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Abstract: Recently, networks consider spectral-spatial information in multiscale inputs less, even
though there are some networks that consider this factor, however these networks cannot guarantee
to get optimal features, which are extracted from each scale input. Furthermore, these networks do
not consider the complementary and related information among different scale features. To address
these issues, a multiscale deep middle-level feature fusion network (MMFN) is proposed in this
paper for hyperspectral classification. In MMFN, the network fully fuses the strong complementary
and related information among different scale features to extract more discriminative features. The
training of network contains two stages: the first stage obtains the optimal models corresponding to
different scale inputs and extracts the middle-level features under the corresponding scale model. It
can guarantee the multiscale middle-level features are optimal. The second stage fuses the optimal
multiscale middle-level features in the convolutional layer, and the subsequent residual blocks
can learn the complementary and related information among different scale middle-level features.
Moreover, the idea of identity mapping in residual learning can help the network obtain a higher
accuracy when the network is deeper. The effectiveness of our method is proved on four HSI data sets
and the experimental results show that our method outperforms the other state-of-the-art methods
especially with small training samples.
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1. Introduction

Hyperspectral Imaging (HSI) has hundreds of continuous spectral bands and high spatial
correlation, so it contains abundant spectral and spatial information which is useful for the classification
of different materials. HSI has been applied to many fields, including environment management [1],
geological mapping [2], mineral exploitation [3], and scene recognition [4]. Although HSI contains rich
spectral information, it is difficult to obtain enough training samples in practice, which often leads
to the “curse of dimensionality”. In addition, the neighboring bands of HSI are of high correlation,
which means that only a few bands play a critical role. This increases the computational complexity
and affects the following classification process. Therefore, dimensionality reduction (DR) is necessary
for HSI classification preprocessing, which can reduce computational complexity and retain useful
information of classification [5–8]. Feature selection and feature extraction are the traditional methods
to implement DR [9]. Feature selection aims to find more discriminative bands from the raw HSI data
to represent the entire image and this method can remain the physical meaning of original data [10–15].
Some clustering-based methods [16,17] and ranking-based methods [18,19] find the representative
bands to classify distinct classes. Compared with feature selection, feature extraction [20–26] finds
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more useful features through mathematical transformation to improve the classification accuracy.
These features are, for example, multilinear principal component ananlysis (PCA) [27] and Fisher’s
linear discriminant analysis [28] etc., but these methods can only extract low-level features which have
limited representation capacity to express the abundant information of spectral and spatial features.

Recently, about the above issue, many deep learning models have been proposed and they can
learn more distinguished features with the goal of high classification accuracy [29,30]. In the typical
deep learning model, stacked autoencoders (SAEs) can extract spatial and spectral information, then
combine these features for HSI classification [10]. The potential of deep belief networks (DBN) [31]
and restricted Boltzmann machines [32] is used to combine the spatial and spectral information to
classify the image. These methods are intended for 1-D input and the input data misses the spatial
structure information, which is important for HSI classification. A deep convolutional neural network
(CNN) [33] is adopted to get the spatial feature and it has no requirement for the input. 3-D CNN is
used to extract spectral-spatial features from the original image directly and gets better classification
accuracy. Reference [34] proposes an end-to-end framework to learn the spectral and spatial features
and this method can exploit the correlation between the spectral and spatial domains. But in this
framework, the input of spectral data is 1-D dimension. It is missing the neighborhood information of
spatial dimension. And the classification accuracy of these deep learning models will decrease when
the network is deeper. Reference [35] proposes a supervised spectral–spatial residual network and the
idea of identity mapping in residual blocks mitigates the decreasing-accuracy phenomenon, but this
network firstly learns the spectral features that are used as the input to extract the spatial information,
so the spatial features are found from data that has been transformed and so misses the original spatial
correlation. Reference [36] applies CNN to extract multiple spatial features and then stacks with
spectrum to generate the spectral-spatial feature. This method would have better performance if the
spectral feature was extracted by multiscale. Song W proposes a deep fusion feature network [37] for
classification. In this network, the features from the low layer, the middle layer and the high layer are
respectively extracted by the residual network, and the features of different layers are fused in the fully
convoluted layer to classify the image. Although the network considers the influence of different layer
features on the classification, it does not consider the spectral-spatial fusion features and it directly
extracts the features from the original image. Moreover, the features of fusion at the fully connected
layer cannot enable the entire network to fully use the fusion features to learn more discriminative
features. Most of the proposed deep learning models now consider the spectral-spatial fusion feature
under single scale input and do not consider the abundant correlation between the spectral and spatial
in multiscale inputs. Even though some models consider multiscale inputs, however, they cannot
guarantee that each scale feature is optimal. Furthermore, these models cannot make full use of the
strong complementary and related information among the multiscale fusion features because the
features are fused in the fully connected layer to directly classify the image.

To solve these problems and extract more discriminative fusion features, we propose a multiscale
deep middle-level feature fusion (MMFN) network for hyperspectral image classification. The training
of the network contains two stages: in the first stage, each scale input is used to train a model and the
optimal model is saved. The middle-level feature is extracted from the corresponding scale model and
it can guarantee the multiscale middle-level features are optimal. In the second stage, the multiscale
middle-level features are fused in the convolution layer and the subsequent residual learning block
can fully use the strong complementary and related information among multiscale fusion features
to extract more discriminative and higher-level features for classification. Furthermore, the residual
learning [38] can help the network maintain a higher accuracy when the layer is deeper and make the
network more robust.

