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Abstract: Coherent noise often interferes with synthetic aperture radar (SAR), which has a huge
impact on subsequent processing and analysis. This paper puts forward a novel algorithm involving
the convolutional neural network (CNN) and guided filtering for SAR image denoising, which
combines the advantages of model-based optimization and discriminant learning and considers how
to obtain the best image information and improve the resolution of the images. The advantages of
proposed method are that, firstly, an SAR image is filtered via five different level denoisers to obtain
five denoised images, in which the efficient and effective CNN denoiser prior is employed. Later,
a guided filtering-based fusion algorithm is used to integrate the five denoised images into a final
denoised image. The experimental results indicate that the algorithm cannot eliminate noise, but
it does improve the visual effect of the image significantly, allowing it to outperform some recent
denoising methods in this field.
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1. Introduction

Synthetic aperture radar (SAR) is a significant coherent imaging system that generates
high-resolution images of terrain and targets. Since SAR possesses inherent all-time and all-weather
features that can overcome the shortcomings of the optical and infrared systems, it is widely used
in ocean monitoring, resource exploration, and military development. Multiplicative noise, called
speckle, often interferes with SAR images. Speckle is formed by interference echo of each resolving
unit and brings difficulties to the analysis and processing on computer vision systems. Therefore,
removing the coherent noise is very important for applications in the SAR image field.

Over the past few decades, scholars have proposed a lot of methods for SAR image denoising.
Some denoising methods are based on spatial filtering, for example, Lee filtering [1], Kuan filtering [2],
Frost filtering [3], Gamma maximum a posteriori (MAP) filtering [4], and non-local means (NLM)
denoising [5]. Since the spatial filtering tends to darken the denoised SAR images, denoising algorithms
based on the transform domain have been developed and have had remarkable achievements in
recent years. These transform domain filters are mainly based on wavelet transform and multi-scale
geometric transforms, such as wavelet-domain Bayesian denoising [6], contourlet-domain SAR image
denoising [7,8], Shearlet-domain SAR image denoising [9–11], and so on. The general procedure of

Remote Sens. 2019, 11, 702; doi:10.3390/rs11060702 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7520-8226
https://orcid.org/0000-0001-8456-7984
http://dx.doi.org/10.3390/rs11060702
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/6/702?type=check_update&version=2


Remote Sens. 2019, 11, 702 2 of 19

transform domain filtering is, firstly, to transform the original images; then, the noise-free coefficients
are estimated; and, finally, the denoised images are achieved via the inverse-transform from the
processed coefficients. The transform domain algorithms can effectively suppress the speckle. However,
due to some inherent disadvantages of the transform domain, the denoising algorithms cause pixel
distortion. Moreover, the statistical relationship between a pixel and its neighboring pixels is used
mostly in the speckle suppression algorithms, and they do not utilize the information of similar local
regions or the natural statistical characteristics of the whole image, which could be utilized to enhance
the image denoising effect further.

Through the study of multifarious inverse problems in low-level vision, scholars have found that
optimization methods based on model and discriminant learning methods have become vital strategies
for solving such problems, including image denoising problems [12]. Model-based methods have been
used in SAR image denoising widely in the last few years, including the sparse representation-based
SAR image denoising algorithm [13], the block sorting for SAR image denoising algorithm [14], the
non-local prior based SAR image denoising algorithm [15,16], and the low rank matrix for SAR
image denoising algorithm [17,18]. A denoising algorithm based on discriminant learning tries to
learn a degenerated matrix of the model via machine learning algorithms for the forthcoming noise
reducing step. Nowadays, the commonly used discriminant models are linear regression, logistic
regression (LR), neural network, support vector machine, Gaussian process, conditional random field
(CRF), and classification and regression trees (CART). With recent machine learning technologies, a
lot of new discriminant learning-based SAR image denoising algorithms have emerged. These kinds
of algorithms include the neural network-based SAR image denoising algorithm [19], the support
vector machine-based SAR image denoising algorithm [20], the convolutional neural network-based
SAR image denoising algorithm [21] which uses the CNN network containing the residual learning
to recover the speckle component and subtracts this component from the noise image to achieve
denoising [22], SAR despeckling with a dilated residual network including skip connections and
residual learning [23], and so on. Zhang et al. [12] pointed out that the biggest difference between
the optimization methods based on models and the discriminant-based learning method is that the
former has to specify the degradation matrix, while the latter tries to learn the degradation matrix
through the training data set. Moreover, the model-based optimization method can solve different
inverse problems adaptively, but this is usually time-consuming. The discriminant learning method is
able to suppress noise efficiently, but its application area is limited by specific tasks. In order to take
advantage of both methods, Zhang et al. [12] trained a series of efficient and effective discriminant
denoisers using a convolutional neural network and used the variable splitting technique to integrate
the prior denoiser as a module into an optimization method based on a model to solve the inverse
problem. This method achieved a promising performance in solving the classic inverse problem. Thus,
this paper extends this method to SAR image denoising, which achieves a superior effect on speckle
noise suppression.

