynamics for coastal districts within these states. FSI [55] cite widespread plantation efforts (also noted
by Jayanthi et al. [54]) and natural regeneration as factors driving notable mangrove extent increases
across five states. This upward trend is echoed by Jayanthi et al. [54], who used Landsat TM and ETM+
scenes to assess mangrove change in the ten largest mangrove forests in India between 1989 and 2013.
Mangrove extent across the ten forests was estimated as increasing by 13.2%.

Studies including the Philippines reported variable findings. (O) [69] reported a 10.5% loss in
areal extent from 1990–2010, with mangrove reported as present or absent. Findings from (O) [69]
are considered to be the most reliable indicator for the Philippines given its single-country focus,
and strong performance in the study’s accuracy assessment. Studies using continuous mangrove cover
as a measure reported very little loss, 0.5% from 2000–2012 [31] and 1.49% from 2000–2014 [67]. (O) [69]
generated comprehensive nation-wide maps for 1990, 2000 and 2010 and identified a 6% loss from
2000–2010, thereby contradicting studies assessing loss using continuous measures.

Indonesia has by far the greatest areal extent of mangroves (approximately 45% of mangroves
found within the ROI, according to (A) [33]). The rate of loss in Indonesia was relatively low, estimated
to be 3.86% between 2000–2014 [67] or as low as 0.46% between 2000–2012 [31]. This loss was not
nearly as high as in Myanmar, however in absolute terms according to (D) [67] estimates, loss in
Indonesia totalled nearly 100,000 ha from 2000–2014—more than a third of Myanmar’s total mangrove
area in 2014.

The rate of loss in Malaysia and Cambodia was not as pronounced as in Myanmar, but notable
nonetheless. In Malaysia, loss was reported at 2.83% from 2000–2012 [31] and 5.58% between 2000 and
2014 [67]. In Cambodia, loss was reported at 2.28% from 2000–2012 [31] and 5.42% from 2000–2014 [67].

There were difficulties associated with acquiring some of the datasets identified pertinent to this
study, particularly those from studies published more than five years ago. In some cases data was
provided without sufficient (or any) supporting information or metadata, including fundamental
characteristics such as projection information. This undermined the process of describing inventoried
datasets when information was not acquired or identified, and slowed down or halted efforts
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considerably. Online portals such as the UN Ocean Data Viewer [79] are valuable repositories of
geospatial datasets pertaining to the management of coastal environments, but no single repository
contains all or even most of the inventoried datasets for the ROI. Uploading additional pertinent
historic and future datasets, with all accompanying metadata, would greatly support management
efforts, and would improve the spatial and temporal coverage, and accuracy of future inventories,
descriptions and comparisons of datasets.

3.3. Identifying Mangrove Loss Hotspots

Of the three sub-regions in the ROI, SE Asia has exhibited the most mangrove loss. This finding is
backed up by a recent study (i.e., Thomas et al. [36]) which employed methods similar to Lucas et al. [94]
to identify mangrove change hotspots between 1996–2010. The study cites mangrove areas of SE Asia
as having the highest prevalence of anthropogenic activity versus other regions in the world. When
considering individual countries across the datasets inventoried and assessed, Myanmar and the
Philippines stand out as mangrove loss hotspots. Myanmar experienced 35% loss between 1975 and
2005 [75] and 27.6% loss between 2000 and 2014 [68], eclipsing rates of loss seen anywhere else within
the ROI. Between 2000 and 2012, Myanmar experienced a 5.5% loss [31] and from 2000–2014, a 10.2%
loss [67]. Hamilton and Casey [67] cite Myanmar as “the current hotspot for mangrove deforestation”,
referring to their MFW- and TEOW-derived products (see (D) to identify a rate of deforestation four
times higher than the global average.

The Philippines experienced 10.5% loss from 1990–2010 with relatively consistent rates across the
two decades (O) [69]. Richard and Friess [31] and Hamilton and Casey [67] also estimated mangrove
losses in the Philippines of 0.5% and 1.5% over their respective periods of study—both lower rates of
loss attributed to the use of continuous rather than discrete measures.

Secondary hotspot nations are considered to be Malaysia, Cambodia and Indonesia. Within SE
Asia, after Myanmar, these were the next three countries with the greatest rates of mangrove loss as
reported by Richards and Friess [31], with 2.8%, 2.3% and 1.7% lost respectively between 2000 and
2012. Hamilton and Casey [67] reported a similar pattern, albeit with higher rates of loss: Malaysia
lost 5.6%, Cambodia lost 5.4% and Indonesia lost 3.9%.

Dynamics in India warrant further investigation. Whilst India saw a 7.6% loss from 2000–2012
(above the average across the ROI), the loss appears to be lopsidedly occurring in other parts of India
given the relatively well-preserved Indian Sundarbans [75]. Furthermore the conflicting findings for
India at the national scale (as identified in this study) highlight the need for further and more regular
remote sensing-based monitoring, from which reliable change dynamics can be extracted. Due to
conflicting information, we cannot conclude that India is a mangrove loss hotspot.

