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Abstract: Pansharpening is the process of integrating a high spatial resolution panchromatic image
with a low spatial resolution multispectral image to obtain a multispectral image with high
spatial and spectral resolution. Over the last decade, several algorithms have been developed
for pansharpening. In this paper, a technique, called enhanced back-projection (EBP), is introduced
and applied as postprocessing on the pansharpening. The proposed EBP first enhances the spatial
details of the pansharpening results by histogram matching and high-pass modulation, followed by
a back-projection process, which takes into account the modulation transfer function (MTF) of the satellite
sensor such that the pansharpening results obey the consistency property. The EBP is validated on
four datasets acquired by different satellites and several commonly used pansharpening methods.
The pansharpening results achieve substantial improvements by this postprocessing technique, which
is widely applicable and requires no modification of existing pansharpening methods.

Keywords: Pansharpening; back-projection; image fusion; postprocessing; modulation transfer
function

1. Introduction

Due to physical and technical constraints [1], current optical earth observation satellites such as
QuickBird, IKONOS, GeoEye-1, and WorldView-2, instead of providing images with both high spatial
and spectral resolutions, can only produce a high spatial resolution panchromatic (PAN) image and a low
spatial resolution multispectral (MS) image over the same area. The spatial and spectral resolutions allow
identifying structures in the images through the electromagnetic spectrum and geometrical information,
and thus are very important to many remote sensing tasks, such as change detection [2], digital soil
mapping [3], and visual image analysis [4]. In order to benefit from these two kinds of information,
the PAN and MS images can be integrated to get a MS image with both high spatial and spectral
resolutions. This integrating process is classically referred to as pansharpening, which can be viewed as
a special kind of image fusion [5] or super-resolution, Loncan15.

In the last two decades, many methods have been developed in the literature of pansharpening.
They can be divided into two main groups: component substitution (CS) and multiresolution analysis
(MRA) [6]. The CS group is usually called spectral class as the details that shall be injected into the
upsampled MS bands are extracted from the PAN image by means of a spectral transformation of MS
pixels, whereas the MRA group is also named spatial class as the injected details are extracted with
respect to a spatial transformation of the PAN image, mostly relying on linear shift-invariant digital
filters [7]. Classic methods of the CS or spectral family include the generalized Intensity-Hue-Saturation
(GIHS) [8], the principal component analysis (PCA) [9], the Gram–Schmidt (GS) decomposition [10] and
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its adaptive version (GSA) [11], the partial replacement adaptive component substitution (PRACS) [12],
the band-dependent spatial-detail (BDSD) [13], among many others [14–16]. Although these methods
are easy to implement and can acquire outstanding spatial details, they may suffer from spectral
distortion. On the contrary, the MRA or spatial class usually achieves a better spectral quality in the
pansharpening result than that of the CS class. The representative methods belonging to the MRA
class are high-pass modulation (HPM) [17], which is also named smoothing filter-based intensity modulation
(SFIM) [18], generalized Laplacian pyramid (GLP) [19], morphological-based fusion (MF) [20], among many
others [21,22]. However, the MRA methods may make the fused results produce ring artifacts, leading
to spatial distortion.

There is in fact a tradeoff between the classes of CS and MRA methods in the improvement of
spatial quality and the maintain of spectral information. In order to take advantage of the complimentary
performances of the two classes, researchers have explored the hybrid methods of the two classes.
For example, Núñez et al. [23] have proposed the additive wavelet luminance proportional (AWLP) method
by combining the “à trous” wavelet transform with the GIHS method. Liao et al. [24] have proposed the
guided filter PCA (GFPCA) method, which applies a guided filter in the PCA domain. Shah et al. [25] have
proposed a combined adaptive PCA algorithm based on the discrete contourlet transform. In addition,
the performances of the CS and/or MRA methods can also be improved by considering the modulation
transfer function (MTF) (The MTF is a function of spatial resolution, and in theory the MTF decreases as
the spatial resolution increase [26].) of the instruments [19] or by the elaborate design of injection gains
in a context-adaptive manner [27].

In general, the restoration of ideal high resolution MS image from its degraded version is an ill-posed
inverse problem. Different from the CS, MRA and hybrid classes, many regularization- and/or
optimization-based methods have been proposed to resolve this ill-posed inverse problem [28], such as
the total variation [29,30] or sparse regularization [31–36]. These methods usually achieve a better
pansharpening quality, however, the high computational complexity makes them unsuitable for practical
applications. There are still some works which rely on Bayesian framework [37] to solve this problem. Very
recently, deep learning methods have been introduced into remote sensing problems [38,39], and several
methods have been proposed to address pansharpening [40–42]. However, their performances would
degrade if there are not enough training images. Detailed surveys of pansharpening methods can be found
in [6]. Moreover, pansharpening methods have been recently expanded to sharp the hyperspectral images
by either the high resolution PAN or MS images [43,44].

Although the recently developed methods provide practical advantages, it is not quite adequate
to solve the spectral distortions originating from the spectral mismatch between the PAN and MS
images. To reduce this problem, statistical matching (also known as histogram matching) technique is
performed, explicitly or implicitly through the detail injection model. Several works [11,12] have
utilized the histogram matching as a preprocessing or necessary step of pansharpening to boost
the spectral accuracy, empirically indicating that the histogram matching can reduce the spectral
distortions. Despite the effectiveness of histogram matching, it, until recently, has been analyzed
theoretically and explicitly in [45,46]. On the other hand, the high-pass modulation (HPM) injection
scheme [21,45,47,48] has recently been employed to improve the spatial details of the fusion products.
However, these products will always be with a loss of spatial accuracy presented as a contrary to the
spatial consistency property based on Wald’s protocol [49], which requires that the fused image should
be as identical as possible to the original image once spatially degraded to its original scale. To satisfy
this consistency property, the modulation transfer function (MTF)-matched filter [19], estimated by taking
the appropriate cutoff frequency of the MS or PAN instruments into account, have been utilized to
enhance the spatial resolution of the fused images while preserving the spectral characteristics of the
original MS images in the most effective methods [6,13].