The CNN is a popular discriminant model for deep learning [24]. Deep learning-based methods,
such as super resolution and image denoising, have demonstrated the most promising performance
in image processing [25,26]. The characteristic of deep learning is feature extraction, which means
that the most discriminative features are capable of learning from the relatively abstract high-level
representation by learning the lower-level features of the input data. In [12], a series of efficient and
effective CNN denoisers were trained and integrated into the model-based denoising algorithm, which
obtained a superior denoising effect. In the process of denoising, the algorithm in [12] constructs a
CNN denoiser based on different noise variances, and then a series of CNN-based prior denoisers can
be obtained, which means each denoiser works for its corresponding noise variance. However, as the
noise level of speckle in the SAR image is unknown, this algorithm cannot directly be applied on SAR
images for de-speckling. In order to solve the above problem, we select five denoisers to denoise the
SAR image respectively, and then use an image fusion algorithm to integrate the five denoised images
into a final noise-free SAR image.
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Recently, scholars have proposed many image fusion algorithms. Data-driven image fusion
methods and multi-scale image fusion methods are the two most popular image fusion methods [27].
However, these methods do not fully consider spatial consistency and therefore tend to produce
brightness and color distortion. Then, a variety of optimization-based image fusion methods were
introduced, for example, image fusion algorithms based on generalized random walks [28], which can
utilize the spatial information of an image fully. These methods try to estimate the weights of pixels
in different source images via energy functions that work on the same positions in different source
images, and then the source images are fused into one image through the weighted average of the pixel
values. Nevertheless, the optimization-based methods are affected by the computational complexity
because, to find a global optimal solution, several iterations are needed. Another disadvantage is that
methods based on global optimization tend to over-smooth the weights, which is harmful to image
fusion [29,30]. To overcome the above-mentioned problems, Li et al. [30] proposed a method called
fusion based on guided filtering (GFF), which is able to combine the pixel saliency with the spatial
information of the image to produce image fusion without relying on specific image decomposition to
achieve the rapid fusion of images. Thus, the GFF algorithm is employed to fuse the denoised images
after using the CNN denoisers in our paper.

Traditionally, most of the noise suppression algorithms need to know the variance of noise.
Normally, it is difficult to estimate the level of noise of SAR images, but the level of noise has a great
influence on denoising. As an example, the performance of the denoising algorithm proposed in [12]
relies on the noise level of the image. Generally, when the estimated noise level is larger than the ground
truth noise level of the image, the last denoised image relying on the model-based denoising algorithm
tends to be over-smoothed [31], and if the estimated noise level is smaller than the ground truth noise
level of the image, the final denoised image contains more noise and artificial textures [31,32]. That
is to say, for SAR image denoising, there would be many speckles left after the image processing
through the denoisers at a low noise level, and the final denoised image obtained via the denoiser at
a high noise level would appear over-smoothed as a side effect. However, a feasible idea [32] is to
fuse the denoised images obtained from different denoising algorithms through a fusion algorithm to
achieve a superior performance. Obviously, CNN prior denoising algorithms that rely on different
levels of noise training and processing can work as different denoising algorithms, while the fusion
algorithm based on guided filtering is also a fast and advanced fusion algorithm. Therefore, according
to this idea, this paper proposes a new SAR image denoising algorithm based on convolutional neural
networks and guided filtering. Firstly, the algorithm chooses five noise level CNN prior denoisers
to denoise the SAR image and then fuses the denoised images through the GFF fusion algorithm to
obtain the final denoised image. Compared with the traditional despeckling methods and CNN based
despeckling methods, the most obvious advantage of the proposed algorithm is the combination of
model-based optimization method and discriminant learning method. The discriminant denoisers,
which are obtained by CNN, are plugged in the model-based optimization method to solve the speckle
suppression problem. It not only can suppress the speckle like the model-based optimization method,
but also has the advantage of the discriminative learning method, which is fast. The experimental
results show that the algorithm can remove noise effectively and retain the detailed texture in the
final images.

2. The Model of Image Denoising Based on the CNN Prior

2.1. Image Denoising Model

In general, recovering an underlying clean image x is the purpose of image denoising from a
degraded observation model, y = x+ v, where y represents the observed image, and v is additive white
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Gaussian noise whose standard deviation is σ. Therefore, the denoising problem can be converted to
the following energy minimization problem [12]:

x̂ = argmin
x

1
2
‖y− x‖2 + λΦ(x) (1)

where 1
2‖y− x‖2 is the fidelity term, and it ensures the similarity between the denoised image and the

source image. Φ(x) is a regularization term to suppress noise, and it contains image prior information.
That is to say, the fidelity term ensures that the solution conforms to the degradation process, and the
regularization term implements the expected result of the output. λ is a trade-off parameter to balance
the relationship between the fidelity term and the regularization term.