The three major contributions of this paper include:
(1) The idea of multiscale features fusion is proposed, and this is an idea that contains more

abundant neighborhood correlation and low-level features, such as spatial structure, and texture
features, which are beneficial for classification.
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(2) The training of the network consists of two stages, the first stage obtains the optimal models
corresponding to different scales, and extracts the middle-level features under the corresponding
scale model. It can ensure the multiscale middle-level features are optimal, which is helpful for the
subsequent training stage extracting more discriminative features. The second stage fuses the optimal
multiscale middle-level features in the convolutional layer to train a new model for final classification.

(3) Different scale features have strong complementary and related information. Compared with
the features that are fused directly in the fully connected layer to classify the image, the multiscale deep
middle-level features are fused in the convolutional layer, which can enable the network to make full
use of the strong complementary and related information among multiscale fusion features. Moreover,
the subsequent residual learning modules can learn the multiscale fusion features to extract more
discriminative and higher-level features for classification and can help the network maintain a higher
accuracy with deeper layers.

The rest of this paper is organized as follows. Section 2 introduces the detailed architecture of our
method. Section 3 presents the results of classification accuracy on the four data sets, and shows the
performance of all methods. Finally, the conclusion is provided in Section 4.

2. Methodology

A deep network can be regarded as a process of feature learning, which is a step-by-step abstract
representation of the original input through a hidden layer. It can learn the original input data structure
and find more useful features. Through feature combination, it transfers the original input into the
low-layer features, middle-level features, high-level features up to the final mission objectives. Deep
learning through the learning of hierarchical features can extract features from the texture information
in the low-level features to the local information in the middle layer to the object information in
the high-level layer. From this process, it is not difficult to find the connection between the original
input and the low-level features, and the connection between the middle-level layer features and the
high-level features, it is difficult to cross directly from the original input to the high-level features. In the
MMFN framework, it consists of two training stages. The first stage mainly obtains the optimal model
corresponding to each scale, and extracts the features of the last residual block of the corresponding
scale in the optimal model. The second stage mainly fuses the multiscale features from the first stage in
the convolution layer to train a new model for final classification. Because the multiscale features are
extracted from the residual block, which are neither the low-level features that are close to the original
image or nor the high-level features that are close to the fully connected layer, the features are defined
as the middle-level features in the MMFN network, and the multiscale fusion features are used as
inputs to a new model in the second stage to learn more discriminative features for classification.

2.1. Extracting Multiscale Deep Middle-Level Features

HSI data can be denoted as R ∈ <M×N×L, Ri ∈ <M×N is i the band image, M, N, L denote that
the Hyperspectral Image has M × N pixels, and L bands, respectively. The main purpose of first
training stage on MMFN is to extract optimal multiscale deep middle-level features and each scale 3-D
data cube is used to train the corresponding model. The model contains a spectral and spatial learning
module with different size of convolution filters. Let x be the input of a convolutional layer and xi is
the ith feature map of x. Supposing that the convolutional layer has k filters denoted as W and the bias
parameter is b, the j output of the convolutional layer can be represented:

zj =
L
∑

i=1
R(xi ∗Wj + bj) j = 1, 2 . . . . ., k , (1)
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The features from the spectral and spatial module are fused as spectral-spatial fusion features, the
fusion operation is defined as:

Yfusion = g
{

Wi ∗ [yspectral ⊕ yspatial ] + bi

}
, (2)

g(x) = max(0, x), (3)

g represents the relu function and it is a rectified linear unit activation function which sets elements
with negative numbers to zero. yspectral and yspatial represent the outputs which are found from the
spectral and spatial learning module, respectively. The subsequent residual learning module can use
the spectral-spatial fusion feature to learn more discriminative features and the structure of residual
learning block is showed in Figure 1.
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In Figure 1, x represents the input of the first residual block, Y is the function learned through a
two convolution layers and it is defined as:

Y = F(x, {W}) + x, (4)

W is the convolutional kernel, F is residual function and can be written as:

F = R(R(x ∗W1 + b1) ∗W2 + b2), (5)

W1, W2 is parameters of the first and second convolution kernel, respectively, b1, b2 is the next
and the next two layers bias of the input layer, respectively. In residual learning, we use the batch
normalization (BN) operation to regularize the learning process for every convolutional operation and
BN is formulated as:

Yn = R(yn−1 ∗Wn + bn), (6)

and Yn represents the output of n th layer after BN operation, Wn, bn mean the convolutional kernels
and bias, respectively on the n th layer. And the yn−1 is defined as:

yn−1 =
Yn−1 − E(Yn−1)

Var(Yn−1)
, (7)

which Yn−1 is the output of (n−1) th layer after BN operation. After the residual block layer, the average
pooling operation is done for the output of the residual block and the average pooling operation is
formulated as:

z =
1
C ∑

(i,j)∈S
xij, (8)

We suppose the S is the filter size and C is the number of elements of S, xij is the value of the
corresponding position (i, j) in the input data x, and in this paper, we use global average pooling.
After the average pooling, the feature is sent to the softmax layer for HSI classification. The predicted
value of the framework is a vector ŷ = [ŷ1, ŷ2, . . . ., ŷc], and the truth label vector y = [y1, y2, . . . ., yc], c
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is the number of land-cover categories. The parameters of the framework are updated through back
propagating the gradients of the cross-entropy objective function which is defined as:

cross(ŷ, y) =
L

∑
i=1

yi(log
L

∑
j=1

eŷj − ŷi), (9)

For each scale input data, the above operation is done for training a corresponding scale model.
In order to get an optimal model, we use the classification accuracy of a validation set to see whether it
is improved in some training epochs to determine whether the model is optimal. Through this method,
one can guarantee every scale input corresponds to an optimal model, and the feature from the last
residual block is extracted on every model as the deep middle-level feature. These multiscale features
are calculated by the weights from the optimal trained model, so these multiscale features are the best,
which is helpful for the final classification.