Motivated by the effectiveness of the histogram matching, HPM, and MTF-matched filter to
improve the quality of the fused product, and the fact that the strategies of integrating these three
techniques have not yet been investigated, a postprocessing algorithm, called enhanced back-projection
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(EBP), is proposed for pansharpening by integrating the three techniques into the back-projection
process [50], which is well known and has been used to improve the quality of fused images in the
field of traditional image super-resolution [51,52]. Our proposed EBP first enhances the fused results
by both the histogram matching and HPM, then iteratively projects the reconstruction error back to
tune the quality of fused images. To be spatial consistency, the MTF-matched filters are employed
in the EBP to guide the back-projection process. Extensive experiments are carried out on four real
datasets acquired by GeoEye-1, WorldView-1, QuickBird and IKONOS sensors at both the reduced
and full scales, results of eight benchmark pansharpening methods with postprocessing by the our
EBP indicate that the proposed EBP can further improve the fusion quality.

To summarize, the main contribution of this paper are in three-fold:

• A simple yet effective postprocessing framework is proposed for pansharpening. The proposed
method is widely applicable and requires no modification of existing pansharpening methods.

• It has been shown that the back-projection process with the MTF-matched filter as the filter kernel
can refine high-frequency texture details and make the pansharpening results satisfying the spatial
consistency to some extent.

• Extensive experiments on four kinds of datasets have been conducted and show that the
pansharpening results achieve substantial improvements by the proposed method.

The remainder of this paper is organized as follows. Section 2 introduces some background about
the histogram matching, HPF, and MTF-matched filter. The proposed EBP method and experiments
are presented in Sections 3 and 4, respectively. And conclusions have been drawn in Section 5.

2. Background

The mathematical notation used hereafter is defined in the following. Images are indicated in
a vectorial form by bold lowercase, e.g., z, with the ith element indicated as z(i). In this paper, let xms

k
indicate the ith band of the high resolution MS image, yms

k be its low resolution MS band obtained
by spatially blurred and downsampled of xms

k , and ỹms
k be the interpolated MS band from yms

k ,
i.e., the low resolution MS image at the scale of its high resolution one, where the superscript “ms”
denotes the multispectral image. The PAN image with high and low resolutions are indicated by xpan

and ypan, respectively.
Given the observed low-resolution MS band yms

k and high-resolution PAN image xpan, to obtain
the high-resolution MS band xms

k , a general formulation is given by

xms
k = ỹms

k + dms
k , k = 1, 2, · · · , n, (1)

where n is the number of multispectral bands and dms
k are the missing high-resolution spatial details

of the kth MS band xms
k . Usually, one assumes the missed spatial details can be extracted from the

weighed high-frequency component of the PAN image as

dms
k = gk(xpan − ỹpan), (2)

where gk is the injection gain corresponding to the kth band and ỹpan is a low-pass-filtered version of
the PAN image xpan and/or a combination of the MS bands (i.e., intensity component I). Different
ways used to generate the low resolution image ỹpan (or intensity component I) yield different
pansharpening methods [6]. Due to the difference between the MS sensors and the PAN sensor,
the extracted spatial details dms

k from the PAN image are easy to be redundant resulting spectral
distortion or deficient resulting in insufficient spatial quality of the fusion products. To overcome these
drawbacks, the following three techniques are usually adopted in the filed of pansharpening.
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2.1. Histogram Matching

Histogram matching (HM) is a process where a time series, image or higher dimension scalar data
is adjusted such that its histogram matches that of another reference dataset. A common application
of HM is to match the images from two sensors to balance their different responses. In the field of
pansharpening, due to the difference between MS and PAN sensor, HM is often used to compensate
for the radiometry differences between the MS and PAN images as a relative sensor calibration
technique. For example, the high resolution PAN image xpan is preliminarily histogram matched to
the intensity component as for the case of CS class. To ensure a global preservation of radiometry and
be band-dependent, the PAN image xpan is histogram-matched to each interpolated MS band ỹms

k as
for the case of MRA class in the following way

xpan
h,k = (xpan − µxpan) ·

σỹms
k

σỹpan
+ µỹms

k
, (3)

where xpan
h,k is the histogram-matched PAN image to the kth interpolated MS band ỹms

k , µ(·) and σ(·)
denote the mean and standard deviation of an image, respectively. By doing this, the histogram-matched
PAN xpan

h,k , once degraded to the low resolution as that of the kth interpolated MS band ỹms
k , is expected

to exhibit the same mean and variance as ỹms
k . Although HM is not required, many studies [11,12,45,46]

have shown that a correct HM is the key to achieve extra performance from established methods and
can help to reduce the spectral distortion.

2.2. High-Pass Modulation

The principle of high-pass modulation (HPM) is to transfer the high-frequency components of the
high-resolution PAN image to the MS bands with modulation coefficients being the ratio between each
low-resolution MS band and the low-resolution PAN [21,47,53], formulated as

xms
k = ỹms

k ·
xpan

ỹpan , k = 1, 2, · · · , n. (4)

According to above formulation, the HPM assumes that each pixel of the fused MS band is
simply proportional to the corresponding high-resolution image at each pixel. This proportionality is
a spatially variable injection gain. The HPM is a successful method in image fusion, and recent works
in [6,21,47] have confirmed its capability for improving the quality of the fused product. Although the
HPM can help to get very appealing visual features, some possible numerical issues could appear due to
division operator, e.g., creating some fused pixels with very high values, resulting in spatial distortion.

