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Abstract: A Hyperspectral Image (HSI) contains a great number of spectral bands for each pixel;
however, the spatial resolution of HSI is low. Hyperspectral image super-resolution is effective to
enhance the spatial resolution while preserving the high-spectral-resolution by software techniques.
Recently, the existing methods have been presented to fuse HSI and Multispectral Images (MSI)
by assuming that the MSI of the same scene is required with the observed HSI, which limits
the super-resolution reconstruction quality. In this paper, a new framework based on domain
transfer learning for HSI super-resolution is proposed to enhance the spatial resolution of HSI
by learning the knowledge from the general purpose optical images (natural scene images) and
exploiting the cross-correlation between the observed low-resolution HSI and high-resolution MSI.
First, the relationship between low- and high-resolution images is learned by a single convolutional
super-resolution network and then is transferred to HSI by the idea of transfer learning. Second, the
obtained Pre-high-resolution HSI (pre-HSI), the observed low-resolution HSI, and high-resolution
MSI are simultaneously considered to estimate the endmember matrix and the abundance code
for learning the spectral characteristic. Experimental results on ground-based and remote sensing
datasets demonstrate that the proposed method achieves comparable performance and outperforms
the existing HSI super-resolution methods.

Keywords: Hyperspectral Image (HSI) super-resolution; domain transfer learning; convolutional
super-resolution network; image fusion

1. Introduction

The hyperspectral imaging technique can acquire images with hundreds of spectral bands for
each image pixel. Hyperspectral Images (HSI) have been widely used in numerous applications,
such as urban planning, precision agriculture, and land-cover classification [1–6]. However, due
to the limitations of the image spectrometer, it is difficult to acquire hyperspectral images with
high-spectral-resolution and high-spatial-resolution simultaneously. Therefore, the spatial resolution
of HSI data is often low, which is hard to capture the details of the land-cover and highly degrades the
subsequent processing in the remote sensing fields. Hence, enhancing the spatial resolution of HSI
data has gained more and more attention in the remote sensing community.

To achieve this goal, the HSI super-resolution technique [7,8] has been investigated to enhance
the spatial resolution of HSI data by a software technique. The existing HSI super-resolution methods
are based on the assumption that multiple observations of the same scene are required with the
observed low-resolution HSI. These auxiliary observations, such as RGB images, panchromatic images
(PAN), and Multispectral Images (MSI), can be used to estimate the missing spatial information in
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the observed HSI data. A comparative review of the existing hyperspectral and multispectral image
fusion approaches can be found in [9].

On the basis of spectral mixture analysis [10], the HSI data can be formulated by an endmember
matrix multiplied by the corresponding abundance matrix. The endmember matrix indicates the
pure spectral signatures, while the abundance matrix denotes the proportions of endmember spectra
for each pixel. Therefore, the problem of HSI super-resolution is reduced to obtaining the optimal
endmember and abundance matrices of the original high-spatial-resolution HSI.

Recently, many HSI approaches have been presented to enhance the spatial resolution of the
observed HSI by exploiting the auxiliary observations. Since the observed HSI and the target
HSI capture the same scene, their endmember matrices should be the same [11]. Moreover, the
abundance matrix is often estimated from the observed MSI. Aiazzi et al. [12] presented an HSI
super-resolution method based on a Generalized Laplacian Pyramid (GLP). Zhao et al. [13] proposed
an HSI super-resolution approach by introducing a spatial-spectral joint nonlocal similarity in the
reconstruction. Simões et al. [11] proposed a Hyperspectral Super-resolution (HySure) method
with a convex subspace-based formulation. HySure introduced a total variation regularization
for the estimation of the abundance matrix, which is valid to preserve edges while suppressing
noise in the homogeneous regions. Generally, the subspace transformation is derived from the
low-spatial-resolution HSI by an endmember extraction technique, i.e., Vertex Component Analysis
(VCA) [14]. Lanaras et al. [15] proposed a Proximal Alternating Linearized Minimization (PALM) for
HSI super-resolution, which jointly unmixes the observed HSI and MSI into the spectra of endmembers
and the corresponding fractional abundances. A nonnegative structural sparse representation-based
HSI super-resolution method was presented in [16]. Gao et al. [17] proposed a Self-Dictionary Sparse
Regression (SDSR) method by combining the observed HSI and MSI to estimate the endmember matrix
and the abundance matrix.

Compared with the auxiliary observations, general purpose optical images (natural scene images)
are easily acquired and have more rich information. The relationship between low- and high-resolution
HSIs is assumed to be the same as that between low- and high-resolution natural scene images [18].
That is because the optical information in remote sensing images has strong similarities with that in
natural images [11]. In [18], the target high-spatial-resolution HSI was estimated by introducing a
Collaborative Nonnegative Matrix Factorization (CNMF) between the observed HSI and the transferred
high-spatial-resolution HSI, without requiring any auxiliary observations. However, it usually ignores
the abundance information estimated from the observed MSI, which is effective to improve the final
super-resolution reconstruction quality. To exploit the cross-correlation between the observed HSI and
MSI and the nonlinear mapping relationship in the natural image domain effectively, a new framework
based on domain transfer learning is proposed to enhance the spatial similarity and preserve the
spectral consistency in the reconstructed HSIs. The main contributions of this paper can be summarized
as follows:

(1) To reduce the blurring effect in the observed HSI, the proposed method first exploits a
Convolutional Super-resolution Network (CSN) model trained by the natural scene images.
Then, the trained CSN model is transferred to the HSI domain.

(2) The observed low-spatial-resolution HSI and the transferred pre-high-spatial-resolution HSI are
simultaneously used to estimate the optimal endmember matrix with higher precision compared
with the baselines.