2.2. Fusing Multiscale Deep Middle-Level Features

In the first training stage of MMFN, we can get the optimal multiscale middle-level features and
these features have different spatial sizes because of the different scales of inputs. Before fusing these
features, the spatial size of features should be same. For example, there have been three different size
of features which are F1, F2, F3 respectively, the spatial sizes are 5 × 5, 7 × 7, 9 × 9. For the size of 7 ×
7, 9 × 9, and we can use 3 × 3 and 5 × 5 filters to make the features with same size of 5 × 5, then these
three features are fused. The fusion operation is formulated as:

X = g{W ∗ [F1 ⊕ A2(F2)⊕ A3(F3)] + b}, (10)

X represents the tensor after fusing the multiscale middle-level features in the convolution layer,
A2, A3 is the different convolution operations to guarantee the features with the same spatial size. ⊕
is concatenating the outputs from the multiscale features, W, b denote the convolutional kernels and
bias in the convolution layer respectively. After getting the multiscale middle-level fusion feature, the
residual block is used to learn higher-level and discriminative features, which are sent to the softmax
layer for the final classification.

2.3. Classifying HSI Based on the MMFN

We take the IN Data Set as an example to describe the architecture of our method in Figures 2
and 3. Figure 2 shows the first training stage of the MMFN, the size of 7 × 7 × 200 as the input data
are sent to the spatial learning and spectral learning module with the size of 3 × 3,128 and 1 × 1,
128, respectively and the features with the size of 7 × 7 × 128 are obtained. Then these features are
concatenated as the spectral-spatial fusion features to do the next convolutional and BN operation,
and the size of features is constant with 7 × 7 × 128. In a residual learning module, it contains two
residual blocks and every block uses the size of 3 × 3 × 128, 24 filters to extract features from the
spectral-spatial fusion feature tensor, the feature size of 5 × 5 × 24 is generated after residual learning
and the BN operation is done after every convolutional layer, which can regularize the learning process
and improve the classification performance. What the feature tensor gets from the residual block is
an input to the average pooling layer and it can obtain a 1 × 1 × 24 vector that is sent to the softmax
layer for the final classification. After several epochs of training, we can get the optimal model. For the
other scale of 9 × 9 × 200 and 11 × 11 × 200 are the inputs of the network, they are done the same as
the above operation and we can get the corresponding scale of the model. From the optimal models
corresponding to multiscale inputs, the features, of which the sizes are 5 × 5 × 24, 7 × 7 × 24, 9 × 9 ×
24, respectively, are extracted from the last residual block as the deep middle-level features.
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Figure 3 shows the second training stage of the whole network and this stage fuses the multiscale
middle-level features and sends them to the residual learning block to learn the higher-level and
discriminative features for the final classification. Because each input scale corresponds to a separately
trained model, we save the parameters of the optimal model by the classification accuracy of the
validation set, and in this way, we can guarantee that the middle-level feature is calculated under the
optimal parameters when the features are extracted from the corresponding scale model. It means that
the multiscale middle-level features are optimal which can improve the classification performance.
The middle-level features have a size of 5 × 5 × 24, 7 × 7 × 24, 9 × 9 × 24, and we can use 3 × 3,
24 and 5 × 5, 24 kernels to convolute the features tensors of 7 × 7 × 24, 9 × 9 × 24, respectively and
make them with the size of 5 × 5 × 24. Then, these three different scales of middle-level features are
concatenated to generate a tensor with the size of 5 × 5 × 72. Through the size of 3 × 3 filters, the
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fused feature with size of 5 × 5 × 72 will be transformed into a tensor with size of 5 × 5 × 24 as an
input to the residual learning module which contains two residual blocks and every block consists
of 3-D convolution operation with size of 3 × 3 × 128, 24. Finally we can get the higher-level feature
with size of 5 × 5 × 24 as the input of the average pooling layer and a tensor with size of 1 × 1 × 24 is
generated for the final classification.

3. Experimental Results

3.1. Data Description and Experimental Settings

In this section, the effectiveness of our method is proved in four real-world hyperspectral remote
sensing data sets which contain the Indian Pines (IN) Data Set, Pavia University (UP) Data Set,
Kennedy Space Center (KSC) Data Set and Salinas Valley (Salinas) Data Set and the proposed method
is compared with other state-of-the-art methods. The overall accuracy (OA) and the average accuracy
(AA) are the classification metrics used to assess the classification performance of all the methods.

The Indian Pines Data Set (IN) was collected by AVIRIS in 1992 in northwestern Indiana. This
commonly used data set has 16 vegetation classes and 224 bands. The spatial size is 145×145 and
the spatial resolution is 20 m per pixel. To avoid the negative influence on classification due to water
absorption and noise, some bands are discarded and the remaining 200 bands are adopted for analysis.

The Pavia University Data Set (UP) was captured by a Reflective Optics System Imaging
Spectrometer optical sensor over an urban area surrounding the University of the Pavia. The image is of
size 610 × 340 × 115 with a resolution of 1.3 m per pixel and 9 urban land-cover classes are considered
in this experiment. The number of remaining bands is 103 after discarding the useless bands.