For smaller countries/territories within the ROI, mangrove change dynamics are lacking in the
literature. For Guam, Kiribati, Marshall Islands, Nauru and Northern Mariana Islands, no change
dynamics are available at all (and therefore excluded from Table 5). For eight others (including Papua
New Guinea), only one set of change dynamics are available (from (H) [31]). Some of these countries
may also be loss hotspots however in the absence of data this cannot be verified. The 2010 global
baseline published as part of the Global Mangrove Watch initiative (E) [53] potentially heralds a new
era of annual mangrove distribution updates. From this a reliable monitoring system is proposed by
Bunting et al. [53], using a method that focuses on mapping changes away from the baseline rather than
using independently classified baselines [86]). It will also rely upon improved sensors (e.g., Landsat
OLI, Sentinel-2), which are rapidly accumulating collections. Furthermore, use of imagery from
these sensors within cloud-based platforms (e.g., Google Earth Engine) again holds promise [95–97].
Indeed, studies (C) [73] and (G) [19] employed Google Earth Engine. Such solutions could provide
much-needed coverage over countries currently lacking dynamics data and future research should be
monitored closely.
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Table 4. (a) Mangrove distribution (ha) by South Asian countries, year and study—discrete datasets; (b) Mangrove distribution (ha) by Southeast Asian countries, year
and study—discrete datasets; (c) Mangrove distribution (ha) by Asia-Pacific countries/territories, year and study—discrete datasets.

(a)
(J) (L) (K) (B) (A) (G) (J) (E) (G) (L)

Study Giri et al.
[75] FSI [55] Blasco et al.

[76]
Spalding
et al. [30] Giri et al. [33] Giri et al.

[19]
Giri et al.

[75] Bunting et al. [53] Giri et al.
[19] FSI [55]

Year of focus 1975 1987 1999 c. 2000 2000 2000 2000 2005 2010 2010 2012 2017
Extracted from Paper Report Paper Book/Papers Paper Data Paper Paper Paper Data Paper Report
Bangladesh 448,073 495,000 495,136 R 436,570 446,340 421,091 438,764 416,300 416,290 411,487
India 404,600 432,592 R 368,276 386,243 371,431 352,100 352,062 343,065 492,100
Maldives 85
S Asia total 448,073 404,600 495,000 927,728 804,846 832,668 792,522 438,764 768,400 768,352 754,552 492,100

R Spalding et al. (2010) extracted mangrove extent data from Rosati et al. (2008) (R) [82].

(b)
(J) (O) (K) (B) (A) (N) (J) (E) (O) (M) (N)

Study Giri et al.
[75]

Long
et al. [69]

Blasco
et al. [76]

Spalding
et al. [30] Giri et al. [33] Estoque

et al. [68]
Giri et al.

[75] Bunting et al. [53] Long
et al. [69]

Clark
Labs [77]

Estoque
et al. [68]

Year of focus 1975 1990 1999 c. 2000 2000 2000 2000 2005 2010 2010 2010 2014 2014
Extracted from Paper Paper Paper Book/Papers Paper Data Paper Paper Paper Data Paper Data Paper
Brunei 11,450 11,594
Cambodia 47,549 59,159 29,089
Indonesia 3,112,989 2,707,047 2,689,000 2,689,673
Malaysia 709,730 R 505,386 555,092 520,100 516,858
Myanmar 851,452 690,000 502,900 R 494,584 507,158 666,759 551,361 501,100 501,132 604,057 475,637
Philippines 268,996 256,482 R 263,137 259,037 265,138 240,824
Singapore 460 R 579 544
Thailand 248,362 R 245,437 225,783 259,678
Timor Leste 1018 983
Vietnam 105,608 C 215,608 160,002 180,784
SE Asia total 851,452 268,996 690,000 1,823,542 4,376,096 4,549,975 666,759 551,361 3,710,200 4,430,866 240,824 1,073,608 475,637

C/R Spalding et al. (2010) extracted mangrove extent data from Corcoran et al. (2007) [81] (C) or Rosati et al. (2008) (R) [82].
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Table 4. Cont.

(c)
(B) (A) (I) (P) (E)

Study Spalding et al. [30] Giri et al. [33] Bhattarai and Giri [62] Shearman et al. [78] Bunting et al. [53]
Year of focus c. 2000 2000 2000 2000 c. 2002 2010 2010

Extracted from Book/Papers Paper Data Paper Paper Paper Data
Fiji 110,144 51,168

Guam 97 R 32 34
Kiribati 18 18

Marshall Islands 2
Micronesia 8699 R 9885 9900 8405

Nauru 3 4
New Caledonia 24,767 25,099 29,616

Northern Mariana Islands 27 28
Palau 4853 R 5681 5666 6176

Papua New Guinea 426,482 C 480,121 486,946 480,121 574,876 476,200 486,234
Solomon Islands 60,252 R 46,585 47,100 52,729

Vanuatu 2051 R 1365 1378 1779
Asia-Pacific total 502,434 480,121 685,453 569,350 574,876 476,200 636,107

C/R Spalding et al. (2010) extracted mangrove extent data from Corcoran et al. (2007) [81] (C) or Rosati et al. (2008) (R) [82].
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Figure 4. Mangrove distribution for primary loss hotspot countries ((a) Myanmar and (b) Philippines)
by year and study.
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Table 5. Mangrove extent (ha) by country/territory, year and study—continuous datasets. No continuous
data is available for Guam, Kiribati, Marshall Islands, Nauru and Northern Mariana Islands, therefore
these are excluded from this table.