Generally, the algorithms for solving Equation (1) can be divided into two categories:
discriminative learning algorithms and model-based optimization algorithms. The model-based
optimization methods aim to directly solve Equation (1) with some optimization algorithms that
usually involve a time-consuming iterative inference. On the contrary, discriminative learning methods
try to learn the prior parameters Θ and a compact inference through an optimization of a loss function
on a training set containing degraded-clean image pairs [12]. The objective is generally given by

min
Θ

`(x̂, x) s.t. x̂ = argmin
x

1
2
‖y− x‖2 + λΦ(x; Θ) (2)

Usually, model-based optimization algorithms are able to handle noise suppression flexibly
through specific degradation matrix, which tends to be time-consuming. On the contrary, discriminant
learning algorithms, with the sacrifice of flexibility, can achieve not only relatively faster speeds, but
also a superior denoising effect due to their combined optimization with end-to-end training [12].
Therefore, it is an intuitive idea to take advantage of both categories for denoising. The half quadratic
splitting [33] algorithm is used to combine the two methods to solve the inverse problem of the images.
Based on this framework, we only describe the denoising model that is based on a CNN prior.

In order to plug the CNN denoisers into the optimization procedure of Equation (1), we can insert
the denoiser prior into the iterative scheme to separate the fidelity term and the regularization term
according to half quadratic splitting algorithm. Equation (1) can be transformed into a sub-problem
related to the fidelity term and a denoising sub-problem. Equation (1) can be redefined as an
optimization problem by introducing auxiliary variables z as follows:

x̂ = argmin
x

1
2
‖y− x‖2 + λΦ(z) s.t. z = x (3)

Then, Equation (3) can be solved by the half quadratic splitting algorithm. We firstly construct the
following cost function:

Lµ(x, z) =
1
2
‖y− x‖2 + λΦ(z) +

µ

2
‖z− x‖2 (4)

where the penalty parameter µ is slightly iteratively adjusted in a non-descending order [12,31]. That
is, the solution of Equation (3) can be obtained by minimizing Equation (4). Since the condition of
unconstrained optimization can be solved, it is clear that Equation (4) can be solved by using the
Karush–Kuhn–Tucker (KKT) condition. The most direct algorithm is the alternating direction method
of multipliers (ADMM), and ADMM is an algorithm that solves convex optimization problems
by breaking them into smaller pieces, each of which is then easier to handle. It has recently
found application in a number of areas such as image recovery and autoregressive identification in
neuroimaging time series [33–36]. If the fixing of z = zk and λΦ(z) = λΦ(zk) is constant, Equation (4)
can be converted to Equation (5), that is,

xk+1 = argmin
x
‖y− x‖2 + µ‖x− zk‖2 (5)
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If the fixing of x = xk+1, and 1
2‖y− x‖2 = 1

2‖y− xk+1‖2 is constant, the solution of minimizing Lµ(x, z)
can be converted to Equation (6), that is,

zk+1 = argmin
z

µ

2
‖z− xk+1‖2 + λΦ(z) (6)

It can be seen that the fidelity term and regularization item are divided into two separate
sub-problems. Obviously, zk can be regarded as a constant in the process of solving Equation (5). The
solution of Equation (5) is the same as the solution of minimizing f (x) = ‖y− x‖2 + µ‖x− zk‖2. We
conducted a derivative operation for f (x). That is,

d f (x)
dx = d(‖y−x‖2+µ‖x−zk‖2)

dx

= d((y−x)T(y−x))
dx + d((x−zk)

T(x−zk))
dx

= −2(y− x) + 2µ(x− zk)

(7)

Let d f (x)
dx = 0; we can get the solution xk+1 of minimizing f (x). That is,

d f (x)
dx

= 0⇒ −2(y− x) + 2µ(x− zk) = 0⇒ x =
y + µzk
1 + µ

⇒ xk+1 = x =
y + µzk
1 + µ

(8)

We divided both sides of Equation (6) simultaneously by λ, and the operation has no effect on
zk+1, which can be redefined as

zk+1 = argmin
z

1

2(
√

λ/µ)
2 ‖xk+1 − z‖2 + Φ(z) (9)

From the Bayesian maximum posterior probability, Equation (9) denotes that the image xk+1 can
be denoised by a Gaussian denoiser with the noise level

√
λ/µ [12]. Thus, any Gaussian denoiser that

can serve as a modular part solves Equation (1). This means that we can obtain the denoised image
zk+1 from xk+1 by using any denoiser. Denoiser() is a denoiser function, and we rewrite Equation (9) as

zk+1 = Denoiser(xk+1,
√

λ/µ) (10)

From Equations (9) and (10), we find that the regularization term 1
2‖y− x‖2 constructed by the

image prior can be implicitly replaced by other denoisers. Obviously, even the regularization term
Φ(x) is unknown, and Equation (10) can also be solved by denoisers containing complementary image
priors. In this paper, the CNN denoisers trained in [12] are employed, and they are introduced in the
coming section.