The KSC Data Set was collected by AVIRIS in 1996 in Florida, and contains 512 × 614 pixels with
spatial resolution of 18 m per pixel and the ground-truth classes are 13. After removing the noise
bands, 176 bands are retained and used for the experiment.

The Salinas Data Set which was gathered by AVIRIS and it consists of 224 bands with spatial size
of 512 × 217 pixels. The spatial resolution of the data is 3.7 m per pixel and the ground-truth classes
are 16. Twenty noisy bands are removed, and 204 bands are left for the next experiment.

The information of data sets is shown in Tables 1–4. The corresponding the false-color image and
ground-truth map are shown in Figures 4–7. For all data sets, the number of experiments was twenty
times to reduce the influence of random effects, which are caused by randomly choosing different
training samples every time. Through verifying whether the accuracy of validation set is improved in
some epochs to determine whether the network model is optimal, the optimal weight values of each
model were saved. We made the average effects the final results to evaluate the classification accuracy
of every method. We evaluated the performance of all methods on the small training samples to prove
that our proposed MMFN has strong robustness and generalization. Furthermore, the MMFN had
a better performance on classification accuracy when training samples were small. In four data sets
which contained IN, UP, KSC and Salinas, we split the data into training, validation, testing set, and
the ratio was 5%, 10%, 85%, respectively on these four data sets.
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Table 1. Land cover classes and numbers of samples in the Indian Pines data set.

No. Class Name Numbers of Samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-tree 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20

10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Total 10,249

Table 2. Land cover classes and numbers of samples in the Pavia University data set.

No. Class Name Numbers of Samples

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42,776

Table 3. Land cover classes and numbers of samples in the Kennedy Space Center (KSC) data set.

No. Class Name Numbers of Samples

1 Scrub 761
2 Willow swamp 243
3 CP hammock 256
4 Slash pine 252
5 Oak/Broadleaf 161
6 Hardwood 229
7 Grass-pasture-mowed 105
8 Graminoid marsh 431
9 Spartina marsh 520

10 Cattail marsh 404
11 Salt marsh 419
12 Mud flats 503
13 Water 927

Total 5211
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Table 4. Land cover classes and numbers of samples in the Salinas data set.

No. Class Name Numbers of Samples

1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11,271
9 Soil_vinyard_develop 6203

10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Total 54,129
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In our implementation, the training epoch was set to 100 and the optimizer adopted the standard
stochastic gradient descent method. The batch size was set to 64, the optimum learning rates in IN, UP,
KSC, Salinas data set were fixed as 0.0003, 0.0001, 0.0001, 0.0003, respectively, and the momentum was
set to 0.9.

The proposed method was compared with some state-of-the-art methods including the SVM [39],
ResNet [38], SAE [10], 3-D CNN [23] and Two-CNN [34], SSRN [35]. In order to compare fairly, we
used the SVM using spatial information through the Gaussian filter. The framework of ResNet adopts
the same residual blocks as our method and it does not contain the spectral-spatial learning module.

3.2. Influence of Parameters

3.2.1. The Selection of Multiscale Inputs

The spatial scale of input data was changed on the four data sets, and the appropriate multiscale
inputs were determined through the classification accuracy achieved by the different scale inputs. In
the four data sets, the data was split into 5%, 10% and 85% to comprise the training set, validation sets,
and test sets, respectively. The classification results of different spatial scale inputs are shown in Table 5.
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In most cases, as the spatial scale of the input became larger, the classification accuracy achieved higher
results on the four data sets. It was proved that when the spatial scale was within a certain range, the
input data contained more spatial structure information with a larger spatial scale, which was helpful
for the network learning more discriminative features and obtaining a higher classification accuracy.

Table 5. Classification results (OA%) of our methods on the four data sets with different input sizes.

Spatial Size IN UP KSC Salinas

3 × 3 78.64 94.24 86.34 95.17
5 × 5 84.25 96.49 90.29 96.29
7 × 7 87.32 98.53 95.21 97.42
9 × 9 90.42 99.17 95.89 98.27

11 × 11 94.15 99.39 96.76 99.24
13 × 13 94.87 99.40 96.93 99.28
15 × 15 94.94 99.43 97.14 99.31

From Table 5, when the spatial scale of input was larger than or equal to 11× 11, the improvement of
classification accuracy on the four data sets was relatively small and basically stable. And when the spatial
scale of the input was 7 × 7, the classification results on the four data sets reached a higher accuracy,
which had obvious advantages over the classification accuracy achieved by 3 × 3 and 5 × 5 as spatial
input scales. Therefore, in order to select a relatively small spatial scale of input and achieve a higher
classification accuracy, the selection of spatial scales were 7 × 7, 9 × 9, 11 × 11 as the multiscale inputs of
the whole network.

3.2.2. The Effectiveness of Multiscale Inputs

In order to validate the suggestion that multiscale inputs were more beneficial for HSI classification
than a single input, some experiments were done on these four data sets. The experiment results are
showed in Table 6, and the number of training samples for the four data sets ranges from 3% to 6% for
each class, and the classification accuracy is evaluated by the overall classification accuracy (OA). It
can be seen from the Table 6 that the input with a large spatial scale has a higher classification accuracy
than the input with a small spatial scale. Although the number of training samples increased the
classification accuracy of the input with large spatial scale and the input with small spatial scale were
both improving, however the accuracy of larger spatial scale input was higher in all cases than the
smaller spatial scale input. When the training samples of the four data sets were 3%, the classification
accuracy obtained by multiscale inputs was higher than the single scale input. Especially in the IN data
set, which was difficult to classify, the classification accuracy achieved by the multiscale inputs had an
obvious advantage compared with the single scale input. From the Table 6, the bolded classification
accuracies of multiscale inputs are higher than the single input, no matter how many training samples
in the four data sets. It proves the multiscale inputs are more useful than single input for classification.
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Table 6. Classification results (OA%) of our methods on the four data sets with different input sizes
when the percentage of training samples is changing.