Study, Year of Focus, Extracted from

(H) Richards
and Friess [31]

(D) Hamilton
and Casey [67]

(H) Richards
and Friess [31]

(D) Hamilton
and Casey [67]

2000 2000 2012 2014
Country Sub-region Paper Supporting Info Paper Supporting Info

Bangladesh S Asia 177,390 177,267
India S Asia 82,506 79,140

Maldives S Asia 30 30
Brunei SE Asia 11,054 10,423 11,013 10,327

Cambodia SE Asia 47,563 33,839 46,477 32,004
Indonesia SE Asia 2,788,683 2,407,313 2,775,802 2,314,277
Malaysia SE Asia 557,805 496,868 541,996 469,150
Myanmar SE Asia 502,466 279,260 474,696 250,825

Philippines SE Asia 257,575 209,105 256,279 205,975
Singapore SE Asia 583 167 583 167
Thailand SE Asia 245,179 193,345 241,835 187,562

Timor Leste SE Asia 1066 857 1064 844
Vietnam SE Asia 215,154 71,640 214,626 70,641

Fiji Asia-Pacific 40,170 40,077
Micronesia Asia-Pacific 695 692

New Caledonia Asia-Pacific 9862 9787
Palau Asia-Pacific 4806 4787

Papua New Guinea Asia-Pacific 418,992 416,904
Solomon Islands Asia-Pacific 39,492 39,260

Vanuatu Asia-Pacific 1009 1009
Total 4,627,128 4,477,769 4,564,371 4,310,725

4. Conclusions

This report inventoried, described and compared seven single-date and eight multi-date datasets
for 22 countries and three territories in S Asia, SE Asia and Asia-Pacific sub-regions. For all
datasets, major limitations and challenges include the use of numerous definitions of ‘mangrove’
contributing to varying results; the lack of standardised and robust mangrove mapping methods
(full methods are often not reported); a lack of coverage over much of the ROI; and the limited
accessibility to many pertinent datasets. Despite these limitations/challenges, this inventory provides
an important overview of what analysis of remotely sensed data has been conducted and the status
of existing single- and multi-date datasets for the ROI. While single-date datasets are useful for
providing snapshot distributions, they do not shed light on dynamics. In contrast, the comparison
of multi-date datasets characterises regional change and identifies Myanmar as the primary loss
hotspot. The Philippines, Malaysia, Cambodia and Indonesia follow Myanmar on a short-list of
countries exhibiting highest rates of proportional mangrove loss across all inventoried multi-date
datasets within the ROI. Future work can build on these results by acquiring and collating all
available national and sub-national multi-date datasets for short-listed countries, conducting QAAs,
and detailed deforestation analysis using best available or, if required, newly produced datasets.
New mapping and monitoring efforts should take advantage of emerging cloud-based analysis
platforms, such as Google Earth Engine. Efforts must also be taken to ensure all datasets are made
available through online repositories with standardised metadata including details on projections,
methods and accuracy. These measures will facilitate comprehensive and up-to-date assessments
of dynamics. Accurate, detailed and timely dynamics information will help target loss hotspots
within short-listed countries and guide intervention activities through programs such as the Blue
Ventures (BV) Blue Forests (BF) project, which aims to support and enhance coastal livelihoods and
safeguard biodiversity through the community-led restoration, conservation and managed-use of
mangrove ecosystems within priority areas of mangrove loss. The BF project incentivises mangrove
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conservation through a range of community-led fisheries management, forestry, and alternative
livelihood-based incentives, including harnessing international voluntary carbon markets to generate
credits—and income—for communities from the avoided deforestation of carbon-rich mangrove
forests. In Madagascar, the BF project is further augmented through its integrated People Health
and Environment (PHE) design, a holistic approach integrating community health service delivery
with marine conservation and coastal livelihood initiatives within mangrove-dependent communities.
Alternative livelihood initiatives being developed within and adjacent to mangrove ecosystems as part
of this model include community-based ranching of hatchery-reared sea cucumbers, and apiculture
for honey production. Ongoing efforts to expand this initiative in mangrove ecosystems throughout
Madagascar are working towards the establishment of the world’s largest mangrove conservation
‘blue carbon’ projects, an approach that BV is now replicating in the ROI. Results of this report are
instrumental in informing country selection and prioritisation for replication efforts within this region.
This includes informing international climate finance institutions of priority countries for investments
in further ‘blue carbon’ mangrove conservation initiatives.

Author Contributions: Conceptualisation, T.G.J.; Data curation, S.G.; Formal analysis, S.G.; Investigation, S.G.;
Methodology, T.G.J.; Supervision, T.G.J.; Visualisation, S.G.; Writing—original draft, S.G.; Writing—review and
editing, T.G.J.

Acknowledgments: This report was funded by Blue Ventures Conservation, the UK Government’s International
Climate Finance (ICF) and the Global Environmental Facility’s Blue Forest project. The report was further
supported by the Department of Forest Resources Management in the Faculty of Forestry at the University of
British Columbia.

Conflicts of Interest: The authors declare no conflict of interest.

References and Note

1. Food and Agricultural Organization (FAO). The World’s Mangroves 1980–2005; FAO: Rome, Italy, 2007.
2. Lugo, A.E.; Snedaker, S.C. The Ecology of Mangroves. Annu. Rev. Ecol. Syst. 1974, 5, 39–64. [CrossRef]
3. Blasco, F.; Bellan, M.F.; Chaudhury, M.U. Estimating the extent of floods in Bangladesh using SPOT data.