2.2. CNN Denoiser

The architecture of CNN in this paper is the same as that in [12], as shown in Figure 1. It has
three different modules consisting of a seven-layer network. In Figure 1, “DCon-s” indicate dilated
convolutions, and s = 1, 2, 3, and 4, “BN” denotes batch normalization, and “ReLU” represents rectified
linear units. The first layer is “Dilated Convolution + ReLU”, and the dilated convolution operation is
as follows: Each parameter in the convolution kernel expands according to the inflation factor in the
four directions of up, down, left, and right. The number of convolution kernel parameters does not
change, and the receptive field becomes large. An example for dilated convolution is given in Figure 2.
Figure 2a is a normal convolution. After 1-dilated convolution, we can get a receptive field of 3× 3.
Figure 2b is obtained from Figure 2a through 2-dilated convolution, and we can get a receptive field of
7× 7. Figure 2c is obtained from Figure 2b through 4-dilated convolution, we can get a receptive filed
of 15× 15. The middle layers have five blocks. Each block represents “Dilated Convolution + Batch
Normalization + ReLU”, and the last layer is a “Dilated Convolution” block. We set the expansion
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factors of the (3× 3) dilated convolution as 1, 2, 3, 4, 3, 2, and 1 from the front to back. The number of
feature maps was set to 64 for each middle layer. Next, the important details of the network design
and training are illustrated.
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Figure 2. The example of a dilated convolution process.

Firstly, the network model uses the dilated convolution to balance the size of the receptive field
and the depth of the network. We know about the dilated convolution because of its expansion ability
in the receptive field while retaining the advantages of a traditional 3× 3 convolution. An expansion
filter with an expansion factor s can be simply translated to a (2s + 1)(2s + 1) sparse filter, where only
nine fixed position terms can be non-zero. Therefore, 3, 5, 7, 9, 7, 5, and 3 are the equivalent receptive
domains for each layer, respectively. We know that the size of the receptive field is 33× 33.

Secondly, residual learning and batch normalization are used for the network model to speed
up the training. They are two of the most influential architecture design techniques in CNN network
structure design. The combination of these two techniques means that the CNN does not have
immediate stabilizing training, but it can more easily produce a better denoising performance [12].

Thirdly, the network model uses small size training samples to prevent boundary artifacts. Owing
to the characteristics of convolution operations, image boundary processing may result in boundary
artifacts when denoised images of CNN are not properly processed. Zhang et al. [12] found that
using the zero padding boundary expansion strategy by utilizing a small training sample size helps to
prevent boundary artifacts, since the small blocks allow the CNN to use more boundary information.
Therefore, an image block is cropped into 35× 35 small non-overlapping blocks in the network model
to strengthen the boundary information of the image.

For training the CNN, we used a dataset consisting of 400 Berkeley segmentation dataset images
of size 180 × 180, as mentioned in [12]. For convenience, we converted the images to gray images,
and we cropped the images into small patches of size 35 × 35 and selected 12,000 patches for training.
As for the generation of corresponding noisy patches, we achieved this by adding additive Gaussian
noise to the clean patches during training. During training, the loss function of CNN was the same as
the loss function in [12].

Finally, the network model trains specific denoisers with small spaced noise levels for noise
images with different noise levels. Ideally, the denoisers in Equation (9) should use the training set of
the current noise level to train the network model. Zhang et al. [12] trained a series of denoisers with
a noise level range of [0, 50] and divided it by a step size of 2 for each model, resulting in a total of
25 denoisers. Since the small fluctuation of the SAR image noise level have less effect on the denoising
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result, we chose CNN denoisers with noise levels of 5, 10, 15, 20, and 25 to remove the speckle and
then fused the five denoised images to obtain the final denoised image. The GFF algorithm employed
in this paper is briefly introduced below.

3. Image Fusion-Based Guided Filtering

Derived from a local linear model, the guided filter computes the filtering output by considering
the content of a guidance image, which can be the input image itself or another different image. The
guided filter can be used as an edge-preserving smoothing operator, like the popular bilateral filter,
but it has better behavior near the edges. The guided filter is also a more generic concept beyond
smoothing: it can transfer the structures of the guidance image to the filtering output. Moreover, the
guided filter naturally has a fast and non-approximate linear time algorithm, regardless of the kernel
size and the intensity range. Thus, guided filtering is applied widely to the image processing field [37].
We suppose that the guided image is I, the input image is p (i.e., the image needs to be filtered), and
the output image is q. The local linear model is the vital assumption of guided filtering between the
guided image and the output image, that is,

qi = ak Ii + bk, ∀iωk (11)

where ak, bk are the linear coefficients, i is a pixel index, and ωk is the local window centered on the
point k in the guided image I. It is a square window whose size is (2r + 1)(2r + 1).

The edge-preserving filtering problem of the image is transformed into an optimization problem.
The optimization problem involves minimizing the difference between p and q when meeting the
linear relationship in Equation (11). That is, we should solve the minimization optimization problem,
Equation (12):

E(ak, bk) = ∑
ωk

( (ak Ii, bk − pi)
2)εα2

k (12)

where α is the normalization factor. We can use linear regression [37] to solve Equation (12):

ak =
1

Nω
∑i∈ωk

Ii pi − µk pk

σ2
k + ε

(13)

bk = pk − akµk (14)

where µk and σ2
k represent the mean and variance of the local window ωk in I. Nω represents the

number of pixels in the window, and the mean of p in the window ωk is pk. To ensure the calculation
amount of qi in Equation (11) does not change with the change of the local window, we apply mean
filtering to ak and bk in the local window after calculating ak and bk. For simplicity, we adopt Gr,ε(p, I)
to represent guided filtering, where r is the size of the filtering kernel, and ε is the normalization factor.
Figure 3 gives an example to show the guided filtering process when r = 4 and ε = 0.04.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 20 
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An image fusion algorithm with guided filtering is given in Figure 2 [30]. First of all, the source
image In is decomposed into two scales by mean filtering, namely the basic layer Bn and the detailed
layer Dn. Then, we apply Laplacian filtering to obtain the high-pass portion Hn for each source image
In. The saliency map Sn is constructed through the local averages of the absolute values of Hn. We use a
large saliency map in the source image to construct the weight map Pn. Next, we use the corresponding
source image In as a guide image for performing guided filtering on each weight map Pn. We get