(3) Considering the spatial information and spectral consistency, a new optimization function
with two regularization parameters is proposed to obtain the optimal endmember and
abundance matrices of the target HSI with higher spatial resolution, while preserving its
high-spectral-resolution.
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The remainder of this paper is organized as follows. Section 2 briefly introduces some related
works. Section 3 provides our proposed method in detail. In Section 4, experimental results are
presented to demonstrate the effectiveness of the proposed method compared with state-of-the-art
baselines. Finally, a conclusion of this work is provided in Section 5.

2. Related Works

In the past decades, many image super-resolution methods have been presented. According
to whether the auxiliary observations are required, the existing image super-resolution methods
are divided into two categories: single-image-based and auxiliary-based. The single-image-based
approaches (e.g., [19,20]) try to improve the spatial-resolution of each band image in HSI data. However,
these methods ignore the spectral information in the reconstruction process.

The auxiliary-based HSI super-resolution methods have been proposed to estimate the
high-spatial-resolution HSI by fusing the observed HSI and the high-spatial-resolution auxiliary
observations, i.e., PAN [21], RGB, and MSI [22]. Thomas et al. [23] introduced a component substitution
scheme for HSI super-resolution. The observed HSI is first divided into spatial and spectral components.
Then, the estimated HSI is obtained by substituting the spatial component with the observed PAN.
Based on the spectral mixture analysis, Yokoya et al. [24] proposed an HSI super-resolution method
by constructing a coupled feature space between the observed HSI and MSI of the same scene.
Subsequently, many HSI super-resolution approaches have been proposed to develop the efficient
estimation of the endmember and abundance matrices with some constraints [11–13,15–18]. For
example, in [11], a spatial smoothness constraint was imposed in the abundance optimization. In [25],
the nonnegativity and sparsity constraints were introduced in a constrained sparse representation for
HSI super-resolution. Fang et al. [26] proposed a superpixel-based sparse representation model to fuse
the observed HSI and MSI. Yi et al. [27] presented a regularization model by exploiting the spatial and
spectral correlations to achieve HSI-MSI fusion. These methods directly use the observed HSI or the
bicubic interpolation of the observed HSI to estimate the sparse dictionary or the endmember matrix.
However, a serious blurring effect in the observed HSI may lead to low estimation accuracy of the
endmember matrix.

To sum up, it is important to capture the spatial similarity of each band image and the
cross-correlation between the observed HSI and the auxiliary observations. Therefore, this is an
effective way to take full use of the advantages of the single-image-based and auxiliary-based
approaches.

3. Proposed Method

To take advantage of the additional information from the natural images and the spatial-spectral
information between the observed HSI and MSI, a new Super-Resolution network based on Domain
Transfer Learning (SRDTL) is proposed to enhance the spatial resolution, while preserving the abundant
spectral information in the reconstructed hyperspectral remote sensing images. The overall flowchart
of the proposed method is shown in Figure 1.

3.1. Notation

Let {XXXs,YYYs} be the high- and low-resolution information in the natural image domain. Similarly,
{XXX,YYY} is denoted as the high- and low-resolution information in the HSI domain, where XXX ∈ RM×N×L

and YYY ∈ Rm×n×L are the original high-spatial-resolution HSI and the observed low-spatial-resolution
HSI, M, N, m, n represent two spatial sizes, and L denotes the number of spectral bands. XXX and
YYY have the same high-spectral-resolution. Based on these observations: m � M and n � N,
the super-resolution problem, i.e., the estimation of XXX, is severely ill-posed. For convenience,
the HSI data are converted from 3D to 2D by concatenating the spatial pixels for each spectral
band, i.e., XXX ∈ RL×MN and YYY ∈ RL×mn. In addition, ZZZ ∈ Rl×MN represents the observed
MSI with high-spatial-resolution, but low-spectral-resolution, where l is the number of spectral
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bands in MSI. In particular, the observed HSI YYY and the observed MSI ZZZ are degraded from the
original high-spatial-resolution and high-spectral-resolution HSI XXX [11,24]. Therefore, the observed
low-spatial-resolution HSI YYY and low-spectral-resolution MSI ZZZ can be represented as:

YYY = Ψ (XXX) , ZZZ = Φ (XXX) , (1)

where Ψ : RL×MN → RL×mn and Φ : RL×MN → Rl×MN are two mapping functions, which may be
linear or nonlinear.

Generally, the MSI ZZZ is often approximated as:

ZZZ ≈ HHHXXX, (2)

where HHH ∈ Rl×L is the spectral response matrix, which is often assumed to be known [11,28]. This
means MSI ZZZ can be easily obtained by the spectral degradation of the original high-spectral-resolution
HSI XXX.

Figure 1. The flowchart of the proposed method. First, the Convolutional Super-Resolution Network
(CSN) model parameters are learned on the low- and high-resolution natural images. Then, the
transferred HSI is obtained by the trained CSN model with respect to the observed HSI. Finally, the
endmember matrix and the abundance matrix of the estimated HSI are optimized by using the observed
HSI, the observed Multispectral Image (MSI), and the transferred HSI. BN, Batch Normalization.

As is known in [11,17,28,29], the spectrum at each pixel position is often assumed to be
a linear combination of several endmember spectra. Therefore, the high-spatial-resolution and
high-spectral-resolution HSI XXX is formulated as:

XXX ≈ UUUVVV, (3)
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where UUU ∈ RL×C is the endmember matrix, VVV ∈ RC×MN is the abundance matrix, and C represents
the total number of endmembers. UUU denotes the spectral signatures of the underlying materials, while
VVV represents the proportions of endmember spectra in each spatial point of the scene.