Data Set Size of Input 3% 4% 5% 6%

IN

7 × 7 86.57 86.89 87.32 91.24
9 × 9 86.94 88.14 90.42 93.6

11 × 11 88.06 91.26 94.15 94.63
7 × 7, 9 × 9,11 × 11 91.81 93.87 96.59 97.16

UP

7 × 7 96.04 97.38 98.53 98.87
9 × 9 96.17 98.48 99.17 99.24

11 × 11 98.68 98.88 99.39 99.43
7 × 7, 9 × 9,11 × 11 99.4 99.73 99.75 99.84

KSC

7 × 7 92.21 93.04 95.21 95.86
9 × 9 92.79 94.06 95.89 96.52

11 × 11 94.62 95.48 96.76 97.48
7 × 7, 9 × 9,11 × 11 97.15 98.24 98.50 98.97

salinas

7 × 7 94.75 95.78 97.42 97.7
9 × 9 96.54 98.04 98.27 98.62

11 × 11 97.25 99.2 99.24 99.33
7 × 7, 9 × 9,11 × 11 98.37 99.65 99.69 99.73

Although the classification accuracy did not improve significantly in the UP and KSC data sets,
and the single scale input and multiscale inputs were both reaching a higher accuracy because the UP
and KSC data sets both have a higher spatial resolution, the advantages of multiscale inputs were not
obvious, but in most cases the classification performance of multiscale inputs had better generalization
and effectiveness with small labeled samples. Multiscale inputs of the network can generate multiscale
spectral-spatial fusion features that contain abundant the correlation between spatial and spectral,
spatial structure information and texture information compared with the spectral-spatial fusion feature
generated by single scale input. This information can help the network learn more discriminative
features for better classification. With increase of training samples, the classification accuracy was
improved in most cases, and the multiscale inputs achieved better classification results than single
scale input. The experimental results also proved that the idea of multiscale inputs was more suitable
for deep network classification and could improve the final classification accuracy.

3.2.3. The Selection of Number of Residual Block

In the second stage of the MMFN, the residual learning module was used to learn higher-level
features from the middle-level fusion features. The selection of the number of residual blocks in
the network was determined by experiments in this section. In four data sets that were IN, UP,
KSC, Salinas, the suitable number of residual blocks was selected through the classification accuracy
achieved by changing the number of residual blocks and training samples. The result is shown in
Table 7. It can be seen that by increasing the number of training samples, the classification accuracy
was improved regardless of the number of residual blocks in the four data sets. It was also proved
that more labeled samples are helpful for improving classification results. In comparing the different
number of residual blocks in the case of the same training samples, the classification accuracy was
higher when the network contained two residual blocks than zero, one and three residual blocks on
the four data sets.
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Table 7. The number of residual blocks selection experiment.

Data Set The Number of
Residual Block 3% 4% 5% 6%

IN

no residual block 88.44 90.28 93.37 95.59
one residual block 91.23 92.65 94.17 96.71
two residual block 91.81 93.87 96.59 97.16

three residual block 91.34 93.16 95.51 96.66

UP

no residual block 99.07 99.25 99.32 99.49
one residual block 99.59 99.64 99.67 99.72
two residual block 99.40 99.73 99.75 99.84

three residual block 99.12 99.68 99.71 99.86

KSC

no residual block 93.65 96.21 97.02 97.95
one residual block 97.06 98.03 98.12 98.61
two residual block 97.15 98.24 98.5 98.97

three residual block 96.91 97.94 97.98 98.44

salinas

no residual block 96.26 96.89 97.31 98.28
one residual block 97.79 98.68 99.28 99.31
two residual block 98.37 99.65 99.69 99.73

three residual block 98.25 99.36 99.44 99.75

Although on the UP and Salinas data sets, when the number of training samples reaches 6%,
the network contains two residual blocks and the classification accuracy is slightly lower than the
accuracy of three residual blocks, because the UP and Salinas data sets have a high spatial resolution
with 1.3 m and 3.7 m respectively, which helps the network to achieve a high accuracy even with
small training samples. So, when the number of training samples is 6% per class, the MMFN has an
excellent performance regardless of the network contains zero, one, two or three residual blocks. The
results of classification accuracy show that the network contained residual blocks and achieved higher
accuracy than the network which did not use residual block in the four data sets and it proves that the
residual block can help the network to improve classification accuracy. In most cases, the classification
performance was better than other number of residual blocks when the network contained two residual
blocks from the bolded classification accuracies. The result also shows that the network layer was
shallow with one residual block, and the features that may be learned were not discriminative, and the
three residual blocks fused features from too many layers which may introduce too much redundant
information resulting in a reduction of classification accuracy. Through the experimental results, we
chose two residual blocks to form the structure of MMFN in the second training stage.