WB
n = Gr1,ε1(Pn, In), WD

n = Gr2,ε2(Pn, In), (15)

where r1, ε1, r2 and ε2 are the parameters of the filter, and WB
n and WD

n are the final weight maps of the
basic layer and the detailed layer.

Then, the basic layers and the detailed layers of different original images are merged by the
weighted average:

B =
N

∑
n=1

WB
n Bn, D =

N

∑
n=1

WD
n Dn. (16)

Finally, the fused image F is acquired by F = B + D.
In GFF, the size of ωk should be decided experimentally. To fuse the base layers, the size of ωk

is (2r1 + 1)× (2r1 + 1). A big filter size r1 is preferred. To fuse the detailed layers, the size of ωk is
(2r2 + 1)× (2r2 + 1), and the fusion performance will be worse when the filter size r2 is too big or
too small. In this paper, the value of r1 was set to 45 and the value of r2 was set to 7 based on the
experiment. The flow diagram of GFF is shown in Figure 4.
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4. CNN Denoiser Prior and Guided Filtering for SAR Image Denoising

In the SAR image, the relative phase between the scattering points in each resolution unit is closely
related to the radar azimuth. The speckle is considered to be produced by the coherent superposition
of the echoes of many scattering points, which randomly distribute in the same resolution of the
scene. It has been proven that fully developed speckle is multiplicative noise by Goodman [9], and its
multiplicative model is as follows:

G = F · N (17)

where G denotes the SAR image contaminated by speckle; F indicates the radar scattering characteristic
of the ground target (i.e., the clear image); and N denotes the speckle due to fading. The random
process N and F are independent. N conforms to a Gamma distribution where the mean is one and
the variance is 1

L :

ρN(N) =
LLNL−1 exp(−NL)

Γ(L)
(18)
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where L ≥ 1, N ≥ 0, Γ is the Gamma function, and L is the equivalent number of looks (ENL).
The main purpose of denoising is to eliminate N and to restore F from G. To facilitate the

denoising process, homomorphic filtering is usually chosen in Equation (17), and the multiplication
model is replaced by an addition model, as shown in Equation (19):

log(G) = log(F) + log(N) (19)

It can be seen that the current noise can be assumed to obey a Gaussian distribution [38].
Thus, Equation (19) can be rewritten as y = x + v, where y represents the observed image, v is
the additive noise, and x is the clean image. Therefore, the SAR image can be denoised by the above
denoising algorithm.

Figure 5 gives the flow chart of SAR image denoising based on CNN denoiser priors and the
guided filtering fusion algorithm.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 20 

 

Figure 5. The flow diagram of the proposed algorithm. 

The specific algorithm workflow of this paper is as follows: 

Step 1: Equation (19) is used to process the original SAR image by homomorphic filtering and to 

obtain the denoising image called y ; 

Step 2: Train the CNN prior denoisers; 

Step 3: The initial value of kx  is yxk  ; 

Step 4: The CNN denoisers are adopted with noise levels of 5, 10, 15, 20, and 25 to denoise the 

image kx  and to get the denoised images 1kz , 2kz , 3kz , 4kz , and 5kz  by Equation (10); 

Step 5: The denoised images 1kz , 2kz , 3kz , 4kz , and 5kz  are fused to obtain the denoised 

image fz  by the GFF fusion algorithm with Equations (15) and (16). Here, five images are fused 

instead of two images through the process in Figure 3; 

Step 6: Assign the value of fz  to kz . From Equation (8), we can get 1kx ; 

The Denoising Image y

The Denoiser 10 The Denoiser 15 The Denoiser 20

The Model of CNN Prior 
Denoiser

GFF Algorithm

The Denoised Image zf

The Denoiser 5 The Denoiser 25

The Denoised Image 
zk1

The Denoised Image 
zk2

SAR Image

The Denoised Image 
zk3

The Denoised Image 
zk4

The Denoised Image 
zk5

Logarithmic 
Transformation

xk=y

The Denoising Image xk

1

( )

1

k
k

y z
x











Yes

No

The Final Denoised Image yf

Exponential 
Transformation

2

1 0.01k k F
x z  

k fz z

1k k 

Figure 5. The flow diagram of the proposed algorithm.