Remote Sens. Environ. 1992, 39, 167–178. [CrossRef]
4. Marshall, N. Mangrove conservation in relation to overall environmental considerations. In Ecology and

Conservation of Southeast Asian Marine and Freshwater Environments Including Wetlands; Sasekumar, A.,
Marshall, N., Macintosh, D.J., Eds.; Developments in Hydrobiology; Springer: Dordrecht, The Netherlands,
1994; pp. 303–309. ISBN 978-94-011-0958-1.

5. Primavera, J.H. Socio-economic impacts of shrimp culture. Aquac. Res. 1997, 28, 815–827. [CrossRef]
6. Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove Ecosystems. In Advances in Marine

Biology; Academic Press: Cambridge, MA, USA, 2001; Volume 40, pp. 81–251.
7. Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349.

[CrossRef]
8. Mumby, P.J.; Edwards, A.J.; Ernesto Arias-González, J.; Lindeman, K.C.; Blackwell, P.G.; Gall, A.;

Gorczynska, M.I.; Harborne, A.R.; Pescod, C.L.; Renken, H.; et al. Mangroves enhance the biomass of
coral reef fish communities in the Caribbean. Nature 2004, 427, 533–536. [CrossRef]

9. Dahdouh-Guebas, F.; Jayatissa, L.P.; Di Nitto, D.; Bosire, J.O.; Lo Seen, D.; Koedam, N. How effective were
mangroves as a defence against the recent tsunami? Curr. Biol. 2005, 15, R443–R447. [CrossRef]

10. Barbier, E.B. Natural barriers to natural disasters: Replanting mangroves after the tsunami. Front. Ecol.
Environ. 2006, 4, 124–131. [CrossRef]

11. Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change.
Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [CrossRef]

12. Nagelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.-O.; Pawlik, J.;
Penrose, H.M.; Sasekumar, A.; et al. The habitat function of mangroves for terrestrial and marine fauna:
A review. Aquat. Bot. 2008, 89, 155–185. [CrossRef]

13. Alongi, D.M. Carbon payments for mangrove conservation: Ecosystem constraints and uncertainties of
sequestration potential. Environ. Sci. Policy 2011, 14, 462–470. [CrossRef]

http://dx.doi.org/10.1146/annurev.es.05.110174.000351
http://dx.doi.org/10.1016/0034-4257(92)90083-V
http://dx.doi.org/10.1111/j.1365-2109.1997.tb01006.x
http://dx.doi.org/10.1017/S0376892902000231
http://dx.doi.org/10.1038/nature02286
http://dx.doi.org/10.1016/j.cub.2005.06.008
http://dx.doi.org/10.1890/1540-9295(2006)004[0124:NBTNDR]2.0.CO;2
http://dx.doi.org/10.1016/j.ecss.2007.08.024
http://dx.doi.org/10.1016/j.aquabot.2007.12.007
http://dx.doi.org/10.1016/j.envsci.2011.02.004


Remote Sens. 2019, 11, 728 24 of 27

14. Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among
the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [CrossRef]

15. Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote Sensing of Mangrove Ecosystems:
A Review. Remote Sens. 2011, 3, 878–928. [CrossRef]

16. Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.;
Kauffman, J.B.; Marbà, N.; et al. Estimating Global “Blue Carbon” Emissions from Conversion and
Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [CrossRef]

17. Kauffman, J.B.; Heider, C.; Norfolk, J.; Payton, F. Carbon stocks of intact mangroves and carbon emissions
arising from their conversion in the Dominican Republic. Ecol. Appl. 2014, 24, 518–527. [CrossRef]

18. Thompson, B.S.; Clubbe, C.P.; Primavera, J.H.; Curnick, D.; Koldewey, H.J. Locally assessing the economic
viability of blue carbon: A case study from Panay Island, the Philippines. Ecosyst. Serv. 2014, 8, 128–140.
[CrossRef]

19. Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of
mangrove forests of South Asia. J. Environ. Manag. 2015, 148, 101–111. [CrossRef]

20. Huxham, M.; Emerton, L.; Kairo, J.; Munyi, F.; Abdirizak, H.; Muriuki, T.; Nunan, F.; Briers, R.A. Applying
Climate Compatible Development and economic valuation to coastal management: A case study of Kenya’s
mangrove forests. J. Environ. Manag. 2015, 157, 168–181. [CrossRef]

21. Kauffman, J.B.; Heider, C.; Cole, T.G.; Dwire, K.A.; Donato, D.C. Ecosystem Carbon Stocks of Micronesian
Mangrove Forests. Wetlands 2011, 31, 343–352. [CrossRef]

22. Adame, M.F.; Kauffman, J.B.; Medina, I.; Gamboa, J.N.; Torres, O.; Caamal, J.P.; Reza, M.; Herrera-Silveira, J.A.
Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean.
PLoS ONE 2013, 8, e56569. [CrossRef]

23. Wang, G.; Guan, D.; Peart, M.R.; Chen, Y.; Peng, Y. Ecosystem carbon stocks of mangrove forest in Yingluo
Bay, Guangdong Province of South China. For. Ecol. Manag. 2013, 310, 539–546. [CrossRef]

24. Kauffman, J.B.; Donato, D. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and
Carbon Stocks in Mangrove Forests; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2012.