2.3. MTF-Matched Filter

Characteristics of the imaging instrument carried on a satellite are important to describe the
geometry of the landscape. Each imaging instrument features its own spatial and spectral model
embodied by the modulation transfer function (MTF), which is the amplitude spectrum of the system
point spread function (PSF). The MTF determines the upper limits of image quality. In practice, the MTFs
of the imaging instrument are different from each other for both MS and PAN imaging sensors. Thus,
a special structure of the MTF should be taken into account when sharpening the MS image to the
resolution of the PAN image. However, the exact filter responses of the MTF for each sensor are not
provided by the instrument manufactures. Fortunately, the filter gains at Nyquist cutoff frequency
of the MTFs are provided by the manufacturers. Using this information, the MTF filters for MS and
Pan sensors can be estimated based on the assumption that the frequency response of each filter is
approximately Gaussian-shaped and matched to the gain at Nyquist cutoff frequency of the exact
MTF filter [19]. By taking use of the MTF-matched filters, several improved methods, such as the
BDSD [13], GLP with MTF-matched filter (MTF-GLP) [19], MTF-GLP-HPM [21], and recently proposed
methods [22,54,55], have been developed, and proving its effectiveness [47].
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3. The Enhanced Back-Projection Applied to Pansharpening

The strategy used for our proposed post-processing method is based on the well-known
back-projection algorithm [50,56]. Thus, in this section, the back-projection method is first introduced
and then the proposed EBP algorithm is described in details.

3.1. Back-Projection

The generation process of an low-resolution image y can be modeled by a combination of a blur
effect and a down-sampling operator to an ideal high-resolution image x, i.e., formulated as follows

y = (x ∗ F ) ↓r, (5)

whereF is the blurring filter caused by the optical imaging system, ∗ is the convolution operator, and ↓r

is the down-sampling operator with a scaling factor of r (typically 4 in the literature of pansharpening).
Based on the above image acquisition model, back-projection (BP) was firstly proposed by Iranni and
Peleg in [50,57] to reconstruct the ideal high resolution image x. It is a popular method and applied
successfully in the field of image super-resolution [58–60].

The BP is originally designed for the image super-resolution reconstruction problem with multiple
low resolution inputs [57], and then specialized for the case with single input [56]. The main idea
of BP is to iteratively compute the reconstruction error e and then fuse it back to tune the estimated
high-resolution image x̂ of x. By starting with an initial estimation of high-resolution image x̂0,
the updating procedure of BP can be summarized as repeatedly doing the following two steps:

et = y− (x̂t ∗ F ) ↓r, (6)

x̂t+1 = x̂t + et ↑r ∗G, (7)

where x̂t is the estimated high resolution image at the tth iteration, and G is a back-projection filter,
↑ is the upsampling operator, until the differences between the simulated low resolution image and
the input low resolution image y are small enough. The combination of the above two step is referred
to as BP algorithm.

It has been shown in the following theorem [50,56] that, under certain conditions, the BP algorithm
can converge to the desired deblurred image, which satisfies the image acquisition model Equation (5).
Although the BP has been proven to improve the image quality [52,61], because of the ill-conditional
nature of the generation process model, it is very sensitivity to (inappropriate) selection of initial
high resolution image x̂0 and the filters F and G, thus leading to failure to converge and variability
in results.

Theorem 1 (see [50,56]). The updating rules of Equations (6) and (7) will converge to a desired image x̂,
which satisfies Equation (5), with an exponential rate for all r ≥ 1, if the following condition holds:

‖δ−F ∗ G ↓r ‖2 < 1,

where δ denotes the unity pulse function centered at (0, 0).

3.2. EBP as Postprocessing for Pansharpening

Motivation. According to Theorem 1, the result of BP will converge to an image that satisfies
the generation model Equation (5), which can also be seen as the model of how the low-resolution
MS band yms

k be generated from the corresponding high-resolution MS band xms
k . This just fulfill the

spatial consistency property of Wald’s protocol, which requires that the fused MS band, once spatially
degraded to its original scale, should be as identical as possible to the original MS band yms

k [49,62].
However, the BP is sensitivity to the initial choice of image x̂0 and the blur operators F and G, usually
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leading to variability in results and failure in convergence. In the literature of pansharpening, the blur
operators F and G can be estimated by the MTF-matched filters for each MS band as stated previously,
and a natural choice for the initial image x̂0 is the result obtained by other pansharpening methods
since it is more closer to the ideal high resolution MS image.

On the other hand, HM can reduce the spectral distortion and HPM can improve the spatial
quality, especially when the image to be matched or modulated is as close as possible to the reference.
All of these motivate us to exploit them to further improve the fusion results. Therefore, by considering
the characteristics of the imaging instrument (i.e., the MTF-matched filter), careful design of using the
above three techniques of HM, HPM, and BP as postprocessing steps will significantly improve the
quality of the fusion results.

Method. With the aforementioned motivation in mind, by integrating these techniques previously
described into the BP method, an enhanced back-projection (EBP) method as postprocessing for pansharpening
is proposed. The proposed EBP consists of two stages: enhancement stage and back-projection stage, which
are described in detail below.

1. Enhancement stage-This stage is to further adjust the spectral accuracy by HM and improve the
spatial quality by HPM. Given the initial HR MS band x̂ms

k,0 , k = 1, 2, · · · , n, obtained by another
existing method, panchromatic image xpan, and the observed low resolution MS band yms

k ,
k = 1, 2, · · · , n, the enhancement stage is formed by the following two consecutive steps:

1.1 Histogram matching: The panchromatic image xpan is histogram-matched to each interpolated
low-resolution MS band ỹms

k by the following equation

xpan
h,k = (xpan − µxpan) ·

σỹms
k

σxpan
+ µỹms

k
, k = 1, 2, · · · , n. (8)

1.2 High-pass modulation: Each initial HR MS band x̂ms
k,0 is modulated by the corresponding

histogram-matched PAN image xpan
h,k as follows

x̂ms
k,1 = x̂ms

k,0 ·
xpan

h,k

ỹpan
h,k

, (9)

where ỹpan
h,k is an low-resolution version of panchromatic image obtained by low-pass filtering

the xpan
h,k .

