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Abstract: Object-based image analysis (OBIA) has been widely used for land use and land cover (LULC)
mapping using optical and synthetic aperture radar (SAR) images because it can utilize spatial information,
reduce the effect of salt and pepper, and delineate LULC boundaries. With recent advances in machine
learning, convolutional neural networks (CNNs) have become state-of-the-art algorithms. However,
CNNs cannot be easily integrated with OBIA because the processing unit of CNNs is a rectangular
image, whereas that of OBIA is an irregular image object. To obtain object-based thematic maps,
this study developed a new method that integrates object-based post-classification refinement (OBPR)
and CNNs for LULC mapping using Sentinel optical and SAR data. After producing the classification
map by CNN, each image object was labeled with the most frequent land cover category of its pixels.
The proposed method was tested on the optical-SAR Sentinel Guangzhou dataset with 10 m spatial
resolution, the optical-SAR Zhuhai-Macau local climate zones (LCZ) dataset with 100 m spatial resolution,
and a hyperspectral benchmark the University of Pavia with 1.3 m spatial resolution. It outperformed
OBIA support vector machine (SVM) and random forest (RF). SVM and RF could benefit more from the
combined use of optical and SAR data compared with CNN, whereas spatial information learned by
CNN was very effective for classification. With the ability to extract spatial features and maintain object
boundaries, the proposed method considerably improved the classification accuracy of urban ground
targets. It achieved overall accuracy (OA) of 95.33% for the Sentinel Guangzhou dataset, OA of 77.64%
for the Zhuhai-Macau LCZ dataset, and OA of 95.70% for the University of Pavia dataset with only 10
labeled samples per class.

Keywords: object-based post-classification refinement (OBPR); convolutional neural network (CNN);
synthetic aperture radar (SAR); land use and land cover; object-based image analysis (OBIA)

1. Introduction

Land use and land cover (LULC) information is essential for forest monitoring, climate change
studies, and environmental and urban management [1–4]. Remote sensing techniques are widely
used for LULC investigation because of their capability to observe land surfaces routinely on a large
scale. The most often used remotely sensed data are optical images, such as those from Landsat [5–7].
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Synthetic aperture radar (SAR) images are also used for LULC classification because of their weather
independence [8–12]. Unlike optical data, which contain spectral information, SAR data characterize
the structural and dielectric properties of ground targets [13]. Combination of optical and SAR data
results in a comprehensive observation of ground targets, and therefore, has a great potential to
improve the accuracy of LULC classification [14].

The potential of the combination of optical and SAR data has been increasingly explored for
LULC classification, especially after the Sentinel mission was initiated by the European Space Agency
(ESA) for Earth observation, which provides free-of-charge optical and SAR data [15,16]. Thanks to
the weather independence of radar remote sensing, Reiche et al. [17] improved forest mapping
in a tropical region with heavy cloud coverage by fusion of optical and time series SAR imagery.
Kussul et al. [18] applied the multi-layer perceptron (MLP) classifier for crop mapping in Ukraine
and achieved accuracies of over 90% for major crop types using multitemporal optical and SAR data.
Zhang et al. [19] reduced classification confusions among impervious surface, bare soil, shaded area,
and water with fusion of optical and SAR images using RF classifier. Zhang and Xu [20] concluded that
fusion of optical and SAR data for LULC mapping may be classifier-dependent. They found that SVM
and RF had a better performance than maximum likelihood classifier and artificial neural network
when using multisource data.

Object-based image analysis (OBIA), together with advanced machine learning algorithms,
has been widely used for LULC classification, as it can delineate object boundaries and produce
compact classification maps [21]. The spatial, textural, and contextual features extracted by OBIA
have shown a great ability to boost the classification performance. For example, Wang et al. [22]
produced a global map of build-up area with hierarchical object-based GLCM textures derived from
Landsat images and showed a 2.8% improvement on OA compared with that from only spectral bands.
Ruiz Hernandez and Shi [23] applied both GLCM texture metrics and spatial indices in a geographic
OBIA framework with RF for urban land use mapping. Recently, Franklin and Ahmed [24] applied RF
and object-based analysis for tree species classification on multispectral images captured by unmanned
aerial vehicles (UAVs). Many studies have concluded that object-based spatial and textural features
can significantly improve the classification [25–30].