Remote Sens. 2019, 11, 702 10 of 19

The specific algorithm workflow of this paper is as follows:
Step 1: Equation (19) is used to process the original SAR image by homomorphic filtering and to

obtain the denoising image called y;
Step 2: Train the CNN prior denoisers;
Step 3: The initial value of xk is xk = y;
Step 4: The CNN denoisers are adopted with noise levels of 5, 10, 15, 20, and 25 to denoise the

image xk and to get the denoised images zk1, zk2, zk3, zk4, and zk5 by Equation (10);
Step 5: The denoised images zk1, zk2, zk3, zk4, and zk5 are fused to obtain the denoised image z f

by the GFF fusion algorithm with Equations (15) and (16). Here, five images are fused instead of two
images through the process in Figure 3;

Step 6: Assign the value of z f to zk. From Equation (8), we can get xk+1;
Step 7: Let k = k + 1, and repeat Step 4, Step 5, and Step 6 until the norm of xk+1 and zk is less

than 0.01;
Step 8: The image xk+1 is indexed to obtain the final denoised image y f .

5. Experimental Results

The training sets and training process of the CNN denoisers used in this paper are the same
as those described in the literature [12]. The denoiser model training platform used was Matlab
R2014b which is from Mathworks company in Natick, MA, USA, the CNN toolbox was MatConvnet
(MatConvnet-1.0-beta24, Mathworks, Natick, Massachusetts, USA), and the GPU platform was Nvidia
Titan X Quadro K6000 (Santa Clara, California, USA) which is from NVIDIA Corporation in Santa
Clara, CA, USA. The parameters of the GFF algorithm used in our algorithm were the same as those
described in the literature [30].

In order to verify the reliability and effectiveness of the proposed algorithm, the proposed
algorithm was tested on a simulated SAR image. The specific steps of the experiment were as follows:

The first step was to convert the clean SAR image into the logarithmic domain to obtain the
logarithmic SAR image by using the logarithmic function.

In the second step, a random matrix whose size is the same as the logarithmic SAR image is
produced according to various noise variance, the noise variance that this paper is based on is 0.04,
0.05, 0.06, respectively. Then, add the random matrix, which is Gaussian noise to the logarithmic SAR
image. Finally, the simulated noise SAR images are obtained.

In the third step, with the simulated noise SAR image as input, the proposed algorithm was used
to obtain the denoised image.

In the fourth step, the denoised image was exponentially transformed to obtain the final
denoised image.

Figure 6a,b show the original image and the noise image, respectively, the six images in (c), (d),
(e), (f), (g), and (h) are the denoised images produced through denoisers whose noise levels were
5, 10, 15, 20, and 25, and the final denoised image was produced by using the proposed method.
Figure 6c indicates that, when the selected denoiser level is smaller than the ground truth noise level,
the denoised image still has a lot of noise, while (f) and (g) illustrate that, when the selected denoiser
level is bigger than the ground truth noise level, the denoised image will appear to be over-smoothed.
Thus, we fused all the denoised images using the GFF algorithm in order to obtain better denoised
results, as shown in Figure 6h. It turned out that the denoised image obtained by the proposed
algorithm had less noise while retaining the detailed texture and having a promising visual effect.

Figure 7 shows a comparison between the proposed algorithm and other denoising algorithms.
For all algorithms, the images in the figure had added Gaussian noise with 0.05 noise variance. The
denoising algorithms used were the Lee filter [1]; the sparse representation-based Bayesian threshold
shrinkage denoising algorithm in the Shearlet domain (BSS-SR), as described in [39]; the local linear
minimum-mean-square-error (LLMMSE) wavelet shrinkage-based nonlocal denoising algorithm for
SAR image (SAR-BM3D), as described in [40]; SAR image denoising based on continuous cycle
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spinning via sparse representation in the Shearlet domain (CS-BSR), as described in [41]; probabilistic
patch-based weights iteration weighted maximum likelihood denoising (PPB), as described in [42]; the
use of texture strength and weighted nuclear norm minimization for SAR image denoising (BWNNM),
as described in [43]; deep CNN based on residual learning for image denoising (DnCNN), as described
in [44]; and the proposed algorithm.
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proposed algorithm.
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By observing the experimental results, we found that Figure 7a still retains much noise after
Lee filtering, and the edge of the denoised images shown in Figure 7b,d have some blur after the
BSS-SR and CS-BSR methods. Although the SAR-BM3D and the PPB methods effectively suppress
the speckle, they lose a lot of detail and appear to be over-smoothed, as shown in Figure 7c,e. The
BWNNM method and DnCNN algorithm have a good noise suppression effect and better preserve the
edge, but there is still some residual noise, as shown in Figure 7f,g. The proposed algorithm, as shown
in Figure 7h, achieves a better visual effect than BWNNM and SAR-BM3D, and the noise is more
effectively suppressed than with BSS-SR and CS-BSR. These experimental results demonstrate the
advantages of the denoising algorithm based on convolutional neural networks and guided filtering.

To further validate the advantages of the algorithm in this thesis, we used five objective evaluation
indexes to evaluate the above denoised algorithms: the peak signal to noise ratio (PSNR) [45], the
equivalent number of looks (ENL) [45], the edge preservation index (EPI) [14], the structural similarity
index measurement (SSIM), and an unassisted measure of the quality of the first-order and second-order
descriptors of the denoised image ratio (UM) [14]. The higher the PSNR value is, the stronger the
denoising ability of the algorithm is. If the ENL value is bigger, the visual effect is better. The EPI
value reflects the retentive ability of the boundary, and a bigger value is better. The SSIM indicates the
similarity of the image structure after denoising, and it is as big as possible. The UM does not depend
on the source image to assess the denoised image—when the value is smaller, the ability of the speckle
suppression is stronger. The evaluation parameter values of the denoised images are given in Table 1.