2. Back-projection stage-This stage is to tune the spatial details injected into the estimated high
resolution MS band x̂ms

k,1 . Although the HPM can significantly improve the injected high-resolution
spatial details, the fusion results usually sharpen too much to comply with the spatial consistency
property. Therefore, in order to assure the fusion results to be consistent with the low resolution
MS band, for each MS band x̂ms

k,1 iteratively doing the following two steps:

2.1 Compute the tth iteration reconstruction error ems
k,t between the original low-resolution MS

band yms
k and the the back-projected low-resolution MS band as follows

ems
k,t = yms

k − (x̂ms
k,t ∗ F

MTF
k ) ↓r (10)

where FMTF
k is a corresponding MTF-matched filter to the kth MS band.

2.2 Back-project the error ems
k,t to adjust the fused MS band x̂ms

k,t as follows

x̂ms
k,t+1 = x̂ms

k,t + ems
k,t ↑r ∗GMTF

k (11)

where GMTF
k is a back-projection filter corresponding to the MTF-matched filter FMTF

k .
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With this approach, the following two main aspects should be pointed out.

• Currently, pansharpening postprocessing has not received sufficient attention. To the best of our
knowledge, the integration of the above three techniques for pansharpening postprocessing is
lacking. It will be shown that the proposed EBP as a refinement of the fusion results obtained by
existing methods can enhance the quality of fusion product.

• It should be pointed out that the aim of a HM procedure (i.e., Equation (8)) is to obtain a PAN with
the same mean of a MS band, but not with the same standard deviation. This is because the PAN
is a high spatial resolution image with a large quality of details at high resolution, whereas the
MS bands are low-resolution images without details at high resolution. Therefore, the standard
deviation is higher than the one of MS band, and the normalization of HM usually has to be
made with respect to the standard deviation of a low-pass version of the PAN, not the one of
the PAN itself. Here the high resolution PAN is used in the PM procedure because this paper
aims at the postprocessing of the high resolution MS bands and this will results in better scores in
the experiments.

• The proposed EBP has been designed as a postprocessing approach, and hence, it does not require
any modifications for the existing pansharpening methods. Additionally, promising results can
be obtained by the proposed EBP efficiently.

4. Experimental Results and Analysis

In this section, several experiments on four kinds of real datasets at both reduced and full scales
are conducted to demonstrate the effectiveness of our proposed postprocessing method (i.e., EBP) in
enhancing the performances of other pansharpening methods. And the following eight benchmark
pansharpening methods are selected to evaluate the proposed EBP:

• BDSD [13], which obtains the optimal minimum mean square error (MMSE) joint estimation of the
spectral weights and injection gains at a reduced resolution by using the MTF of the MS sensor.

• GFPCA [24], which is a hybrid method of the CS and MRA classes by applying the guided filter
in the PCA domain.

• GSA [11], which is an improved version of GS [10] to capture the spectral responses of sensors by
optimizing the mean square error (MSE) with respect to the PAN image.

• MF [20], which is based on the nonlinear decomposition scheme of morphological operators.
• Nonlinear IHS (NLIHS) [63], which estimates the intensity component via local and global

synthesis approaches.
• PRACS [12], which generates high resolution details by partial replacement and uses statistical

ratio-based injection gains.
• SFIM [18], which is base on the idea of using the ratio between the high resolution PAN image

and its low resolution version obtained by low-pass filtering.
• CNN-based Pansharpening (PNN) [41], which adapts a three-layer convolutional neural networks

(CNN) to perform the pansharpening task. Note that its results for QuickBird dataset are not
reported since the trained model for QuickBird sensor is not provided.

All of the parameters for the above eight methods are set in accordance with the authors’
statements in their papers. It should be pointed out that the results of these eight methods reported
in the following experiments have been obtained by the public available toolbox or the source codes
kindly provided by the original authors. For example, the implementations of BDSD, GSA, PRACS and
SFIM is from the pansharpening Matlab toolbox (Available online: https://openremotesensing.net/
knowledgebase/a-critical-comparison-among-pansharpening-algorithms/ (accessed on 8 May 2012),
Vivone15), and the source codes of NIHS and MF can also be found at https://openremotesensing.net/,
the codes of GFPCA and PNN are provided by the original authors.

https://openremotesensing.net/knowledgebase/a-critical-comparison-among-pansharpening-algorithms/
https://openremotesensing.net/knowledgebase/a-critical-comparison-among-pansharpening-algorithms/
https://openremotesensing.net/
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4.1. Datasets

The fusion results are evaluated on several datasets acquired by four different satellites. These
datasets cover a variety of scenes. The parameters of the four satellites (IKONOS, QuickBird,
WorldView-2, GeoEye-1) are reported in Table 1, where the MTF gain for each band is also shown in
parentheses and in blue. And the details of the datasets are described below.

• IKONOS Data Set: This dataset is composed of a pair of MS and PAN images, which are acquired
by the IKONOS satellite in Sichuan, China, on 16 November 2000 and can be downloaded from
http://glcf.umiacs.umd.edu. The IKONOS satellite can produce a PAN image with 1-m spatial
resolution and MS images with 4-m spatial resolution. Each MS image has four different bands,
namely blue, green, red, and nearinfrared (NIR). This test site contains abundant objects such as
mountainous and farmland, roads, and some houses after an earthquake.