25. Jones, T.G.; Ratsimba, H.R.; Ravaoarinorotsihoarana, L.; Cripps, G.; Bey, A. Ecological Variability and Carbon
Stock Estimates of Mangrove Ecosystems in Northwestern Madagascar. Forests 2014, 5, 177–205. [CrossRef]

26. Romañach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.; Teh, S.Y.; Raja Barizan, R.S.; Zhai, L. Conservation and
restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 2018, 154, 72–82.
[CrossRef]

27. Food and Agricultural Organization (FAO). Loss of Mangroves Alarming. Available online: http://www.
fao.org/newsroom/en/news/2008/1000776/index.html (accessed on 20 February 2019).

28. Valiela, I.; Bowen, J.L.; York, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical
EnvironmentsAt least 35% of the area of mangrove forests has been lost in the past two decades, losses
that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments.
BioScience 2001, 51, 807–815.

29. Duke, N.C.; Meynecke, J.-O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.;
Ewel, K.C.; Field, C.D.; et al. A World Without Mangroves? Science 2007, 317, 41–42. [CrossRef]

30. Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Routledge: Abingdon-on-Thames, UK, 2010;
ISBN 978-1-136-53096-8.

31. Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012.
Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [CrossRef]

32. Alongi, D.M. The Impact of Climate Change on Mangrove Forests. Curr. Clim. Change Rep. 2015, 1, 30–39.
[CrossRef]

33. Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution
of mangrove forests of the world using earth observation satellite data: Status and distributions of global
mangroves. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [CrossRef]

34. DasGupta, R.; Shaw, R. Changing perspectives of mangrove management in India—An analytical overview.
Ocean Coast. Manag. 2013, 80, 107–118. [CrossRef]

35. Ellison, A.M.; Farnsworth, E.J.; Merkt, R.E. Origins of mangrove ecosystems and the mangrove biodiversity
anomaly. Glob. Ecol. Biogeogr. 1999, 8, 95–115. [CrossRef]

http://dx.doi.org/10.1038/ngeo1123
http://dx.doi.org/10.3390/rs3050878
http://dx.doi.org/10.1371/journal.pone.0043542
http://dx.doi.org/10.1890/13-0640.1
http://dx.doi.org/10.1016/j.ecoser.2014.03.004
http://dx.doi.org/10.1016/j.jenvman.2014.01.020
http://dx.doi.org/10.1016/j.jenvman.2015.04.018
http://dx.doi.org/10.1007/s13157-011-0148-9
http://dx.doi.org/10.1371/journal.pone.0056569
http://dx.doi.org/10.1016/j.foreco.2013.08.045
http://dx.doi.org/10.3390/f5010177
http://dx.doi.org/10.1016/j.ocecoaman.2018.01.009
http://www.fao.org/newsroom/en/news/2008/1000776/index.html
http://www.fao.org/newsroom/en/news/2008/1000776/index.html
http://dx.doi.org/10.1126/science.317.5834.41b
http://dx.doi.org/10.1073/pnas.1510272113
http://dx.doi.org/10.1007/s40641-015-0002-x
http://dx.doi.org/10.1111/j.1466-8238.2010.00584.x
http://dx.doi.org/10.1016/j.ocecoaman.2013.04.010
http://dx.doi.org/10.1046/j.1466-822X.1999.00126.x


Remote Sens. 2019, 11, 728 25 of 27

36. Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global
mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [CrossRef]

37. DasGupta, R.; Shaw, R. Mangroves in Asia-Pacific: A Review of Threats and Responses. In Participatory
Mangrove Management in a Changing Climate: Perspectives from the Asia-Pacific; DasGupta, R., Shaw, R., Eds.;
Disaster Risk Reduction; Springer: Tokyo, Japan, 2017; pp. 1–16. ISBN 978-4-431-56481-2.

38. Farnsworth, E.J.; Ellison, A.M. The global conservation status of mangroves. Oceanogr. Lit. Rev. 1998, 1,
138–139.

39. Primavera, J.H. Development and conservation of Philippine mangroves: Institutional issues. Ecol. Econ.
2000, 35, 91–106. [CrossRef]

40. Dahdouh-Guebas, F. The Use of Remote Sensing and GIS in the Sustainable Management of Tropical Coastal
Ecosystems. Environ. Dev. Sustain. 2002, 4, 93–112. [CrossRef]

41. Primavera, J.H. Mangroves, Fishponds, and the Quest for Sustainability. Science 2005, 310, 57–59. [CrossRef]
42. Gopal, B.; Chauhan, M. Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquat. Sci.

2006, 68, 338–354. [CrossRef]
43. Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 2006, 49,

531–545. [CrossRef]
44. Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation

options: A review. Aquat. Bot. 2008, 89, 237–250. [CrossRef]
45. Walters, B.B.; Rönnbäck, P.; Kovacs, J.M.; Crona, B.; Hussain, S.A.; Badola, R.; Primavera, J.H.; Barbier, E.;

Dahdouh-Guebas, F. Ethnobiology, socio-economics and management of mangrove forests: A review.
Aquat. Bot. 2008, 89, 220–236. [CrossRef]

46. Webb, E.L.; Jachowski, N.R.A.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the
Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ.
Chang. 2014, 24, 321–333. [CrossRef]

47. Sitoe, A.A.; Mandlate, L.J.C.; Guedes, B.S. Biomass and Carbon Stocks of Sofala Bay Mangrove Forests.
Forests 2014, 5, 1967–1981. [CrossRef]

48. Field, C.D. Impact of expected climate change on mangroves. In Asia-Pacific Symposium on Mangrove
Ecosystems; Wong, Y.-S., Tam, N.F.Y., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 75–81.

49. Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; López-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental
drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127.
[CrossRef]

50. Chan, H.T.; Baba, S. Manual on Guidelines for Rehabilitation of Coastal Forests Damaged by Natural Hazards in the
Asia-Pacific Region; International Society for Mangrove Ecosystems (ISME) and International Tropical Timber
Organization (ITTO): Okinawa, Japan, 2009; p. 71.

51. Suzuki, T.; Zijlema, M.; Burger, B.; Meijer, M.C.; Narayan, S. Wave dissipation by vegetation with layer
schematization in SWAN. Coast. Eng. 2012, 59, 64–71. [CrossRef]

52. Di Nitto, D.; Neukermans, G.; Koedam, N.; Defever, H.; Pattyn, F.; Kairo, J.G.; Dahdouh-Guebas, F.
Mangroves facing climate change: Landward migration potential in response to projected scenarios of
sea level rise. Biogeosciences 2014, 11, 857–871. [CrossRef]

53. Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.;
Shimada, M.; Finlayson, C.M. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove
Extent. Remote Sens. 2018, 10, 1669. [CrossRef]

54. Jayanthi, M.; Thirumurthy, S.; Nagaraj, G.; Muralidhar, M.; Ravichandran, P. Spatial and temporal changes
in mangrove cover across the protected and unprotected forests of India. Estuar. Coast. Shelf Sci. 2018, 213,
81–91. [CrossRef]

55. Forest Survey of India. State of Forest Report 2017; Ministry of Environment & Forests: New Delhi, India,
2017.

56. Swamy, L.; Drazen, E.; Johnson, W.R.; Bukoski, J.J. The future of tropical forests under the United Nations
Sustainable Development Goals. J. Sustain. For. 2018, 37, 221–256. [CrossRef]

57. Heumann, B.W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities.
Prog. Phys. Geogr. Earth Environ. 2011, 35, 87–108. [CrossRef]

58. Tang, W.; Zheng, M.; Zhao, X.; Shi, J.; Yang, J.; Trettin, C.C. Big Geospatial Data Analytics for Global
Mangrove Biomass and Carbon Estimation. Sustainability 2018, 10, 472. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0179302
http://dx.doi.org/10.1016/S0921-8009(00)00170-1
http://dx.doi.org/10.1023/A:1020887204285
http://dx.doi.org/10.1126/science.1115179
http://dx.doi.org/10.1007/s00027-006-0868-8
http://dx.doi.org/10.1016/j.ocecoaman.2006.06.018
http://dx.doi.org/10.1016/j.aquabot.2007.12.009
http://dx.doi.org/10.1016/j.aquabot.2008.02.009
http://dx.doi.org/10.1016/j.gloenvcha.2013.10.007
http://dx.doi.org/10.3390/f5081967
http://dx.doi.org/10.1016/j.aquabot.2007.12.014
http://dx.doi.org/10.1016/j.coastaleng.2011.07.006
http://dx.doi.org/10.5194/bg-11-857-2014
http://dx.doi.org/10.3390/rs10101669
http://dx.doi.org/10.1016/j.ecss.2018.08.016
http://dx.doi.org/10.1080/10549811.2017.1416477
http://dx.doi.org/10.1177/0309133310385371
http://dx.doi.org/10.3390/su10020472


Remote Sens. 2019, 11, 728 26 of 27

59. Lucas, R.; Rebelo, L.-M.; Fatoyinbo, L.; Rosenqvist, A.; Itoh, T.; Shimada, M.; Simard, M.; Souza-Filho, P.W.;
Thomas, N.; Trettin, C.; et al. Contribution of L-band SAR to systematic global mangrove monitoring.
Mar. Freshw. Res. 2014, 65, 589–603. [CrossRef]

60. Hamilton, S.E.; Castellanos-Galindo, G.A.; Millones-Mayer, M.; Chen, M. Remote Sensing of Mangrove
Forests: Current Techniques and Existing Databases. In Threats to Mangrove Forests: Hazards, Vulnerability,
and Management; Makowski, C., Finkl, C.W., Eds.; Coastal Research Library; Springer International
Publishing: Cham, Switzerland, 2018; pp. 497–520. ISBN 978-3-319-73016-5.

61. Hu, L.; Li, W.; Xu, B. The role of remote sensing on studying mangrove forest extent change. Int. J. Remote
Sens. 2018, 39, 6440–6462. [CrossRef]

62. Bhattarai, B.; Giri, C.P. Assessment of mangrove forests in the Pacific region using Landsat imagery. J. Appl.
Remote Sens. 2011, 5, 053509. [CrossRef]

63. Hutchison, J.; Spalding, M.; zu Ermgassen, P. The Role of Mangroves in Fisheries Enhancement; The Nature
Conservancy: Arlington County, VA, USA; Wetlands International: Wageningen, The Netherlands, 2014;
pp. 1–54.

64. GADM Database of Global Administrative Areas, Version 3.6. Available online: https://www.gadm.org/
data.html (accessed on 20 February 2019).

