A Non-Reference Temperature Histogram Method for Determining Tc from Ground-Based Thermal Imagery of Orchard Tree Canopies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ground Thermal Image Acquisition
2.1.1. Canopies
2.1.2. Reference Surfaces
2.2. Thermal Image Analysis
2.2.1. Canopy Images: Generating Temperature Histograms
2.2.2. Reference Surfaces: Deriving Temperatures TwetRef and TdryRef
2.3. Canopy Pixels Thresholding and Obtaining Tc
- Reference temperature (RT) thresholding: Using the derived temperature values TwetRef and TdryRef from the reference surfaces, all pixel values with temperatures lower than the TwetRef or exceeding TdryRef were removed [6,7], and from the remaining pixel values, the population average canopy temperature (Tc) was calculated for each tree. The Tc value for each tree (sunlit and shaded sides) was retained as the calibration/validation standard for the other two processing methods.
- Histogram gradient (HG) thresholding: This non-reference method is based on the identification of canopy upper and lower points (roughly corresponding to the Tdry and Twet values, respectively) based on a pre-defined local gradient of the temperature histogram (Equation 1 and Figure 4a). Once assigned, the local gradient values, hitherto defined as ‘ratio pixel change—RPC’, were used to determine the corresponding temperature limits (RPClower → TminRPC; RPCupper → TmaxRPC) from which a value of Tc could be derived from the population average of the pixel temperatures between the two end values (Figure 4b). An iterative process was used to symmetrically and incrementally change the predefined gradient value from 0 %/°C (corresponding to the flat portions of the histogram tails) to the maximum gradient value (~50 %/°C). At each pair of RPC values, the value of Tc (Tc-predicted) was calculated as the population average and compared to the actual Tc value (Tc-actual) derived from the standard RT method above.
- Standard deviation (SD) envelope thresholding: This is a non-reference method based on the standard deviation envelope filtering method of Sepúlveda-Reyes et al. [5]. In each temperature data file, the canopy Tmin (Twet) and Tmax (Tdry) were assumed to be a numeric multiplier (m) of the standard deviation (SD) above and below the unfiltered mean temperature (Tnf), respectively. The multiplier values ranged from m = ±0.0 (Tnf) through to ±2.0 (corresponding to the maximum and minimum values of the temperature file). Again, Tc-predicted was calculated as the population average value between Tmin and Tmax for each number m and compared to the standard RT method above.
2.4. Statistical Analysis
3. Results
3.1. Histogram Gradient Determination of Tc
3.2. Standard Deviation-Based Threshold Determination of Tc
3.3. Validation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahlein, A.-K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Stoll, M.; Schultz, H.R.; Baecker, G.; Berkelmann-Loehnertz, B. Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precis. Agric. 2008, 9, 407–417. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W.; Wheaton, A.; Cooley, N.; Moran, B. Automated canopy temperature estimation via infrared thermography: A first step towards automated plant water stress monitoring. Comput. Electron. Agric. 2010, 73, 74–83. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Ortega-Farías, S.; Lobos, G.A.; Romero, S.; Ahumada, L.; Escobar, A.; Fuentes, S. Non-invasive method to monitor plant water potential of an olive orchard using visible and near infrared spectroscopy analysis. Acta Hortic. 2014, 363–368. [Google Scholar] [CrossRef]
- Sepúlveda-Reyes, D.; Ingram, B.; Bardeen, M.; Zúñiga, M.; Ortega-Farías, S.; Poblete-Echeverría, C. Selecting Canopy Zones and Thresholding Approaches to Assess Grapevine Water Status by Using Aerial and Ground-Based Thermal Imaging. Remote Sens. 2016, 8, 822. [Google Scholar] [CrossRef]
- Jones, H.G.; Stoll, M.; Santos, T.; de Sousa, C.; Chaves, M.M.; Grant, O.M. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. J. Exp. Bot. 2002, 53, 2249–2260. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; De Bei, R.; Pech, J.; Tyerman, S. Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrig. Sci. 2012, 30, 523–536. [Google Scholar] [CrossRef]