• QuickBird Data Set: The second dataset is collected by the QuickBird satellite on an areas of
Shatin, Hong Kong, on 7 January 2007. Similar to the IKONOS dataset, the QuickBird dataset
also has the MS image with four bands (blue, green, red and NIR) and a PAN image, and with
the spatial resolution of 0.6-m for the MS images and of 2.4-m for the PAN image. The test scene
covers a number of large buildings such as skyscrapers, commercial and industrial structures, and
a number of small objects such as cars, small housings, a playground and so on.

• WorldView-2 Data Set: This dataset has been acquired by the WorldView-2 satellite on 3 April
2011 and can be downloaded from http://cms.mapmart.com/Samples.aspx. The WorldView-2
satellite was launched on 8 October 2009. Different from the above two satellites, the WorldView-2
satellite can provide the MS images with 8 bands, including 4 standard bands (red, green, blue,
and NIR1) and 4 new bands (coastal, yellow, red edge, and NIR2), refer to Table 1 for more details.
And it produces 0.46-m spatial resolution for the PAN image and 1.84-m spatial resolution for the
MS images. The land cover types of the test PAN and MS images for this dataset are mainly some
buildings with shadows and some trees.

• GeoEye-1 Data Set: The last dataset is provided by the GeoEye-1 satellite, which is capable of
acquiring data at 0.41-m for PAN and 1.65-m for the MS images. Similar to the IKONOS and
QuickBird imagery, the GeoEye-1 imagery is also composed of four bands covering visible and
near-infrared for the MS images. This test site contains both homogeneous and heterogeneous
areas with a lot of fine spatial details.

In our experiments, the PAN images are of size 512× 512 and the MS images are of size 128× 128.

Table 1. Parameters of different satellites. Note that the gains at Nyquist cutoff frequency of the MTFs
(MTF gain) are reported in parentheses and in blue.

Parameters IKONOS QuickBird WorldView-2 GeoEye-1

Launch date 24 September 1999 18 October 2001 8 October 2009 6 September 2008
Temporal resolution <3 days 1–5 days 1.1 day <3 days
Radiometric resolution 11 11 11 11

Spatial resolution MS 4 m 2.4 m 1.84 m 1.84 m
PAN 1 m 0.6 m 0.46 m 0.46 m

Spectral range (MTF gain)

Blue 445–516 nm (0.27) 450–520 nm (0.34) 450–510 nm (0.35) 450–510 nm (0.23)
Green 506–595 nm (0.28) 520–600 nm (0.32) 510–580 nm (0.35) 510–580 nm (0.23)
Red 632–698 nm (0.29) 630–690 nm (0.30) 630–690 nm (0.35) 655–690 nm (0.23)
NIR1 757–900 nm (0.28) 760–900 nm (0.22) 770–895 nm (0.35) 780–920 nm (0.23)
Red edge 705–745 nm (0.35)
Coastal 400–450 nm (0.35)
Yellow 585–625 nm (0.27)
NIR2 860–1040 nm (0.35)
PAN 450–900 nm (0.17) 450–900 nm (0.15) 450–800 nm (0.11) 450–800 nm (0.16)

http://glcf.umiacs.umd.edu
http://cms.mapmart.com/Samples.aspx
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4.2. Quality Evaluation

The quality of the pansharpening results can be evaluated subjectively and/or objectively.
For subjective evaluation, a visual analysis on a color display of the fused image is often performed to see
whether the fused objects are more clear than the original MS image and their colors are natural and
similar to those of their low resolution ones. While the objective evaluation is a challenging problem
since the reference image (i.e., the ideal high-resolution MS images xms

k , k = 1, 2, · · · , n) are not available
in practice. Currently, there are two ways to quantitatively measure the fusion results. One is Wald’s
protocol [49], which is based on the assumption of scale invariance, i.e., the quantitative evaluation
is performed on a reduced scale such that the original MS image can be used to as a reference and to
compare with the pansharpenend MS image. Another is to make the quantitative evaluation without
a reference at a full scale. In this case, the quantitative metrics are designed by exploiting both the
relationship between the pansharpened MS images and the original MS images and the relationship
between the pansharpened MS image and the original PAN image [64].

Over the past decays, a lot of quantitative metrics were developed to measure the results based on
Wald’s protocol. In our experiments, four metrics are used to quantitatively evaluate the performance
of the proposed EBP on the above four datasets. They are defined as follows:

• Correlation Coefficient (CC) [5]

CC =
∑

p
i=1 (xms(i)− µxms) (x̂ms(i)− µx̂ms)√

∑
p
i=1 (xms(i)− µxms)2 ∑

p
i=1 (x̂ms(i)− µx̂ms)2

,

where xms and x̂ms are the reference and fused MS images with size of p pixels.
• Root Mean Square Error (RMSE) [65] is calculated for the kth MS band as follows

RMSE(k) =

√√√√ 1
p

p

∑
i=1

(xms
k (i)− x̂ms

k (i))2. (12)

• Erreur Relative Globale Adimensionnelle de Synthése (ERGAS, or relative dimensionless global error
in synthesis) [66] is defined as

ERGAS =
100
β

√√√√ 1
n

n

∑
k=1

(
RMSE(k)

µxms
k

)2

, (13)

where n is the number of bands, β is the scale ratio between the PAN and the original MS images
and µxms

k
is the mean of the kth reference MS band xms

k .
• Spectral Angle Mapper (SAM) [67] between two spectral vectors x and x̂ is defined as