3.2. Domain Transfer Learning

Inspired by the idea of transfer learning [18,30], the mapping between low- and high-resolution
images can be learned in the natural image domain and then transferred to the hyperspectral image
domain. Moreover, deep learning has strong generalization ability and representation power to achieve
domain transfer learning. Recently, many deep convolutional neural networks (CNNs) for image
super-resolution have been presented, e.g., [20,31]. The effective CNNs can capture the nonlinear
mapping between low- and high-resolution images.

To better learn the nonlinear mapping between low- and high-resolution images, a deep
Convolutional Super-resolution Network (CSN) [20] is constructed to handle multiple and even
spatially-variant degradations, which significantly enhances the applicability in the real world. In the
test process, CSN takes a low-resolution natural image and the degradation maps as the input and
then produces the corresponding high-resolution natural image. The degradation maps contain the
warping knowledge, which can enable the super-resolution network to have the spatial transformation
ability [32]. Similar to [20,33], a cascade of 3× 3 convolutional layers are used to perform the nonlinear
mapping between low- and high-resolution images. Each layer includes three operations: Convolution
(Conv), Batch Normalization (BN) [34], and Rectified Linear Units (ReLU) [35]. Generally, “Conv +
BN + ReLU” is applied to each convolutional layer excluding the last convolutional layer with only
one “Conv” operation. Then, an additional sub-pixel convolutional layer is applied to convert several
high-resolution subimages with a size of m× n× r2K into a single high-resolution image with a size
of M× N × K, where K is the number of channels and r denotes the magnification factor, which is
equal to M/m and N/n. Since CSN operates on RGB channels rather than the luminance channel (i.e.,
Y channel in YCbCr color space), the value of K is three.

The CSN directly learns the nonlinear mapping between the low-resolution image YYYs ∈
Rm×n×3 and the corresponding high-resolution image XXXs ∈ RM×N×3. F (·) denotes a deep CSN,
which takes YYYs as the input and outputs the estimated high-resolution image. As is known
to us, the nonlinear mapping function F (·) can be learned by minimizing the loss function
between the original high-resolution natural image XXXs and the estimated high-resolution image
F (YYYs,M; Θ), whereM represents the degradation maps with respect to the input image YYYs and Θ
denotes the CSN model parameters. Given a large training set containing lots of natural images
DDDs =

{(
XXXi

s,YYYi
s
)
|i = 1, 2, · · · , Ns

}
, the model parameters Θ of a CSN model are estimated by solving

the following minimization problem using the Adam method [36]:

Θ = arg min
Θ

1
2Ns

Ns

∑
i=1

∥∥∥F (YYYi
s,Mi; Θ

)
−XXXi

s

∥∥∥2

F
, (4)

where ‖ · ‖F denotes the Frobenius norm and Ns is the number of training sample pairs.
Once having obtained the learned CSN model, i.e., the model parameters Θ, it is reasonable to

transfer it from the natural image domain to the HSI domain in each spectrum direction. In this paper,
each band image of the low-spatial-resolution HSI YYY is first copied to RGB channels as the input of
the learned CSN model. Then, the estimated high-resolution band image is obtained by computing
the mean value of the output RGB channels. In this way, the transferred high-spatial-resolution HSI
XXXh ∈ RL×MN is predicted as:

XXXh = [E (F (Γ (YYY1) ,M1; Θ)) ; E (F (Γ (YYY2) ,M2; Θ)) ; · · · ; E (F (Γ (YYYL) ,ML; Θ))] , (5)

where YYYi ∈ R1×mn means the ith band image of the low-spatial-resolution HSI YYY, i = 1, 2, · · · , L.
In addition, Γ (·) represents the composite function that first converts the vector from 1D to 2D, i.e.,
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R1×mn → Rm×n, and then copies the same matrix to RGB channels, while E(·) denotes the other
composite function that first computes the mean value of the output RGB channels and then converts
the matrix from 2D to 1D, i.e., RM×N → R1×MN .

3.3. Optimization

Since the low-spatial-resolution HSI YYY and the corresponding high-spatial-resolution HSI XXX,
as well as the transferred high-spatial-resolution HSI XXXh capture the same scene, the underlying
materials, i.e., the endmember matrix, should be the same. In addition, the abundance matrix of
the transferred HSI XXXh is approximated as that from the estimated HSI XXX: VVVh ≈ VVV. Therefore,
the low-spatial-resolution HSI YYY and the transferred HSI XXXh should be approximated as:

XXXh ≈ UUUVVV, (6)

YYY ≈ UUUWWW, (7)

where WWW ∈ RC×mn is the abundance matrix of the observed low-spatial-resolution HSI YYY. Similarly, the
observed MSI ZZZ and the desired high-spatial-resolution HSI XXX share the same abundance matrix [17].
Hence, Equation (2) is changed as:

ZZZ ≈ UUUmVVV, (8)

where UUUm ∈ Rl×C is the endmember matrix of the observed MSI ZZZ.
Combining Equations (6)–(8), the super-resolution problem for HSI can be solved by minimizing

the following optimization problem:

min
UUU,VVV,WWW,UUUm

‖XXXh −UUUVVV‖2
F + α ‖YYY−UUUWWW‖2

F + β ‖ZZZ−UUUmVVV‖2
F ,

s.t. UUU ≥ 0, VVV ≥ 0, WWW ≥ 0, UUUm ≥ 0,
(9)

where α and β are two nonnegative regularization parameters. The constraints UUU ≥ 0, VVV ≥ 0, WWW ≥ 0,
and UUUm ≥ 0 mean that these matrices are element-wise nonnegative [37]. In the linear mixing model,
the abundance matrices VVV and WWW represent the abundances of the underlying materials that are
necessarily nonnegative. Recent studies [29,38] have shown that multiplicative update rules are
guaranteed to minimize the residual errors in Equation (9). Therefore, the multiplicative update rules
for UUU, VVV, WWW, and UUUm are given as:

UUU ← UUU. ∗
(

αYYYWWWT +XXXhVVVT
)

./
(

αUUUWWWWWWT +UUUVVVVVVT
)

, (10)

UUUm ← UUUm. ∗
(

ZZZVVVT
)

./
(

UUUmVVVVVVT
)

, (11)

WWW ← WWW. ∗
(

UUUTYYY
)

./
(

UUUTUUUWWW
)

, (12)

VVV ← VVV. ∗
(

UUUTXXXh + βUUUT
mZZZ
)

./
(

UUUTUUUVVV + βUUUT
mUUUmVVV

)
, (13)

where (·)T denotes the function of transposition and .∗ and ./ represent the element-wise multiplication
and division, respectively.

In summary, the overall description of the proposed method is given in Algorithm 1. Specifically,
the matrices UUU, VVV, WWW, and UUUm are first initialized randomly and then updated by computing
Equations (10)–(13) until convergence is reached. In this paper, the convergence condition is defined
as the change ratio of the loss function being smaller than a given threshold 10−8. The optimal
endmember matrix ÛUU and abundance matrix V̂VV are combined to reconstruct the high-spatial-resolution
HSI X̂XX.
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Algorithm 1: The proposed framework for HSI super-resolution.
Input: The observed low-spatial-resolution HSI YYY; observed high-spatial-resolution MSI ZZZ;

model parameters of CSN Θ; regularization parameters α and β; number of
endmembers C; maximum number of iterations T; convergence threshold τ.

Output: Estimate the high-spatial-resolution HSI X̂XX.
Transferring:

1. Obtain the transferred high-spatial-resolution HSI XXXh using Equation (5);

Initialize:

2. Set t = 0 and ε0 = 0;
3. Initialize UUU, UUUm, WWW, and VVV randomly.

for t = 1, 2, · · · ,T do

4. Update the endmember matrix UUU of the estimated HSI using Equation (10);
5. Update the endmember matrix UUUm of the observed MSI using Equation (11);
6. Update the abundance matrix WWW of the observed HSI using Equation (12);
7. Update the abundance matrix VVV of the estimated HSI using Equation (13);
8. Compute the loss function ε = ‖YYY−UUU ∗WWW‖2

F + ‖ZZZ−UUUm ∗VVV‖2
F;

if t > 2 & (ε0 − ε)/ε < τ then
break;

end
9. Set ε0 = ε and t = t + 1.

end

10. Obtain the optimal matrices ÛUU = UUU and V̂VV = VVV;
11. Estimate the high-spatial-resolution HSI XXX by computing X̂XX = ÛUUV̂VV.

4. Experiments

This section introduces the experiments for HSI super-resolution to verify the effectiveness of
the proposed method. Three public HSI datasets are described in Section 4.1. Section 4.2 introduces
state-of-the-art competing methods and evaluation indexes used in this paper. Section 4.3 shows the
parameter analysis of the proposed method. Finally, Section 4.4 displays the experimental results.

4.1. HSI Datasets

In the experiments, three HSI datasets, i.e., CAVE (http://www.cs.columbia.edu/CAVE/
databases/multispectral/), Pavia (http://www.ehu.eus/ccwintco/uploads/e/e3/Pavia.mat, and
Paris (https://github.com/alfaiate/HySure), were used to evaluate the performance of the
proposed method and state-of-the-art approaches. Commonly, the HSIs in these datasets were
considered as the original high-spatial-resolution and high-spectral-resolution HSIs. The simulated
low-spatial-resolution HSIs were obtained by first blurring the original HSIs and then downsampling
the result with a magnification factor r in each band direction. In addition, the value of HSI data was
often large; therefore, the original HSIs should be normalized to [0, 1]. For better evaluation, all the
output images were converted into 8-bit images.

The CAVE dataset [15,39] contains 32 HSIs with a size of 512 × 512 × 31, which means that
the size of each band image is 512× 512 and the number of spectral bands is 31. Similar to [28],
the high-spatial-resolution and low-spectral-resolution MSI was created by using the Nikon D700
spectral response (https://www.maxmax.com/spectral_response.htm), i.e., the spectral response

http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.ehu.eus/ccwintco/uploads/e/e3/Pavia.mat
https://github.com/alfaiate/HySure
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matrix HHH in Equation (2). Therefore, the auxiliary images of the same scene used in the CAVE dataset
are RGB images. To give better visual illustration, the Face image from the CAVE dataset is shown in
Figure 2, where three spectral bands, i.e., 3, 25, and 30, were chosen to provide a pseudo-color view.

Figure 2. Face image from the CAVEdataset, where the color image consists of Spectral Bands 3, 25,
and 30 for the red, green, and blue channels, respectively. (a) Bicubic interpolation of the observed
low-spatial-resolution HSI, with a magnification factor of three; (b) RGB image after applying Nikon
700 spectral response; (c) the original high-spatial-resolution HSI considered as the ground truth.