3.3. Experiment Results and Analysis

In order to prove the superiority of the proposed network MMFN in the case of small label
samples, we compared MMFN with other state-of-the-art methods on the four data sets, and the
classification results are shown in Figure 8. Changing the number of training samples from 3% to 6%
each class. Figure 8a shows the classification performance of each method on the IN data set. It can be
seen from the Figure 8a that MMFN has a distinct advantage over other methods when the number of
training samples was 3%, it showed that the MMFN network can learn more discriminative features to
help with classifying the image even with small training samples. Figure 8b is the classification result
of each method on the UP data set. Although the classification accuracy curve of the MMFN network
was close to the curves of the SSRN when the number of training samples increased. However, when
the number of training samples was small, the classification performance of the MMFN network was
better than other methods. Figure 8c shows the performance of all methods in the KSC data set.
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Figure 8. The Overall Accuracy of changing the percentage of training samples by all methods on the
four data sets. (a) Overall Accuracy on IN. (b) Overall Accuracy on UP. (c) Overall Accuracy on KSC.
(d) Overall Accuracy on Salinas.

MMFN has obvious advantages over other methods at most cases. It shows that the optimal
middle-level features are helpful for the second training stage extracting more discriminative features,
and the multiscale middle-level features are fused in the convolution layer can make the network
to learn strong complementary and related information among multiscale features. Figure 8d is the
classification result on the Salinas data set. Because the spatial resolution of the Salinas data set
is high, the accuracies achieved by the MMFN, and SSRN networks are high in the case of small
training samples, however it can be seen from the figure that MMFN still has obvious advantages
in classification.

From the experimental results of the four data sets, the MMFN network fused the extracted
multiscale middle-level features in the convolutional layer, which helped the residual network to learn
more discriminative and higher-level features, however in Two-CNN, the fusion features were fused in
the fully connected layer and this made the network use these fusion features only in the classification,
which may have reduced the classification accuracy.

Table 8 shows the classification accuracies of different methods on the four data sets which contain
IN, UP, KSC, and Salinas. Tables 9–12 list the class-specific accuracies of different methods on the four
data sets. The training set, validation set, and test set are split into 5%, 10%, and 85%, respectively. It
can be seen from the bolded classification accuracied in these tables that MMFN performs the better
than other methods in OA and AA in most cases, and it proves the effectiveness of the network.
MMFN achieved higher classification accuracy than the ResNet network on the four data sets, because
the MMFN made full use of the multiscale middle-level features, and sent the fused features to the
residual block instead of learning directly from the original image like ResNet.
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Table 8. Classification accuracies (%) of different methods on the four data sets.

Data Set Method OA AA

IN

Two-CNN 76.78 ± 0.47 75.23 ± 0.56
SAE 74.58 ± 0.56 75.27 ± 0.62
SVM 77.01 ± 0.54 68.73 ± 0.53
CNN 77.89 ± 0.43 77.14 ± 0.36

ResNet 86.25 ± 0.37 85.93 ± 0.42
SSRN 94.97 ± 0.31 94.52 ± 0.22

MMFN 96.59 ± 0.26 96.13 ± 0.25

UP

Two-CNN 94.63 ± 0.27 93.31 ± 0.22
SAE 92.27 ± 0.35 92.58 ± 0.29
SVM 94.83 ± 0.28 93.37 ± 0.32
CNN 96.89 ± 0.17 96.75 ± 0.25

ResNet 97.48 ± 0.20 97.03 ± 0.23
SSRN 99.42 ± 0.26 99.05 ± 0.32

MMFN 99.75 ± 0.19 99.68 ± 0.23

KSC

Two-CNN 83.47 ± 0.38 84.32 ± 0.43
SAE 90.72 ± 0.35 89.51 ± 0.38
SVM 84.37 ± 0.41 82.18 ± 0.37
CNN 88.65 ± 0.37 86.39 ± 0.42

ResNet 93.29 ± 0.31 92.89 ± 0.36
SSRN 97.68 ± 0.43 97.17 ± 0.36

MMFN 98.50 ± 0.29 98.32 ± 0.31

salinas

Two-CNN 91.38 ± 0.36 89.74 ± 0.43
SAE 93.69 ± 0.41 93.21 ± 0.47
SVM 92.73 ± 0.44 91.58 ± 0.48
CNN 91.17 ± 0.37 92.16 ± 0.40

ResNet 95.82 ± 0.30 94.56 ± 0.34
SSRN 99.22 ± 0.26 99.31 ± 0.33

MMFN 99.69 ± 0.31 99.43 ± 0.31

Table 9. Class-specific accuracies (%) of the Indian Pines Data Set.

Class Training/Test Two-CNN SAE SVM CNN ResNet SSRN MMFN

1 2/44 73.88 75.25 30.05 83.54 83.24 92.5 94.63
2 71/1357 57.71 68.67 52.11 66.48 63.19 96.45 95.3
3 42/788 60.28 62.51 60.17 65.85 85.34 98.6 95.11
4 12/225 80.92 62.48 71.22 85.47 89.15 93.13 99.28
5 24/459 74.09 81.42 69.19 85.46 94.94 99.27 98.8
6 37/657 77.46 81.76 88.63 81.54 94.34 99.84 98.73
7 1/27 80.0 73.64 40.21 76.49 70.5 60.32 82.77
8 24/454 86.45 85.38 81.54 82.67 95.5 100 100
9 1/19 100 78.26 49.46 81.43 90.5 94.36 100
10 49/923 62.22 67.57 76.92 71.62 85.3 90.71 95.68
11 123/2332 67.81 72.52 76.92 62.69 94.47 95.5 98.41
12 30/563 59.09 71.35 57.44 65.83 65.8 96.37 98.54
13 10/195 86.49 83.64 92.82 84.38 94.89 100 96.62
14 63/1202 82.77 80.35 96.92 83.51 94.67 99.9 99.53
15 19/367 88.46 83.75 80.92 86.94 95.2 95.37 97.59
16 5/88 66.19 75.89 76.13 70.36 77.91 100 87.23

OA - 76.78 74.58 77.01 77.89 86.25 94.97 96.59
Kappa - 0.7155 0.7234 0.7365 0.7628 0.8425 0.9392 0.9458

AA - 75.23 75.27 68.73 77.14 85.93 94.52 96.13
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Table 10. Class-specific accuracies (%) of the UP Data Set.