65. Quader, M.A.; Agrawal, S.; Kervyn, M. Multi-decadal land cover evolution in the Sundarban, the largest
mangrove forest in the world. Ocean Coast. Manag. 2017, 139, 113–124. [CrossRef]

66. Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans
in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007,
73, 91–100. [CrossRef]

67. Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous
mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [CrossRef]

68. Estoque, R.C.; Myint, S.W.; Wang, C.; Ishtiaque, A.; Aung, T.T.; Emerton, L.; Ooba, M.; Hijioka, Y.; Mon, M.S.;
Wang, Z.; et al. Assessing environmental impacts and change in Myanmar’s mangrove ecosystem service
value due to deforestation (2000–2014). Glob. Change Biol. 2018, 24, 5391–5410. [CrossRef] [PubMed]

69. Long, J.; Napton, D.; Giri, C.; Graesser, J. A Mapping and Monitoring Assessment of the Philippines’
Mangrove Forests from 1990 to 2010. J. Coast. Res. 2014, 260–271. [CrossRef]

70. Flanders Marine Institute Maritime Boundaries Geodatabase: Maritime Boundaries and Exclusive Economic
Zones (200NM), Version 10. Available online: http://www.marineregions.org/ (accessed on 20 October 2018).

71. Estoque, R.C.; Pontius, R.G.; Murayama, Y.; Hou, H.; Thapa, R.B.; Lasco, R.D.; Villar, M.A. Simultaneous
comparison and assessment of eight remotely sensed maps of Philippine forests. Int. J. Appl. Earth Obs.
Geoinf. 2018, 67, 123–134. [CrossRef]

72. Jones, T.G.; Glass, L.; Gandhi, S.; Ravaoarinorotsihoarana, L.; Carro, A.; Benson, L.; Ratsimba, H.R.; Giri, C.;
Randriamanatena, D.; Cripps, G. Madagascar’s Mangroves: Quantifying Nation-Wide and Ecosystem
Specific Dynamics, and Detailed Contemporary Mapping of Distinct Ecosystems. Remote Sens. 2016, 8, 106.
[CrossRef]

73. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.;
Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest
Cover Change. Science 2013, 342, 850–853. [CrossRef]

74. Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; Beuchle, R.; Fritz, S.;
Mubareka, S.; Giri, C. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION
data. J. Biogeogr. 2007, 34, 625–637. [CrossRef]

75. Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A. Mangrove forest distributions and
dynamics (1975–2005) of the tsunami-affected region of Asia†. J. Biogeogr. 2008, 35, 519–528. [CrossRef]

76. Blasco, F.; Aizpuru, M.; Gers, C. Depletion of the mangroves of Continental Asia. Wetl. Ecol. Manag. 2001, 9,
255–266. [CrossRef]

77. Clark Labs Coastal Habitats and Conversion to Pond Aquaculture: Myanmar, Thailand, Cambodia and
Vietnam. (Journal article forthcoming: Eastman, J.R.; Crema, S.C.; Sangermano, F.; Cunningham, S.; Xiao, X.;
Zhou, Z.; Hu, P.; Johnson, C.; Arakwiye, B.; Crone, N. (forthcoming) A Baseline Mapping of Aquaculture
and Coastal Habitats in Thailand, Cambodia and Vietnam.).

78. Shearman, P.L.; Ash, J.; Mackey, B.; Bryan, J.E.; Lokes, B. Forest Conversion and Degradation in Papua New
Guinea 1972–2002. Biotropica 2009, 41, 379–390. [CrossRef]

http://dx.doi.org/10.1071/MF13177
http://dx.doi.org/10.1080/01431161.2018.1455239
http://dx.doi.org/10.1117/1.3563584
https://www.gadm.org/data.html
https://www.gadm.org/data.html
http://dx.doi.org/10.1016/j.ocecoaman.2017.02.008
http://dx.doi.org/10.1016/j.ecss.2006.12.019
http://dx.doi.org/10.1111/geb.12449
http://dx.doi.org/10.1111/gcb.14409
http://www.ncbi.nlm.nih.gov/pubmed/30053344
http://dx.doi.org/10.2112/JCOASTRES-D-13-00057.1
http://www.marineregions.org/
http://dx.doi.org/10.1016/j.jag.2017.10.008
http://dx.doi.org/10.3390/rs8020106
http://dx.doi.org/10.1126/science.1244693
http://dx.doi.org/10.1111/j.1365-2699.2006.01637.x
http://dx.doi.org/10.1111/j.1365-2699.2007.01806.x
http://dx.doi.org/10.1023/A:1011169025815
http://dx.doi.org/10.1111/j.1744-7429.2009.00495.x


Remote Sens. 2019, 11, 728 27 of 27

79. UNEP-WCMC Ocean Data Viewer. Available online: http://data.unep-wcmc.org/datasets/ (accessed on
6 July 2018).

80. Socioeconomic Data and Applications Centre (SEDAC); Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.;
Loveland, T.; Masek, J.; Duke, N. Global Mangrove Forests Distribution, v1 (2000). Available online:
http://sedac.ciesin.columbia.edu/data/set/lulc-global-mangrove-forests-distribution-2000 (accessed on
13 July 2018).

81. Corcoran, E.; Ravilious, C.; Skuja, M. Mangroves of Western and Central Africa; UNEP/Earthprint: Cambridge,
UK, 2007; ISBN 978-92-807-2792-0.

82. Rosati, I.; Prosperi, P.; Latham, J.; Kainuma, M. World Atlas of Mangroves; Terrestrial observations of our
Planet; Food and Agricultural Organization of the United Nations: Rome, Italy, 2008; p. 2.