The Pavia dataset [11,18] captures the urban area of the university of Pavia, which is commonly
used in the application of hyperspectral classification. This dataset has a single HSI with a size of 610×
340× 103; however, there are 10 non-informational spectral bands. A region of interest with an image
size of 200× 200 was selected from the original Pavia image, which contained valuable information.
Therefore, a part of a size of 200× 200× 93 was used as the referenced high-spatial-resolution HSI,
after cropping the original Pavia image and removing the first ten spectral bands, i.e., XXX = XXX(411:610,
141:340, 11:103). The Paris dataset [11] is often used for real data experiments. The size of the Paris
image is 72× 72× 128. For the two remote sensing datasets, i.e., Pavia and Paris, the MSIs were created
by using the spectral response of the IKONOS satellite [11]. These MSIs contain four bands: blue,
green, red, and near-infrared components. Figures 3 and 4 show the Pavia image and the Paris image,
respectively. For the Pavia HSI data, three spectral bands 20, 16, and 5 were selected as a pseudo-color
view. For Paris HSI data, the color image is composed of Bands 28, 13, and 3 for red, green, and blue
channels, respectively.

Figure 3. Pavia image, where the color image consists of Spectral Bands 20, 16, and 5 for the red,
green, and blue channels, respectively. (a) Bicubic interpolation of the observed low-spatial-resolution
HSI with a magnification factor of three; (b) MSI after applying IKONOS spectral response; only red,
green, and blue components displayed; (c) the original high-spatial-resolution HSI considered as the
ground truth.



Remote Sens. 2019, 11, 694 9 of 19

Figure 4. Paris image, where the color image consists of Spectral Bands 28, 13, and 3 for the red,
green, and blue channels, respectively. (a) Bicubic interpolation of the observed low-spatial-resolution
HSI with a magnification factor of three; (b) MSI after applying IKONOS spectral response; only red,
green, and blue components displayed; (c) the original high-spatial-resolution HSI considered as the
ground truth.

4.2. Competitors and Evaluation Indexes

Competitors: To evaluate the effectiveness of the proposed method, seven current state-of-the-art
super-resolution approaches, including the conventional bicubic interpolation, Generalized
Laplacian Pyramid (GLP) [12], Hyperspectral Super-resolution (HySure) [11], Proximal Alternating
Linearized Minimization (PALM) [15], Collaborative Nonnegative Matrix Factorization (CNMF) [18],
Self-Dictionary Sparse Regression (SDSR) [17], and Super-Resolution network for Multiple Noise-Free
Degradation (SRMDNF) [20], were compared.

All of the above competing methods were obtained from the authors’ MATLAB+MEX
implementation, where the parameters were set for the best performance, as described in the
corresponding references. For a pair comparison, the number of endmembers CCC was set to 10 in
this paper. In addition, all the experiments were performed on a personal computer with NVIDIA
GeForce GTX 1080 Ti GPU, 64 GB memory, and 64-bit Windows 7 using MATLAB R2017b.

Evaluation indexes: There are many indexes to evaluate the image quality of the reconstructed
images, e.g., qualitative [40,41] and quantitative [42–45]. In this paper, six quantitative indexes were
employed to evaluate the quality of the reconstructed HSIs.

The first two quantitative indexes were the Mean Root-Mean-Squared Error (MRMSE) and
the Mean Peak Signal-to-Noise Ratio (MPSNR). The RMSE and PSNR between the original
high-spatial-resolution HSI XXX ∈ RL×MN and the high-spatial-resolution estimated HSI X̂XX ∈ RL×MN

are defined as:

RMSE(XXXi, X̂XXi) =

√
‖XXXi − X̂XXi‖2

2
MN

, (14)

MRMSE(XXX, X̂XX) =
1
L

L

∑
i=1

RMSE(XXXi, X̂XXi), (15)

MPSNR(XXX, X̂XX) =
1
L

L

∑
i=1

20 ∗ log10

(
max(XXXi)

RMSE(XXXi, X̂XXi)

)
, (16)

where max(·) is the maximum value of the input vector. MRMSE and MPSNR are based on mean
squared error. A smaller MRMSE value and a larger MPSNR value indicate that the reconstruction
quality of the estimated HSI X̂XX is better.
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The third quantitative index is the Mean Structure Similarity (MSSIM), which is to measure the
structural consistency between the estimated image and the reference image. The MSSIM index of HSI
data is formulated as:

MSSIM(XXX, X̂XX) =
1
L

L

∑
i=1

SSIM
(

ϕ(XXXi), ϕ(X̂XXi)
)

, (17)

where XXXi ∈ R1×MN and X̂XXi ∈ R1×MN denote the ith band images of the original HSI and the estimated
HSI, respectively. ϕ(·) is the function to convert a vector from R1×MN to RM×N . The details of the
function SSIM(·, ·) were described in [42]. The value of MSSIM belongs to [0, 1]. A larger MSSIM value
indicates that the estimated image is more similar to the reference image in the structure.

The fourth index is the relative dimensionless global error in synthesis (ERGAS) [43], defined as:

ERGAS(XXX, X̂XX) =
100

r

√√√√ 1
L

L

∑
i=1

RMSE2(XXXi, X̂XXi)

µ2
2,i

, (18)

where r is the magnification factor and µ2,i denotes the mean value X̂XXi. ERGAS calculates the band-wise
normalized RMSE and then divides it by the spatial factor between the high- and low-resolution HSIs.

The fifth quantitative index is the Universal Image Quality Index (UIQI) [44]. UIQI is performed
on a sliding window with a size of 32× 32 and averages on all the window positions and over all the
spectral bands. Denote XXXi,j and X̂XXi,j as the jth window region of the ith band image in the original and
estimated HSIs, respectively. Therefore, the equation of UIQI is given by:

UIQI(XXX, X̂XX) =
1

LP

L

∑
i=1

P

∑
j=1

4ρ2
ij

σ2
1,ij + σ2

2,ij

µ1,ijµ2,ij

µ2
1,ij + µ2

2,ij
, (19)

where P is the number of window positions and ρij represents the covariance between the subimages
XXXi,j and X̂XXi,j. In addition, µ1,ij and σ1,ij are the mean value and standard deviation of the reference
band image XXXi,j, respectively. Meanwhile, µ2,ij and σ2,ij are the mean value and standard deviation of
the estimated band image X̂XXi,j, respectively.