Table 1. The evaluation parameter values of all denoising methods.

Noise Variance Denoising Methods PSNR ENL EPI SSIM

0.04

Lee filter 32.51 6.94 0.82 0.75
BSS-SR 31.65 7.84 0.71 0.62

SAR-BM3D 33.61 8.08 0.62 0.69
CS-BSR 31.48 8.92 0.63 0.58

PPB 30.87 7.56 0.66 0.71
BWNNM 33.42 7.28 0.66 0.75
DnCNN 31.51 6.02 0.71 0.72

Our method 38.29 6.46 0.81 0.94

0.05

Lee filter 30.76 6.64 0.66 0.70
BSS-SR 31.58 7.85 0.75 0.62

SAR-BM3D 33.72 8.34 0.68 0.67
CS-BSR 31.49 8.96 0.79 0.58

PPB 33.42 7.56 0.73 0.71
BWNNM 32.93 7.35 0.77 0.74
DnCNN 32.98 6.95 0.74 0.77

Our method 39.06 6.57 0.80 0.94

0.06

Lee filter 31.60 6.27 0.62 0.63
BSS-SR 31.65 7.83 0.71 0.61

SAR-BM3D 34.28 8.63 0.65 0.66
CS-BSR 31.64 8.95 0.74 0.58

PPB 33.41 7.57 0.84 0.71
BWNNM 32.49 7.60 0.81 0.89
DnCNN 30.29 5.78 0.86 0.90

Our method 41.57 6.48 0.90 0.93

We can obtain from Table 1 that the PSNR value of all the algorithms improved compared to that
of the original image when noise with variance of 0.04 was added to images. Obviously, all algorithms
can effectively suppress speckle, but our method had the highest PSNR value. The ENL value of the
proposed algorithm improved compared with that of DnCNN, which indicates the effectiveness of the
fusion algorithm based on guided filtering. Because of the complex and inherent denoising structure
of CNN, it had a worse ENL value than the other algorithms. The results of our method in terms of
retaining image edge information and texture detail are satisfying. The ENL value was higher than
most of the other algorithms by about 0.1 to 0.2, and it was higher than the Lee filter by about 0.4. At
the same time, the SSIM results show that the proposed method maintains the integrity of the image
structure and has minimum structural distortion.
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Meanwhile, our method also achieved the best results on the three evaluation indexes of PSNR,
EPI and SSIM when noise with variance of 0.05 was added to images. Through Table 1, we can see
that the SSIM of BSS-SR, SAR-BM3D, and other algorithms decreased slightly, which means that these
algorithms cannot retain the detail and reduce the distortion simultaneously, but our method, as well
as the DnCNN and Lee filter, showed satisfactory results. Moreover, the ENL value of our method
remained stable, which is better than that of DnCNN. When we added noise with variance of 0.06 to
the image, the experimental results were the same as those analyzed above.

Generally speaking, whatever the noise level is, our proposed algorithm can preserve the
structural information of the image, suppress the noise effectively, and retain the edge details to
some extent.

Moreover, our proposed algorithm was tested by using the actual SAR image. The test images
were the SAR images of TerraSar-X, and they can be downloaded from the website of Federico II
University in Naples, Italy. They are shown in Figure 8.
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Figure 8. The real SAR images: (a) trees; (b) city area; (c) lake.

Figure 8a shows an SAR image of trees, Figure 8b shows an SAR image of a city area, and Figure 8c
shows an SAR image of a lake. They were denoised by the above denoising algorithms.

Figure 9 shows the denoised images of Figure 8a. In addition, the red boxes in Figures 9–11 mark
out the region of the objective evaluation parameter UM. The specific values are given in the objective
evaluation index section. We can see that the Lee filter is the worst denoising algorithm from Figure 9.
BSS-SR and CS-BSR blurred some edge texture, while SAR-BM3D and PPB brought in little artificial
texture. BWNNM and DnCNN produced over-smoothing. Our algorithm not only preserved the
texture and edge information well, but it also suppressed the generation of artificial texture.
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(c) SAR-BM3D; (d) CS-BSR; (e) PPB; (f) BWNNM; (g) DnCNN; (h) our method.
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(c) SAR-BM3D; (d) CS-BSR; (e) PPB; (f) BWNNM; (g) DnCNN; (h) our method.
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Figure 10 shows the denoised images of the city area in Figure 8b by using different denoising
algorithms, and Figure 11 shows the denoised images of a lake SAR in Figure 8c by using different
denoising algorithms.