SAM(x, x̂) = arccos
(
〈x, x̂〉
‖x‖2‖x̂‖2

)
, (14)

where 〈·, ·〉 denotes the inner product and ‖ · ‖2 denotes the l2-norm.
• Q4/Q8 [68,69] is an extension of the universal image quality index (UIQI) [70], and Q4 is given by

Q4 =
σz1z2

σz1 σz2

· 2|µz1 ||µz1 |
|µz1 |2 + |µz2 |

· 2σz1 σz2

σ2
z1
+ σ2

z2

, (15)

where z1 = xms
1 + ixms

2 + jxms
3 + kxms

4 , z2 = x̂ms
1 + ix̂ms

2 + jx̂ms
3 + kx̂ms

4 , xms
k and x̄ms

k are the kth
band of the reference and fused MS images, respectively. Here, i, j and k are imaginary units,
µz and σz are the mean and variance of variable z, and σz1z2 is the covariance between z1 and z2.
Q4 is usually calculated using a sliding window r× r (typically 16× 16 or 32× 32) and averaged
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on the entire image. Q4 has been extended to Q8 index such that it is suitable for images whose
number of bands is any power of two, refer to [69] for more details.

Among them, CC, RMSE, and SAM are usually averaged over all of the MS bands to yield an overall
score. The closer to 1 the values of CC and Q4 are, the better are the quality of the pansharpened MS
images. For SAM, RMSE and ERGAS, the ideal values are 0.

Additionally, the Quality with No Reference (QNR) metric proposed by Alparone et al. in [64] is
applied to perform the quantitative assessment at a full scale. The QNR metric is defined as follows

QNR = (1− Dλ)(1− Ds), (16)

where Dλ is a spectral distortion metric, given by

Dλ =
1

n(n− 1)

n

∑
k=1

n

∑
l=1
|Q(yms

k , yms
l )−Q(x̂ms

k , x̂ms
l )|, (17)

and Ds is a spatial quality metric, defined by

Ds =
1
n

n

∑
k=1
|Q(x̂ms

k , xpan)−Q(yms
k , ypan)|. (18)

Here Q denotes the universal image quality index (UIQI) [70]. The optimal values of Dλ and Ds are 0,
and thus the closer to 1 the value of QNR is, the better is the quality of the fused product. Note that the
implementations of the quality indices used in the experiments are also from the above pansharpening
Matlab toolbox.

4.3. Result Analysis

Experiments were carried out at both reduced and full scales. As for the reduced scale experiments,
one can follow Wald’s protocol [49] where the original MS and PAN images are degraded by a low-pass
Gaussian filters with the gains at the Nyquist frequency (as reported in Table 1) being the same as
those of the sensors. As stated above, the results are evaluated by visual analysis and quantitative
measures, respectively.

Visual Analysis. The pansharpened images on all the four datasets for the eight methods with
and without our proposed EBP as postprocessing are shown in Figures 1–4, where the RGB bands are
displayed for visual comparison. It is worth noting that the conclusions are similar for both reduced
and full scales. For the sake of brevity and the limitation of space, we don’t show the visual results at
the reduced scale.

All the eight methods can effectively sharp the expanded MS image by bicubic interpolation as
in their paper [11–13,18–20,24,35,63]. However, as one can see from these figures, the pansharpened
images obtained by the eight methods with our proposed EBP as postprocessing, as shown on the
right side of each subfigure, have better spatial and color quality than those of methods without EBP,
as shown on the left side of each sugfigure. The proposed EBP can significantly improve the spatial
details of the fused images obtained by other methods, this is clearly visible on the edges of the
buildings, especially for GFPCA and NLIHS, which produce fused images with very strong blurring
for the mountains in Figure 1 and the buildings in Figures 2 and 3, as well as on the houses and ground
surface in Figure 4. Although some methods such as BDSD can produce the better results with less
blurring, they sometimes suffer from strong spectral distortions, as shown in Figure 4, the false RGB
colors indicate that the results after postprocessing by our proposed EBP can preserve well the spectral
information, as also confirmed by the following quantitative comparisons. As for the GSA, MF, PNN
methods, although they have a good balance between the injected spatial details and the maintain of
original spectral information, their results with the EBP postprocessing can obtain more spatial details
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and more pleasant colors that those of without EBP postprocessing, see the displays in Figures 1–4 for
comparisons.

As a summary of the visual analysis, the proposed EBP algorithm can significantly enhance the
performances of other methods for improving the spatial details while presenting natural and pleasant
visual results.

(a) BDSD (b) GFPCA

(c) GSA

(e) NLIHS

(g) SFIM

(d) MF

(f) PRACS

(h) PNN

Figure 1. Visual comparison of the fused images obtained by eight methods with and without the
proposed EBP as postprocessing on the IKONOS dataset, (a) BDSD; (b) GFPCA; (c) GSA; (d) MF;
(e) NLIHS; (f) PRACS; (g) SFIM; (h) PNN. In contrast, the results with EBP postprocessing (on the right
side of each subfigure) have more spatial details and more pleasant colors than those of without EBP
(on the left side of each subfigure). Best zoomed in on screen for visual comparison.
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(a) BDSD (b) GFPCA

(c) GSA

(e) NLIHS

(g) SFIM

(d) MF

(f) PRACS

Figure 2. Visual comparison of the fused images obtained by eight methods with and without the
proposed EBP as postprocessing on the QuickBird dataset, (a) BDSD; (b) GFPCA; (c) GSA; (d) MF;
(e) NLIHS; (f) PRACS; (g) SFIM. In contrast, the results with EBP postprocessing (on the right side of
each subfigure) have more spatial details and more pleasant colors than those of without EBP (on the
left side of each subfigure). Best zoomed in on screen for visual comparison.
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(a) BDSD (b) GFPCA