The sixth quantitative index is the Spectral Angle Mapper (SAM) [45], which is commonly used
to evaluate the spectral information preservation at each pixel. SAM measures the spectral similarity

by calculating the angle between the reference pixel XXXk ∈ RL×1 and the estimated pixel X̂XX
k ∈ RL×1,

defined as:

SAM(XXX, X̂XX) =
1

MN

MN

∑
k=1

arccos

(
(XXXk)TX̂XX

k

‖XXXk‖2‖X̂XX
k‖2

)
. (20)

The SAM value is given in degrees. When the SAM value is close to zero, this indicates high
spectral quality in the estimated HSI.

In summary, when MPSNR, MSSIM, and UIQI values are larger, the estimated HSI is more similar
to the reference HSI. Furthermore, the smaller MRMSE, ERGAS, and SAM values are, the better the
reconstruction quality of the estimated HSI is.

4.3. Parameter Analysis

As shown in Algorithm 1, the two main parameters of the proposed method are the regularization
parameters α and β. The value of α affects the estimation of endmember matrix, while the value of β

affects the contribution of the abundance matrix from the observed MSI. The value of regularization
parameter α was tuned with the set {0.0001, 0.0002, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 1}. Meanwhile,
the parameter β was varied with the set {1, 10, 100, 500, 1000,1500,2000,3000,4000,5000,10,000}. Figure 5
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shows the MRMSEs and MSSIMs with respect to the values of regularization parameters α and β on
the CAVE, Pavia, and Paris datasets, respectively.

From Figure 5, we can see that when the value of β increased, the MRMSEs and MSSIMs displayed
a small change with a fixed α. This is because the abundance matrix estimated from the observed MSI
generated a similar contribution in the final result. For the CAVE dataset, a peak value was generated
in the curved surface at α = 10−4 and β = 1500. In addition, the curved surfaces of the Pavia and Paris
datasets were similar. With a fixed α value, the MSSIMs began to increase slowly when the value of β

continued to increase. If the value of β is large, the ability of the estimation of the abundance matrix
from the observed MSI will be limited. Therefore, the regularization parameters α and β were set to
10−4 and 104 for both the Pavia and Paris datasets in the experiments.

4.4. Experimental Results

The experimental results on the three HSI datasets are summarized in this subsection. Tables 1–3
show the quantitative results (using Equations (15)–(20)) and the computation time of the proposed
method and the baselines on the CAVE, Pavia, and Paris HSI datasets with a magnification factor
of three, respectively. The reported evaluation values were calculated in the 8-bit resulting images.
Although the bicubic, GLP, CNMF, and SDSR methods take less time, the reconstruction quality of
these methods is very limited. Compared with the competing methods, the computation time of the
proposed method was the largest. That is because the proposed method relies on the construction of
the transferred HSI, which is obtained by the existing SRMDNF method for each spectral band. For
the CAVE dataset, the values shown in Table 1 are the average values of the six quantitative indexes
over the 32 hyperspectral images. Compared with state-of-the-art approaches, the proposed method
achieved better performance for most cases, which indicates that the information transferred from the
natural image domain can enhance the ability of HSI super-resolution. Especially, the proposed method
obtained the best MSSIM index values in most of the cases, which demonstrates that the estimated
HSIs obtained by the proposed method have better structural similarity and higher spatial-resolution.

Table 1. Quantitative results on the CAVE dataset with a magnification factor of 3. GLP, Generalized
Laplacian Pyramid; HySure, Hyperspectral Super-resolution; PALM, Proximal Alternating Linearized
Minimization; CNMF, Collaborative Nonnegative Matrix Factorization; SDSR, Self-Dictionary Sparse
Regression; SRMDNF, Super-Resolution network for Multiple Noise-Free Degradation; MPSNR, Mean
Peak Signal-to-Noise Ratio; UIQI, Universal Image Quality Index; SAM, Spectral Angle Mapper.

Indexes Bicubic GLP HySure PALM CNMF SDSR SRMDNF Proposed

MRMSE 7.02 5.01 6.50 2.36 2.44 6.06 4.32 2.75
MPSNR 31.10 33.84 31.38 37.70 37.63 32.04 35.26 38.00
MSSIM 0.9137 0.9517 0.9286 0.9543 0.9352 0.9206 0.9165 0.9577
ERGAS 9.71 6.95 8.99 4.59 4.71 9.57 6.82 5.05

UIQI 0.7221 0.8461 0.6935 0.7981 0.7320 0.6692 0.7114 0.7921
SAM 0.0863 0.1379 0.0941 0.1230 0.1893 0.4462 0.1227 0.0763
Time 0.2 6.3 572.4 208.8 68.1 5.4 1541.0 1596.3

Table 2. Quantitative results on the Pavia dataset with a magnification factor of 3.