- Cohen, Y.; Alchanatis, V.; Meron, M.; Saranga, Y.; Tsipris, J. Estimation of leaf water potential by thermal imagery and spatial analysis. J. Exp. Bot. 2005, 56, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- García-Tejero, I.; Ortega-Arévalo, C.; Iglesias-Contreras, M.; Moreno, J.; Souza, L.; Tavira, S.; Durán-Zuazo, V. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone. Sensors 2018, 18, 1050. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, I.; Jones, H.G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 2004, 55, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Moller, M.; Alchanatis, V.; Cohen, Y.; Meron, M.; Tsipris, J.; Naor, A.; Ostrovsky, V.; Sprintsin, M.; Cohen, S. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot. 2006, 58, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.M.; Grant, O.M.; Chaves, M.M. Thermography to explore plant–environment interactions. J. Exp. Bot. 2013, 64, 3937–3949. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- García-Tejero, I.; Durán-Zuazo, V.H.; Arriaga, J.; Hernández, A.; Vélez, L.M.; Muriel-Fernández, J.L. Approach to assess infrared thermal imaging of almond trees under water-stress conditions. Fruits 2012, 67, 463–474. [Google Scholar] [CrossRef]
- Salgadoe, S.; Robson, A.; Lamb, D.; Dann, E.; Searle, C. Quantifying the Severity of Phytophthora Root Rot Disease in Avocado Trees Using Image Analysis. Remote Sens. 2018, 10, 226. [Google Scholar] [CrossRef]
- Thermal Image_processing. Available online: https://gitlab.une.edu.au/asalgado/thermalimage_processing/tree/Master (accessed on 22 February 2019).
- Dunnington, D.; Harvey, P. exifr: EXIF Image Data in R. R Package Version 0.1.1, 2016.
- Calderón, R.; Navas-Cortés, J.; Zarco-Tejada, P. Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sens. 2015, 7, 5584–5610. [Google Scholar] [CrossRef]
- Pau, G.; Fuchs, F.; Sklyar, O.; Boutros, M.; Huber, W. EBImage—An R package for image processing with applications to cellular phenotypes. Bioinformatics 2010, 26, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, J. Histogram thresholding using kernel density estimates. In Proceedings of the Swedish Society for Automated Image Analysis (SSAB) Symposium on Image Analysis, Halmstad, Sweden, March 2000; pp. 41–44. [Google Scholar]
- Raza, S.-A.; Smith, H.K.; Clarkson, G.J.J.; Taylor, G.; Thompson, A.J.; Clarkson, J.; Rajpoot, N.M. Automatic Detection of Regions in Spinach Canopies Responding to Soil Moisture Deficit Using Combined Visible and Thermal Imagery. PLoS ONE 2014, 9, e97612. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Yuan, M.; Wang, P.; Zhang, R.; Sun, J.; Mao, H. Tea Diseases Detection Based on Fast Infrared Thermal Image Processing Technology. J. Sci. Food Agric. 2019. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.; Wehrmeister, M. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV. Sensors 2018, 18, 2244. [Google Scholar] [CrossRef] [PubMed]
Shaded | Sunlit | ||||||
---|---|---|---|---|---|---|---|
Total Images | Method | Optimum value | RMSE (Tc) ±°C | R2 | Optimum Value | RMSE (Tc) ±°C | R2 |
357 | HG | RPC at 1.0 | ±0.6 | 0.83 | RPC at 0.5 | ±0.7 | 0.83 |
357 | SD | Tnf ± (SD*1.5) | ±1.4 | 0.02 | Tnf ± (SD*1.5) | 1.7 | 0.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgadoe, A.S.A.; Robson, A.J.; Lamb, D.W.; Schneider, D. A Non-Reference Temperature Histogram Method for Determining Tc from Ground-Based Thermal Imagery of Orchard Tree Canopies. Remote Sens. 2019, 11, 714. https://doi.org/10.3390/rs11060714
Salgadoe ASA, Robson AJ, Lamb DW, Schneider D. A Non-Reference Temperature Histogram Method for Determining Tc from Ground-Based Thermal Imagery of Orchard Tree Canopies. Remote Sensing. 2019; 11(6):714. https://doi.org/10.3390/rs11060714
Chicago/Turabian StyleSalgadoe, Arachchige Surantha Ashan, Andrew James Robson, David William Lamb, and Derek Schneider. 2019. "A Non-Reference Temperature Histogram Method for Determining Tc from Ground-Based Thermal Imagery of Orchard Tree Canopies" Remote Sensing 11, no. 6: 714. https://doi.org/10.3390/rs11060714