Pixel-based spatial and textural features, rather than object-based textures, have been concluded
very useful for LULC mapping as well. Huang et al. [31] found that pixel-based morphological profiles
significantly outperformed object-based GLCM textures for forest mapping and species classification.
Wang et al. [32] tested the Completed Local Binary Patterns (CLBP) textures originally designed
for face recognition and found that the textures were suitable for classifying wetland vegetation
using SVM. With recent advances in machine learning, deep learning models (e.g., CNNs) have
achieved great success in computer vision and pattern recognition. Like OBIA, CNNs learn spatial,
textural, and contextual information from images, which have been concluded very useful for LULC
mapping [33–39]. Therefore, the integration of deep learning and OBIA is worth exploring.

Deep learning for remote sensing image classification can be classified into two categories [40].
One is the conventional LULC classification, in which we obtain a single satellite image and then
randomly collect some labeled samples on it. The other is semantic segmentation, in which we
collect a set of fully annotated images from the same sensor and then train a CNN to classify new
images without any annotation. Semantic segmentation is based on a special kind of CNNs, the fully
convolutional networks (FCNs) [41].

As FCNs do not require any annotation in the predicted image, they are extremely suitable
for large-scale LULC classification [35,42–46]. Maggiori et al. [35] proposed a CNN with a fully
convolutional architecture using a two step pre-training method to produce large-scale building
maps. Kampffmeyer et al. [43] measured the uncertainty of FCNs and applied the median frequency
balancing to adjust FCNs for imbalance classes and improved segmentation results of small objects.
Yu et al. [45] proposed a FCN with the pyramid pooling module to capture features at multiple scales,
and thus achieved accurate segmentation for multiple ground objects. As semantic segmentation often
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leads to blurry LULC boundaries, Marmanis et al. [46] designed a deep CNN that combined boundary
detection and segmentation networks to delineate object boundaries.

FCNs have presented a great potential for large-scale LULC classification, but they highly depend
on annotated images. For this reason, previous studies are often limited to some high-resolution
benchmarks with only RGB channels, such as the ISPRS Vaihingen and Potsdam datasets. When
the annotated maps are unavailable, for example, using Sentinel data for local climate zones (LCZs)
classification [2,47,48], it is really difficult to use these semantic segmentation models. One exception
is from the study of Liu et al. [49]. They successfully applied FCNs using training samples from a
single image, where a training sample was the minimum bounding box of each object. However,
pixels in the area outside the object and inside the bounding box must be manually labeled to boost the
classification performance. Thus, patch-based CNNs are more suitable for LULC classification with
single or few images than FCNs.

CNNs are originally designed for image recognition, and the input shall be a rectangular image [49–51].
Zhao et al. [52] applied a five-layer CNN to extract spatial features within an 18 × 18 window. Then,
these features were combined with OBIA to produce the classification map based on the tanh classifier.
Zhang et al. [50] carefully designed a novel object-based CNN to locate the convolutional center of an
image object using the minimum bounding box. In their study, each image object was represented
by a 128 × 128 image patch. However, objects delineated from satellite images vary widely in size.
A large object results in a large minimum bounding box. A large-scale fixed representation may fail to
capture small ground targets. For example, bridges on the water are very slender and a large part of
the background is water, which might mislead a CNN to classify such image patch as water.

In this study, we present a novel yet simple method, namely object-based post-classification
refinement (OBPR), to obtain object-based thematic maps produced by CNN using Sentinel
multispectral and SAR data with very small input patches (e.g., 5 × 5). By using small input
patches, small ground targets (e.g., high-rise buildings and roads) can be effectively captured.
By post-classification processing, the classification maps are refined by object boundaries using majority
voting. The proposed method was evaluated on two optical-SAR datasets and one hyperspectral
dataset with diverse spatial resolutions. The three datasets are the Sentinel Guangzhou dataset
with 10 m spatial resolution, the Zhuhai-Macau LCZ dataset with 100 m spatial resolution, and the
University of Pavia dataset with 1.3 m spatial resolution. The remainder of this paper is organized
as follows. Section 2 introduces the study area and the datasets. Section 3 explains the methodology,
including details of CNNs and the proposed OBPR. Section 4 presents the results and discussion.
Conclusions are drawn in Section 5.

2. Study Area and Data

2.1. The Optical-SAR Sentinel Guangzhou Dataset

The first dataset is the optical-SAR Sentinel Guangzhou dataset (available on Google Drive
https://drive.google.com/open?id=1NoCHjqRmiYV1lijoHYFvWaqHxKCVrv8X). The study area is in
the districts of Panyu and Haizhu in Guangzhou (Figure 1a), which is the center city of the Pearl River
Delta in China. This study area features urban and country landscapes that include a variety of LULC
categories. Therefore, it is an ideal site for testing the proposed method using optical and SAR data.