(c) GSA

(e) NLIHS

(g) SFIM

(d) MF

(f) PRACS

(h) PNN

Figure 3. Visual comparison of the fused images obtained by eight methods with and without the
proposed EBP as postprocessing on the WorldView-2 dataset, (a) BDSD; (b) GFPCA; (c) GSA; (d) MF;
(e) NLIHS; (f) PRACS; (g) SFIM; (h) PNN. In contrast, the results with EBP postprocessing (on the right
side of each subfigure) have more spatial details and more pleasant colors than those of without EBP
(on the left side of each subfigure). Best zoomed in on screen for visual comparison.
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(a) BDSD (b) GFPCA

(c) GSA

(e) NLIHS

(g) SFIM

(d) MF

(f) PRACS

(h) PNN

Figure 4. Visual comparison of the fused images obtained by eight methods with and without the
proposed EBP as postprocessing on the GeoEye-1 dataset, (a) BDSD; (b) GFPCA; (c) GSA; (d) MF;
(e) NLIHS; (f) PRACS; (g) SFIM; (h) PNN. In contrast, the results with EBP postprocessing (on the right
side of each subfigure) have more spatial details and more pleasant colors than those of without EBP
(on the left side of each subfigure). Best zoomed in on screen for visual comparison.

Quantitative Analysis. Quantitative evaluation further helps explaining the conclusions drawn
from the visual analysis. The quantitative results by the considered metrics are provided as an objective
evaluation. Specially, Table 2 reports the results for the four datasets obtained by eight benchmark
methods with and without postprocessing by our proposed EBP at full scale. Besides, Table 3 presents
the corresponding results by the aforementioned five numeric metrics at a reduced scale based on
Wald’s protocol [49]. Note that the best result for each method with and without our proposed EBP
as postprocessing is shown in boldface blue. According to the two tables, one can see that the eight
benchmark methods produce fusion products that resulted in better quantitative scores for those five
metrics at reduced scale and the three metrics at full scale when our proposed EBP algorithm was used
for postprocessing, compared by those obtained without our proposed EBP as postprocessing, except
that the original results of GFPCA and PRACS have a relatively better spectral quality (corresponding
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to the metrics Dλ) for the IKONOS datasets and the NLIHS for the QuickBird dataset in the full scale
experiments. As for the GeoEye-1 dataset in the full scale experiments, although the results of GSA,
MF and NLIHS methods after postprocessing by our proposed EBP have a little bit precision loss
in spectral quality, they have much better performances on the whole as shown by the value of the
index QNR in Table 2. Another interesting observation, however, can be made for BDSD method on
GeoEye-1 dataset in the full scale experiments. In this case, we find that the BDSD algorithm did not
seem to benefit from the postprocessing, resulting in higher Dλ while lower QNR scores. This effect
may be due to the severer spectral distortion of the fused products of BDSD as shown in Figure 4a.
This reveals that additional attention must be taken when using the proposed method to process
significantly spectral distortion images.

Table 2. Quantitative comparison for the eight methods without (denoted by 7 ) and with (denoted
by 3) postprocessing by our proposed EBP on four kinds of satellite datasets in the full scale. Note that,
for better comparison, the results improved by EBP are highlighted in blue, otherwise the original
results are colored in green.

Datasets Metrics EBP BDSD GFPCA GSA MF NLIHS PRACS SFIM PNN

IKONOS

Dλ
7 0.010 0.020 0.054 0.041 0.028 0.021 0.034 0.082
3 0.010 0.041 0.030 0.022 0.012 0.028 0.021 0.020

Ds
7 0.066 0.129 0.454 0.244 0.103 0.236 0.143 0.242
3 0.062 0.056 0.171 0.152 0.116 0.119 0.141 0.123

QNR 7 0.925 0.854 0.517 0.724 0.872 0.748 0.828 0.696
3 0.928 0.906 0.804 0.830 0.873 0.856 0.841 0.859

QuickBird

Dλ
7 0.039 0.035 0.031 0.035 0.006 0.037 0.021 -
3 0.019 0.020 0.013 0.010 0.011 0.025 0.009 -

Ds
7 0.022 0.079 0.065 0.036 0.060 0.061 0.025 -
3 0.020 0.024 0.018 0.027 0.022 0.019 0.020 -

QNR 7 0.940 0.889 0.907 0.930 0.935 0.904 0.954 -
3 0.962 0.957 0.969 0.962 0.967 0.956 0.972 -

WorldView-2

Dλ
7 0.033 0.037 0.009 0.015 0.009 0.013 0.009 0.028
3 0.006 0.010 0.008 0.007 0.009 0.018 0.005 0.013

Ds
7 0.092 0.048 0.044 0.017 0.038 0.039 0.026 0.030
3 0.045 0.012 0.009 0.015 0.004 0.009 0.006 0.011

QNR 7 0.878 0.916 0.947 0.969 0.953 0.948 0.965 0.943
3 0.949 0.978 0.982 0.979 0.987 0.973 0.989 0.976

GeoEye-1

Dλ
7 0.200 0.126 0.111 0.163 0.004 0.035 0.177 0.037
3 0.228 0.102 0.154 0.174 0.007 0.025 0.175 0.036

Ds
7 0.056 0.125 0.172 0.155 0.055 0.116 0.139 0.051
3 0.031 0.080 0.034 0.035 0.051 0.081 0.037 0.038

QNR 7 0.755 0.765 0.736 0.708 0.941 0.853 0.709 0.914
3 0.748 0.827 0.817 0.797 0.942 0.896 0.794 0.927

As for the reduced scale experiments, it is shown in Table 3 that the results of eight benchmark
methods with our proposed EBP as postprocessing can almost always obtain the improved
performances with the five metrics except for the PRACS method for the IKONOS and QuickBird
datasets and the PNN method for the IKONOS dataset.
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Table 3. Quantitative comparison for the eight methods without (denoted by 7) and with (denoted
by 3) postprocessing by our proposed EBP on four kinds of satellite datasets in the reduced scale.
Note that, for better comparison, the results improved by EBP are highlighted in blue, otherwise the
original results are colored in green.