Indexes Bicubic GLP HySure PALM CNMF SDSR SRMDNF Proposed

MRMSE 17.14 11.93 9.60 10.57 9.23 9.52 13.99 8.11
MPSNR 23.54 26.73 30.31 27.72 28.91 28.58 25.28 29.97
MSSIM 0.5293 0.7968 0.8177 0.8720 0.8910 0.9008 0.6574 0.9305
ERGAS 13.53 9.27 7.24 8.40 7.15 7.94 11.52 7.03

UIQI 0.6096 0.8214 0.8664 0.8664 0.8977 0.8869 0.7775 0.9304
SAM 0.1390 0.1066 0.1397 0.0976 0.0830 0.1376 0.1069 0.0985
Time 0.2 5.4 137.0 159.7 54.0 3.5 1985.9 1990.3
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Mean Root-Mean-Squared Errors (MRMSEs) and Mean Structure Similarities (MSSIMs)
versus the value of parameters α and β using the proposed method with a magnification factor of three.
(a) MRMSEs versus α and β on the CAVE dataset. (b) MSSIMs (in terms of percentage) versus α and β

on the CAVE dataset. (c) MRMSEs versus α and β on the Pavia dataset. (d) MSSIMs (%) versus α and β

on the Pavia dataset. (e) MRMSEs versus α and β on the Paris dataset. (f) MSSIMs (%) versus α and β

on the Paris dataset.
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Table 3. Quantitative results on the Paris dataset with a magnification factor of 3.

Indexes Bicubic GLP HySure PALM CNMF SDSR SRMDNF Proposed

MRMSE 19.05 13.38 13.74 13.61 10.64 14.53 17.31 10.47
MPSNR 22.81 25.82 26.39 25.61 27.97 25.42 23.60 27.97
MSSIM 0.3103 0.7305 0.6610 0.7642 0.8392 0.7454 0.3802 0.8648
ERGAS 9.74 6.90 7.56 7.12 5.53 7.67 8.95 5.62

UIQI 0.3129 0.6962 0.7386 0.6868 0.8314 0.6986 0.4699 0.8369
SAM 0.1248 0.0880 0.1173 0.0943 0.1004 0.1737 0.1150 0.1027
Time 0.2 2.0 6.8 15.5 2.0 0.5 251.3 255.4

For visualization, Figures 6–8 show the pseudo-color images obtained by different methods on
the Balloons, Pavia, and Paris images with a magnification factor of three, respectively. In addition,
Table 4 shows the MSSIM values corresponding to Figures 6–8. Although bicubic enlarges the image
size, blurring effects often exist in the reconstructed images. GLP was better than bicubic; however,
GLP easily produces the ghost effects on the edge area. HySure can learn high-spatial-resolution
information from the observed MSI, but it may introduce noise in the final result. PALM performed
worse on the structural regions than smooth regions. CNMF only uses the knowledge learned from
natural images, which lacks some complex structural information. SDSR uses the result obtained by
the bicubic interpolation as the pre-HSI, which will reduce the estimation accuracy of the endmember
matrix. SRMD is a single-image super-resolution method, which learns more valuable information
from a high-resolution training image dataset. However, it ignores the spectral consistency for HSI
super-resolution. From the theory of domain transfer learning, the knowledge transferred from the
natural image domain can improve the ability of HSI super-resolution reconstruction to a certain
extent. For this reason, the proposed method combines the transferred HSI, the observed HSI, and
MSI to estimate the optimal endmember and abundance matrices. Compared with state-of-the-art
approaches, the proposed method achieves better performance for HSI super-resolution.

Figure 6. Super-resolution reconstruction results on the Balloons image from the CAVE dataset with
a magnification factor of three. (a) Bicubic; (b) GLP; (c) HySure; (d) PALM; (e) CNMF; (f) SDSR; (g)
SRMDNF; (h) proposed.
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Figure 7. Super-resolution reconstruction results on the Pavia dataset with a magnification factor of
three. (a) Bicubic; (b) GLP; (c) HySure; (d) PALM; (e) CNMF; (f) SDSR; (g) SRMDNF; (h) proposed.

Figure 8. Super-resolution reconstruction results on the Paris dataset with a magnification factor of
three. (a) Bicubic; (b) GLP; (c) HySure; (d) PALM; (e) CNMF; (f) SDSR; (g) SRMDNF; (h) proposed.

To further compare the performance of different methods in each spectral band, Figure 9 shows
the RMSE between the original spectra and the estimated spectra on the Balloons, Face, Pavia, and
Paris hyperspectral images. In addition, Table 5 shows the average RMSE values corresponding to
Figure 9. Compared with the baselines, the proposed method preserved the spectral consistency from
the observed HSI and achieved better performance for most cases.

In addition, to validate the effectiveness of the proposed method for different magnification
factors, we repeated the experiments for a magnification factor of four. Tables 6–8 show the quantitative
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results and the computation time of different methods on the CAVE, Pavia, and Paris datasets with a
magnification factor of four, respectively. Further, Figure 10 shows the pseudo-color images obtained
by different methods for the Face image from the CAVE dataset with a magnification factor of four.
From the overall experimental results, we can see that the proposed method achieved better spatial
similarity to the ground truth and preserved higher spectral consistency, which is suitable for the
complex real-world HSI super-resolution tasks.

Table 4. The MSSIM values obtained by different methods on the Balloons, Pavia, and Paris images
with a magnification factor of 3.

Images Bicubic GLP HySure PALM CNMF SDSR SRMDNF Proposed

Balloons 0.9612 0.9762 0.9632 0.9823 0.9771 0.9500 0.9678 0.9894
Pavia 0.5293 0.7968 0.8177 0.8720 0.8910 0.9008 0.6574 0.9305
Paris 0.3103 0.7305 0.6610 0.7642 0.8392 0.7454 0.3802 0.8648

Figure 9. Spectral errors in terms of the RMSE for the compared methods. (a) Balloons image; (b) Face
image; (c) Pavia image; (d) Paris image.

Table 5. The average values and the standard deviations of the RMSEs corresponding to Figure 9,
in terms of percentage %.