Class Training/Test Two-CNN SAE SVM CNN ResNet SSRN MMFN

1 332/6299 93.27 94.59 93.36 98.45 99.82 100 99.67
2 932/17717 97.14 96.44 94.67 96.37 99.62 99.98 99.96
3 105/1994 85.46 84.57 83.92 96.21 94.88 94.97 99.88
4 153/2911 98.58 97.37 97.58 97.58 96.24 98.92 99.22
5 67/1278 99.56 99.6 99.92 96.36 95 99.82 100
6 251/4778 90.58 93.39 93.88 96.51 99.83 98.74 99.72
7 67/1263 88.34 88.57 94.67 97.23 99.3 100 100
8 184/3498 87.17 85.66 93.57 93.47 93.73 99.02 98.76
9 47/900 99.74 93.04 94.05 98.57 94.87 100 100

OA - 94.63 92.27 94.83 96.89 97.48 99.42 99.75
Kappa - 0.9216 0.9235 0.9314 0.9647 0.9853 0.9943 0.9972

AA - 93.31 92.58 93.37 96.75 97.03 99.05 99.68

Table 11. Class-specific accuracies (%) of the KSC Data Set.

Class Training/Test Two-CNN SAE SVM CNN ResNet SSRN MMFN

1 38/723 90.12 93.14 99.17 92.45 100 100 100
2 12/231 91.28 92.04 89.61 90.48 95.46 99.49 99.47
3 12/244 90.22 85.49 90.76 87.16 94.63 100 98.29
4 13/239 80.8 72.02 63.59 80.38 91.44 91.54 98.7
5 8/153 75.55 82.3 59.63 80.96 78.91 85.78 89.46
6 11/218 91.66 83.15 67.43 83.21 90.91 100 96.96
7 5/100 80.59 76.46 58.31 83.26 83.11 92.63 93.69
8 22/409 93.99 94.1 89.66 88.26 94.2 97.12 99.46
9 26/494 87.91 94.57 90.39 89.04 94.01 98.67 100
10 20/384 71.02 98.91 89.84 84.85 95.55 99.12 100
11 21/398 71.62 98.14 93.96 83.89 94.73 96.73 98.26
12 25/478 89.18 96.42 84.31 90.43 98.12 100 100
13 46/881 82.24 97.83 91.71 88.7 96.55 100 100

OA - 83.47 90.72 84.37 88.65 93.29 97.68 98.5
Kappa - 0.8104 0.9121 0.8162 0.8657 0.9391 0.9534 0.9737

AA - 84.32 89.51 99.17 86.39 92.89 97.17 98.32

Table 12. Class-specific accuracies (%) of the Salinas Data Set.

Class Training/Test Two-CNN SAE SVM CNN ResNet SSRN MMFN

1 100/1909 93.94 92.74 94.73 94.67 100 100 100
2 186/3540 93.46 95.13 94.32 95.52 96.27 100 100
3 99/1877 90.9 93.62 90.48 92.74 93.83 100 99.67
4 70/1364 90.58 95.6 88.39 94.61 92.73 99.68 98.77
5 134/2544 92.5 94.39 95.27 94.69 100 100 100
6 198/3761 91.81 95.73 93.75 94.82 96.48 99.97 100
7 179/3400 94.14 96.47 95.66 97.28 94.37 100 100
8 564/10707 73.57 91.58 84.38 87.69 93.34 99.86 99.31
9 310/5893 89.75 95.46 94.37 90.61 94.87 99.84 100
10 164/3114 88.77 85.27 87.46 86.54 94.01 99.86 99.83
11 53/1015 86.92 92.52 93.75 89.48 92.24 97.91 96.48
12 96/1831 93.35 93.74 94.31 92.74 94.88 99.77 99.94
13 46/870 92.41 92.73 93.64 90.68 92.92 100 100
14 54/1016 92.71 95.26 94.31 93.17 94.79 100 100
15 363/6905 77.78 86.47 76.75 85.72 89.86 91.91 99.43
16 90/1717 93.32 94.71 93.76 93.74 92.36 100 99.84

OA - 91.38 93.69 92.73 91.17 95.82 99.22 99.69
Kappa - 0.9083 0.9171 0.9133 0.9058 0.9606 0.9733 0.9961

AA - 89.74 93.21 91.58 92.16 94.56 99.31 99.43

This also shows that the optimal middle-level feature obtained by each scale input in the first
stage of MMFN was beneficial for classification. This also proves the validity of extracting middle-level
features in MMFN. Compared with the idea of spectral-spatial fusion in SSRN, MMFN introduces
the idea of multiscale inputs, which provides the network with abundant complementary and related
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information among different scale features, and the spectral and spatial learning module in MMFN is
based on original image, it can extract more primitive and accurate spatial structure information.