Datasets Metrics EBP BDSD GFPCA MF GSA NLIHS PRACS SFIM PNN

IKONOS

CC 7 0.923 0.916 0.937 0.933 0.922 0.946 0.942 0.931
3 0.940 0.948 0.941 0.939 0.930 0.943 0.942 0.937

ERGAS 7 3.234 3.620 3.051 3.016 3.372 2.887 3.019 2.906
3 2.878 2.592 2.730 2.773 2.733 2.704 2.703 3.038

SAM 7 3.989 4.429 3.599 3.773 4.323 3.523 3.663 3.572
3 3.155 3.082 3.017 3.125 3.244 3.111 3.071 3.429

RMSE 7 21.43 23.93 20.19 19.99 22.45 19.05 19.89 19.21
3 19.16 17.32 18.22 18.48 18.65 18.13 18.04 19.99

Q4 7 0.854 0.768 0.860 0.832 0.815 0.873 0.862 0.843
3 0.876 0.884 0.878 0.858 0.854 0.879 0.878 0.860

QuickBird

CC 7 0.846 0.917 0.929 0.938 0.926 0.945 0.931 -
3 0.928 0.954 0.949 0.945 0.949 0.940 0.947 -

ERGAS 7 3.945 3.923 2.912 2.816 3.517 2.626 3.080 -
3 3.214 2.309 2.509 2.615 2.385 2.773 2.471 -

SAM 7 4.391 3.444 2.514 2.942 2.981 2.796 2.649 -
3 2.269 2.089 2.090 2.187 2.183 2.269 2.144 -

RMSE 7 55.55 53.29 39.64 38.47 47.48 36.20 41.70 -
3 44.14 31.71 34.43 35.90 33.06 38.78 33.94 -

Q4 7 0.838 0.755 0.904 0.891 0.834 0.912 0.882 -
3 0.902 0.933 0.932 0.924 0.930 0.917 0.929 -

WorldView-2

CC 7 0.868 0.947 0.964 0.972 0.961 0.975 0.965 0.974
3 0.954 0.985 0.984 0.985 0.984 0.985 0.984 0.983

ERGAS 7 11.481 7.534 4.863 4.939 6.383 4.625 5.297 4.332
3 6.601 3.138 3.348 3.057 2.990 3.201 3.213 3.375

SAM 7 12.179 5.547 3.476 3.879 4.692 3.881 3.736 4.542
3 5.152 2.702 2.899 2.763 3.039 3.161 2.909 3.163

RMSE 7 121.64 79.62 51.80 52.12 66.92 45.97 56.01 46.36
3 70.03 33.16 35.37 32.37 32.40 35.16 33.99 35.43

Q8 7 0.860 0.847 0.953 0.947 0.908 0.958 0.937 0.965
3 0.939 0.979 0.979 0.981 0.979 0.980 0.979 0.978

GeoEye-1

CC 7 0.852 0.795 0.894 0.863 0.875 0.890 0.892 0.908
3 0.903 0.922 0.912 0.914 0.917 0.921 0.910 0.918

ERGAS 7 3.724 4.309 2.982 3.278 3.586 3.177 3.157 2.783
3 3.002 2.539 2.706 2.676 2.592 2.515 2.707 2.623

SAM 7 5.276 5.152 3.920 4.661 4.018 3.848 3.943 3.591
3 3.549 3.389 3.411 3.517 3.444 3.421 3.429 3.422

RMSE 7 34.82 39.86 27.74 30.59 32.81 29.86 29.21 25.95
3 27.97 23.73 25.33 25.06 24.27 23.63 25.30 24.41

Q4 7 0.833 0.573 0.823 0.796 0.722 0.781 0.790 0.842
3 0.875 0.882 0.875 0.884 0.871 0.883 0.868 0.880

Overall, the results in Tables 2 and 3 suggest that the use of our proposed EBP as postprocessing
can be beneficial since a clear pattern of improvement based on visual inspection (as shown in
Figures 1–4) and quantitative comparison on five metrics at the reduced scale and three metrics at the
full scale for four kinds of satellite datasets were observed for eight benchmark algorithms.

5. Conclusions

Pansharpening is an important preprocessing step for a variety of applications based on
high resolution multispectral images. Over the past decades, lots of techniques, e.g., HM, HPM,
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the MTF-matched filter, and so on, have been proposed in this literature. However, the postprocessing
for pansharpening has not received sufficient attention. Specifically, the integration of the HM,
HPM and MTF-matched filter for pansharpening postprocessing is rarely investigated. In this paper,
a post-processing method, called enhanced back-projection (EBP), which strives to integrate the HM, HPM
and MTF-matched filters into the back-projection algorithm, is present and applied to pansharpening.
Eight most benchmark pansharpening methods were selected and several experiments on four
different kinds of satellite datasets were carried out to verify the effectiveness of the proposed EBP.
The experimental results have shown that although our proposed EBP as postprocessing does not
always guarantee better results, but it does frequently produce results that are equal to or better than
the results without using our proposed EBP as postprocessing. Additionally, it should be noted that
the proposed EBP as postprocessing works as an independent but complementary postprocessing
module for pansharpening and thus does not need any modification of the existing pansharpening
methods, which is a highly desirable feature. As is well-known, radiometric calibration (except
the spectral and spatial) information is relevant to classification accuracy of remote sensing data.
Thus, the studies on whether the radiometric calibration is maintained or lost after applying the
post-processing pansharpening algorithm may be the focus of future studies.
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