As shown in Figures 10 and 11, the performances of the eight denoising algorithms presented
in this paper are similar to the results shown in Figure 8a. The denoising effect of our proposed
algorithms is the most promising. However, we have neither the clean image nor an expert interpreter,
which is difficult to ensure whether such artifacts mean any loss of detail. Some help comes from the
analysis of ratio images obtained, as mentioned in [40], as the pointwise ratio between the original
SAR image and de-noised SAR images. Given a perfect denoising, the ratio image should only contain
speckle. On the contrary, the existence of structures or details related to the original image shows that
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the algorithm has removed not only noise but also some useful information. In order to highlight the
better visual effect of our method, we give the ratio images in Figures 12–14.
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Figure 12. The ratio images using all denoising methods for Figure 8. (a) ratio image by using lee filter;
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(e) ratio image by using PPB; (f) ratio image by using BWNNM; (g) ratio image by using DnCNN;
(h) ratio image by using our method.
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Figure 13. The ratio images using all denoising methods for Figure 9. (a) ratio image by using lee filter;
(b) ratio image by using BSS-SR; (c) ratio image by using SAR-BM3D; (d) ratio image by using CS-BSR;
(e) ratio image by using PPB; (f) Ratio image by using BWNNM; (g) ratio image by using DnCNN;
(h) ratio image by using our method.

From Figure 12, we can see that the ratio image of our algorithm is closer to speckle. Figure 13
gives the ratio images from Figure 10.

Figure 14 shows the ratio images from Figure 11.
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From the ratio images in Figures 12–14, we can find that our method have no obvious pattern and
obtain the least signal information. From this view, it can show that our method can attain a better
visual effect.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 20 
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To show the superiority of our algorithm, we used various common objective evaluation
parameters for the denoising algorithms, including UM, ENL, EPI and SSIM. Tables 2–4 give the
experimental results of the objective evaluation results of the above denoised images.

Table 2. The evaluation parameter values of all denoising methods in the tree SAR image.

Denoising Methods UM ENL EPI SSIM

Lee filter 27.30 3.17 0.72 0.93
BSS-SR 33.01 4.46 0.93 0.94

SAR-BM3D 32.10 3.82 0.84 0.96
CS-BSR 34.98 5.37 0.95 0.97

PPB 28.75 4.13 0.93 0.91
BWNNM 32.51 4.18 0.95 0.94
DnCNN 31.83 3.59 0.77 0.93

Our method 25.40 3.61 0.98 0.98

Table 3. The evaluation parameter values of all denoising methods in the city SAR image.

Denoising Methods UM ENL EPI SSIM

Lee filter 32.96 1.98 0.79 0.95
BSS-SR 40.67 2.04 0.91 0.86

SAR-BM3D 34.53 1.87 0.88 0.97
CS-BSR 36.30 2.30 0.92 0.75

PPB 31.02 1.93 0.83 0.94
BWNNM 30.18 1.99 0.94 0.96
DnCNN 32.54 1.80 0.80 0.93

Our method 25.26 1.81 0.95 0.98
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Table 4. The evaluation parameter values of all denoising methods in the lake SAR image.

Denoising Methods UM ENL EPI SSIM

Lee filter 39.60 3.72 0.74 0.93
BSS-SR 38.51 3.78 0.90 0.84

SAR-BM3D 31.96 3.35 0.89 0.97
CS-BSR 31.03 4.32 0.92 0.73

PPB 33.25 3.65 0.77 0.92
BWNNM 31.45 3.73 0.95 0.93
DnCNN 32.26 3.19 0.82 0.96

Our method 30.60 3.26 0.96 0.98

Table 2 presents the results of evaluation indexes of the tree SAR image denoised by eight
algorithms. First of all, the UM value was 25.4 of our proposed algorithm, and it was the smallest
and the best of the eight algorithms. This shows that the proposed algorithm has an excellent
comprehensive performance in terms of noise suppression. The ENL value of our method was
not ideal, but its value was still bigger than the DnCNNs. The reason for this phenomenon is not only
the complex and inherent denoising structure of CNN, but it is also related to the texture, light, and
shade of SAR images. Finally, it is easy to see that the EPI and SSIM values of our method were the
biggest, which shows that our proposed method has the strongest ability to preserve edges, and the
integrity of the image structure was also the best.

As shown in Tables 3 and 4, the performances of all the algorithms basically showed a similar
trend to those in Table 2. Compared with other methods, we found that our method significantly
improved UM, EPI, and SSIM. In summary, our algorithm possesses the best denoising ability, the
strongest edge and detail preservation ability, and the most promising visual effects.

Without any loss of generality, the abilities to preserve detailed information and smoothness
are contradictory in our method. Although our method is better than the Lee filter for ENL, it is not
as good as PPB or SAR-BM3D because the selection of the CNN model and fusion algorithm is just
empirical. If there were more suitable models and fusion methods, the performance of our method
could be improved furtherly.

6. Conclusions

In this paper, a novel SAR image denoising algorithm based on CNN and the guided filtering
fusion algorithm was proposed. First, five different noise level denoisers from the prior set of CNN
denoisers were used to obtain five denoised SAR images. Then, the five denoised images were fused
with guided filtering to obtain the final denoised image. The experimental results indicate that our
proposed algorithm can significantly increase the PSNR after image denoising, effectively suppress the
speckle noise, maintain the edge and detail information, and obtain promising visual effects. However,
due to the limitation of the CNN structure, our proposed algorithm cannot obtain the highest ENL
and EPI values at the same time, which could be a future task for this field.
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