The input of the spatial learning module in the SSRN network is based on the features extracted
from the spectral learning module, the spatial learning will miss the spatial information in the original
image, so the classification accuracy is lower than the MMFN. It can be seen from the table that the
variance value of MMFN network classification result is smaller than other methods in most cases,
which shows the stability of the network.

The training and testing times provide a direct measure of computational efficiency for MMFN.
All experiments were conducted on an HP z620 workstation with GT 980Ti graphical processing unit
(GPU). The loss function values on the four data sets were 0.2520(IN),0.2318(UP),0.0653(KSC) and
0.1457(Salinas), respectively. Table 13 shows the results of training and test times for all methods on
four different data sets. The training set, validation set, and test set of all methods on the four data sets
were split into 5%, 10%, and 85%, respectively. Two-CNN, ResNet, SAE, CNN, SSRN, MMFN were
iterated 100 times and the SVM was trained 20 times. It can be seen from Table 13 that the training of
the MMFN network takes the longest time, because the training of the network is divided into two
phases, and the network has multiscale inputs to increase the computational time, although MMFN
is longer than the training time of SSRN about 1–6 minutes in the larger data sets such as UP and
Salinas, but when MMFN has small labeled samples, the classification accuracy of the network is
higher than SSRN, especially in the IN data set that is difficult to classify, the advantage of the MMFN
is obvious. In other methods, ResNet contains two residual blocks, so the training time of it is longer
than Two-CNN, SAE, and CNN, but its classification accuracy is higher than these methods.

Table 13. Comparison of training and test time for each method on four data sets.

IN UP KSC Salinas

Two-CNN
Train (m) 3.6 13.1 2.1 12.7

Test (s) 5.2 15.6 2.1 16.9

SAE
Train (m) 3.5 12.8 1.7 12.3

Test (s) 3.8 15.4 1.6 18.4

SVM
Train (m) 1.6 8.0 0.8 8.4

Test (s) 1.4 9.7 0.8 10.3

CNN
Train (m) 3.6 14.9 1.9 13.1

Test (s) 4.8 18.6 2.0 27.2

ResNet
Train (m) 4.0 16.3 2.2 14.2

Test (s) 4.7 18.4 2.3 26.5

SSRN
Train (m) 5.0 18.5 2.6 19.4

Test (s) 6.3 24.7 3.2 36.4

MMFN
Train (m) 8.2 23.5 3.8 25.4

Test (s) 6.7 25.6 3.5 37.6

3.4. Discussions

In this section, we briefly discuss the experimental results presented earlier. First, we found that
the performance of MMFN model on all four data sets was generally better than other models. There
are three possible reasons for such a performance improvement: 1) the multiscale model effectively
fuses more abundant neighborhood correlation and low-level feature. 2) the middle-level features
fusion structure can better exploit strong complementary and related information among multiscale
fusion features than a high-level features fusion structure. 3) the residual learning modules can extract
more discriminative and higher-level features and make deep learning models much easier to train.
As can be seen in Figure 8, a residual-based network model achieved a better performance on all four
data sets compared with SAE, CNN and Two-CNN. As can be seen in Figure 8 and Table 8, MMFN
achieved higher classification accuracy than the ResNet and SSRN on the four data sets. MMFN made
full use of the multiscale middle-level features, and sent the fused features to the residual block instead
of learning directly from the original image like ResNet. SSRN also adopted residual connections, and
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treated spectral features and spatial features separately in two consecutive blocks, however, if the input
of the spatial block is based on the spectral block, the spatial learning will miss the spatial information.

Second, two aspects will influence the HSI classification accuracy: 1) the number and spatial
size of input into the network; 2) the number of training labeled samples. MMFN uses the suitable
number and spatial size of inputs through the experiments and achieves a higher accuracy. Multiscale
inputs with relatively larger spatial size contained more useful and abundant information which can
boost the classification performance. MMFN performs better with relatively small labeled samples
and this network can be generalized to other remote-sensing scenarios because of its deep feature
learning capacity.

Finally, the disadvantage of the MMFN model is that the training time is relatively long, which
is mainly because the training of the network is divided into two stages, and the multiscale input
increases the corresponding time. As can be seen in Table 13, the training time of MMFN is about
1–6 minutes longer than that of SSRN and 2–12 minutes longer than that of CNN, which means that
MMFN is more computationally expensive than the SSRN and the CNN. Fortunately, the adoption of
GPU has largely alleviated the extra computational costs and reduced the training times.

4. Conclusions

In this paper, a novel MMFN deep learning method is proposed for hyperspectral image
classification. Compared with the previous networks, MMFN consists of two independent training
stages. The first stage is to fuse the spectral-spatial information and effectively extract the
spectral-spatial fusion feature. The second stage fuses the complementary yet correlated information
among the regions of different scales and effectively extracts the multiscale fusion feature, which
can further improve the classification accuracy. In addition, multiscale deep middle-level feature
fusion network works better for spectral–spatial feature learning as compared to single scale network.
The multiscale deep middle-level features are fused in the convolutional layer rather than the fully
connected layer, which can enable the network to make full use of the strong complementary and
related information among multiscale fusion features. Finally, the residual-based network model
achieved a better performance on all four data sets. The residual learning modules can extract
more discriminative features for classification and can help the network maintain a higher accuracy
with deeper layers. The experimental results show the superiority of the proposed method with
small labeled samples on the four data sets over other state-of-the-art methods. In future work, we
can research a better fusion strategy and fuse different data sets from other sensors to improve the
classification accuracy.
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