83. Jones, T.G.; Ratsimba, H.R.; Carro, A.; Ravaoarinorotsihoarana, L.; Glass, L.; Teoh, M.; Benson, L.; Cripps, G.;
Giri, C.; Zafindrasilivonona, B.; et al. The Mangroves of Ambanja and Ambaro Bays, Northwest Madagascar:
Historical Dynamics, Current Status and Deforestation Mitigation Strategy. In Estuaries: A Lifeline of Ecosystem
Services in the Western Indian Ocean; Diop, S., Scheren, P., Ferdinand Machiwa, J., Eds.; Estuaries of the World;
Springer International Publishing: Cham, Switzerland, 2016; pp. 67–85. ISBN 978-3-319-25370-1.

84. Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.;
D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New
Map of Life on Earth, A new global map of terrestrial ecoregions provides an innovative tool for conserving
biodiversity. BioScience 2001, 51, 933–938. [CrossRef]

85. U.S. Geological Survey Multi-Resolution Land Cover Characteristics (MRLC) Consortium. Available online:
https://www.mrlc.gov/data (accessed on 20 December 2018).

86. Thomas, N.; Bunting, P.; Lucas, R.; Hardy, A.; Rosenqvist, A.; Fatoyinbo, T. Mapping Mangrove Extent and
Change: A Globally Applicable Approach. Remote Sens. 2018, 10, 1466. [CrossRef]

87. European Commission Joint Research Centre Continental Southeast Asia. Forest Cover Map (1998–2000).
Available online: http://forobs.jrc.ec.europa.eu/products/veget_map_continental-sea/continentalSEasia.
php (accessed on 3 June 2018).

88. Rasolofoharinoro, M.; Blasco, F.; Bellan, M.F.; Aizpuru, M.; Gauquelin, T.; Denis, J. A remote sensing based
methodology for mangrove studies in Madagascar. Int. J. Remote Sens. 1998, 19, 1873–1886. [CrossRef]

89. Long, J.B.; Giri, C. Mapping the Philippines’ Mangrove Forests Using Landsat Imagery. Sensors 2011, 11,
2972–2981. [CrossRef]

90. Grainger, A. Difficulties in tracking the long-term global trend in tropical forest area. Proc. Natl. Acad.
Sci. USA 2008, 105, 818–823. [CrossRef] [PubMed]

91. Friess, D.A.; Webb, E.L. Variability in mangrove change estimates and implications for the assessment of
ecosystem service provision. Glob. Ecol. Biogeogr. 2014, 23, 715–725. [CrossRef]

92. Blasco, F.; Gauquelin, T.; Rasolofoharinoro, M.; Denis, J.; Aizpuru, M.; Caldairou, V. Recent advances in
mangrove studies using remote sensing data. Mar. Freshw. Res. 1998, 49, 287–296. [CrossRef]

93. Friess, D.A.; Webb, E.L. Bad data equals bad policy: How to trust estimates of ecosystem loss when there is
so much uncertainty? Environ. Conserv. 2011, 38, 1–5. [CrossRef]

94. Lucas, R.; Thomas, N.; Bunting, P.; Roseqnvist, A.; Asbridge, E.; Itoh, T.; Hilarides, L. Evaluation of ALOS-2
PALSAR Data to Support JAXA’s Global Mangrove Watch; University of New South Wales: Kensington,
Australia, 2015; pp. 1–5.

95. Miettinen, J.; Shi, C.; Liew, S.C. Towards automated 10–30 m resolution land cover mapping in insular
South-East Asia. Geocarto Int. 2017, 0, 1–15. [CrossRef]

96. Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove
forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth
Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [CrossRef]

97. Pimple, U.; Simonetti, D.; Sitthi, A.; Pungkul, S.; Leadprathom, K.; Skupek, H.; Som-ard, J.; Gond, V.;
Towprayoon, S. Google earth engine based three decadal landsat imagery analysis for mapping of mangrove
forests and its surroundings in the trat province of Thailand. J. Comput. Commun. 2018, 6, e81443. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://data.unep-wcmc.org/datasets/
http://sedac.ciesin.columbia.edu/data/set/lulc-global-mangrove-forests-distribution-2000
http://dx.doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://www.mrlc.gov/data
http://dx.doi.org/10.3390/rs10091466
http://forobs.jrc.ec.europa.eu/products/veget_map_continental-sea/continentalSEasia.php
http://forobs.jrc.ec.europa.eu/products/veget_map_continental-sea/continentalSEasia.php
http://dx.doi.org/10.1080/014311698215036
http://dx.doi.org/10.3390/s110302972
http://dx.doi.org/10.1073/pnas.0703015105
http://www.ncbi.nlm.nih.gov/pubmed/18184819
http://dx.doi.org/10.1111/geb.12140
http://dx.doi.org/10.1071/MF97153
http://dx.doi.org/10.1017/S0376892911000026
http://dx.doi.org/10.1080/10106049.2017.1408700
http://dx.doi.org/10.1016/j.isprsjprs.2017.07.011
http://dx.doi.org/10.4236/jcc.2018.61025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Section 
	Region of Interest 
	Inventory, Acquisition and Description of Datasets 
	Single-Date Mangrove Distribution 
	Multi-Date Mangrove Dynamics 


	Results and Discussion 
	Inventory and Description of Datasets 
	Comparison of Datasets 
	Identifying Mangrove Loss Hotspots 

	Conclusions 
	References