Images Bicubic GLP HySure PALM CNMF SDSR SRMDNF Proposed

Balloons 1.83 ± 0.20 1.34 ± 0.12 2.10 ± 0.19 0.73 ± 0.24 0.84 ± 0.24 2.80 ± 1.15 0.99 ± 0.10 0.72 ± 0.21
Face 2.96 ± 0.31 2.16 ± 0.18 2.95 ± 0.20 1.15 ± 0.29 1.40 ± 0.34 2.44 ± 1.25 1.84 ± 0.30 1.67 ± 0.41
Pavia 6.72 ± 0.96 4.67 ± 0.84 3.76 ± 2.65 4.14 ± 0.56 3.61 ± 0.51 3.73 ± 0.27 5.48 ± 0.66 3.18 ± 0.25
Paris 7.47 ± 1.81 5.25 ± 1.16 5.38 ± 2.52 5.33 ± 1.09 4.17 ± 1.19 5.70 ± 2.05 6.79 ± 1.54 4.10 ± 0.94
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Table 6. Quantitative results on the CAVE dataset with a magnification factor of 4.

Indexes Bicubic GLP HySure PALM CNMF SDSR SRMDNF Proposed

MRMSE 7.72 4.38 6.35 3.03 3.26 7.16 3.41 2.92
MPSNR 29.71 35.40 31.80 37.22 38.38 31.51 37.77 39.37
MSSIM 0.9112 0.9649 0.9390 0.9652 0.9417 0.9214 0.9667 0.9668
ERGAS 7.45 4.11 5.95 3.14 3.09 6.95 3.51 3.03

UIQI 0.6738 0.8645 0.6801 0.8208 0.7475 0.7026 0.7400 0.8187
SAM 0.0872 0.0742 0.0923 0.1086 0.1876 0.4478 0.0694 0.1564
Time 0.2 17.5 1038.3 452.5 137.6 12.3 1586.5 1722.2

Table 7. Quantitative results on the Pavia dataset with a magnification factor of 4.

Indexes Bicubic GLP HySure PALM CNMF SDSR SRMDNF Proposed

MRMSE 17.21 9.01 11.18 8.85 6.90 10.05 12.94 6.50
MPSNR 16.52 27.68 28.54 21.67 29.57 25.37 20.84 30.16
MSSIM 0.5252 0.8904 0.7870 0.9058 0.9427 0.8947 0.7092 0.9499
ERGAS 10.21 5.24 6.57 5.39 4.28 6.30 7.70 3.81

UIQI 0.5704 0.8968 0.7638 0.8968 0.9451 0.8554 0.8151 0.9531
SAM 0.1396 0.0872 0.1827 0.0877 0.0894 0.1479 0.1017 0.0649
Time 0.2 7.3 133.8 64.5 36.8 3.1 1599.1 1687.7

Table 8. Quantitative results on the Paris dataset with a magnification factor of 4.

Indexes Bicubic GLP HySure PALM CNMF SDSR SRMDNF Proposed

MRMSE 19.19 10.87 18.31 12.08 9.81 14.84 16.91 9.36
MPSNR 14.62 24.03 20.10 18.91 24.86 21.61 18.79 26.03
MSSIM 0.3060 0.8424 0.6053 0.8174 0.8727 0.7444 0.4091 0.8796
ERGAS 7.35 4.20 7.56 4.78 3.89 5.79 6.52 3.64

UIQI 0.2681 0.8112 0.5461 0.7334 0.8434 0.6500 0.4928 0.8648
SAM 0.1257 0.0745 0.1817 0.0890 0.0904 0.1821 0.1136 0.0958
Time 0.3 3.7 8.7 20.7 2.9 0.7 527.1 539.5

Figure 10. Super-resolution reconstruction results on the Face image from the CAVE dataset with a
magnification factor of four. (a) Bicubic (MSSIM: 0.9205); (b) GLP (MSSIM: 0.9691); (c) HySure (MSSIM:
0.9427); (d) PALM (MSSIM: 0.9693); (e) CNMF (MSSIM: 0.9348); (f) SDSR (MSSIM: 0.9561); (g) SRMDNF
(MSSIM: 0.9666); (h) proposed (MSSIM: 0.9782).
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5. Conclusions

In this paper, a novel domain transfer learning-based HSI super-resolution method was proposed
to improve the spatial-resolution of the observed HSI, on the basis of the spatial similarity and
spectral consistency. First, the proposed method obtains the transferred high-spatial-resolution HSI
by exploiting the knowledge from the natural images. Then, the transferred high-spatial-resolution
HSI, the observed low-spatial-resolution HSI, and high-spatial-resolution MSI are unified to estimate
the endmember and abundance matrices during the spectral mixture analysis. Finally, the optimal
endmember and abundance matrices are used to construct the target high-spatial-resolution HSI.

Through the experiments on the three real-world HSI datasets, i.e., CAVE, Pavia, and Paris
datasets, the proposed method achieved better super-resolution reconstruction performance than the
competing approaches. Specifically, the performance of the proposed method can still outperform
the baselines for the magnification factors of three and four, which indicates that the proposed
method is suitable for complex real-world super-resolution applications. When compared with the
bicubic interpolation with a magnification factor of three, the average MSSIM values obtained by the
proposed method at least increased by 4.4%, 40.1%, and 55.5% for the CAVE, Pavia, and Paris datasets,
respectively. The proposed method captures the nonlinear mapping relationship between low- and
high-resolution natural images and then transfers the knowledge to the HSI domain. In addition,
the proposed method enhances the spatial similarity and preserves the spectral consistency in the
optimization of the endmember and abundance matrices. Therefore, the proposed method achieved
qualitative and quantitative results in the experiments.

In the future, the focus of our work will be on how to estimate the endmember matrix or the
abundance matrix with higher precision under some effective constraints.
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