The optical Level-1C data were acquired on 1 November 2017 by Sentinel-2A (Figure 1b). The data
consist of 13 spectral bands, including four bands with 10 m spatial resolution, six bands with 20 m
spatial resolution, and three bands with 60 m spatial resolution. Those with 60 m spatial resolution were
discarded in the study because they are not designed for land cover classification [16]. The Sentinel data
were downloaded from the Open Access Hub of ESA (https://scihub.copernicus.eu/dhus/#/home).
The detail spectral and spatial information of these spectral bands are shown in Table 1. As the
input image of CNNs should have the same size, the 20 m resolution bands were resampled to 10 m
resolution ones using the nearest neighbor interpolation method embedded in SNAP 5.0.

https://drive.google.com/open?id=1NoCHjqRmiYV1lijoHYFvWaqHxKCVrv8X
https://scihub.copernicus.eu/dhus/#/home
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Figure 1. Study area and data. (a) Study area; (b) Sentinel-2A optical image (true color composition);
and (c) Sentinel-1A SAR image (red: VV, green: VH, blue: VV/VH).

Table 1. Sentinel-1A SAR data and Sentinel-2A optical data used in this study.

Data Type Image Channel Wavelength Spatial Resolution

Optical

Band 2 490 nm

10 m
Band 3 560 nm
Band 4 665 nm
Band 8 842 nm

Band 5 705 nm

20 m

Band 6 740 nm
Band 7 783 nm

Band 8a 865 nm
Band 11 1610 nm
Band 12 2190 nm

SAR
VV 5.6 cm (C-Band)

20 m × 22 mVH 5.6 cm (C-Band)

The C-Band SAR data were acquired by Sentinel-1A on 7 November 2017 (Figure 1c). The data are
Level-1 interferometric wide-mode and Ground-Range-Detected High-resolution (GRDH) products
in VV and VH polarizations. SNAP 5.0 was employed for SAR preprocessing. After radiometric
calibration, the Lee sigma filter [53] with a 7 × 7 window and a 3 × 3 target window was implemented
on the SAR data to suppress the speckle noise. The output data were geometrically corrected using
Range-Doppler Terrain Correction embedded in SNAP 5.0 and then converted into decibel format
(logarithmic scale) for classification. The optical and SAR data were clipped to a 3640 × 2890 size with
a pixel size of 10 × 10 m.

The LULC types of the Sentinel Guangzhou dataset were categorized into 11 classes, namely, new town
(NT), old town (OT), bare land (BL), port areas (P), green houses (GH), lawn (L), industry and commerce (IC),
roads (R), villas (V), water (W), and trees (T). Old town included typically historic downtowns, urban villages,
and villages in the suburbs. Industry and commerce were mostly large-area man-made buildings with high
albedo, such as factories, conference centers, and high-speed railway stations. The samples were collected
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randomly through a visual interpretation of the high-resolution satellite images provided by Google Maps.
The characteristics of these LULC classes in the high-resolution images are shown in Figure 2. To test the
robustness of the proposed method, we constructed two subsets of training samples (50 and 10 object
samples per class) randomly. The detailed numbers of the training and test samples are shown in Table 2.

Table 2. Numbers of training and test samples selected for each LULC class.

Class
Training Samples Test Samples

150 Objects 50 Objects 10 Objects 150 Objects

New town 4203 1512 288 4357
Old town 8869 2993 880 9394
Bare land 5312 1959 389 5250
Port area 8078 3102 582 6880

Green houses 12,321 3946 1162 11,098
Lawn 8184 2835 566 10,119

Industry and commerce 3362 1044 163 2911
Roads 8482 3265 436 8795
Villas 7513 2545 466 6189
Water 24,760 7844 2395 30,742
Trees 13,008 4753 1112 12,990

Figure 2. Typical LULC categories in the Guangzhou dataset.

2.2. The Optical-SAR Zhuhai-Macau LCZ Dataset

The second dataset is the optical-SAR Zhuhai-Macau LCZ dataset. The concept of LCZ is originally
developed by Stewart and Oke [2] for urban heat island studies and now has attracted great interests
in the remote sensing community, as it provides a standard classification system for urban land
use mapping. For example, the 2017 IEEE GRSS Data Fusion Contest [48] was a task to perform
classification of LCZs in nine cities worldwide with various urban environment. Under this context,
LULC is categorized into 17 LCZs based on surface cover, structure, material, and human activity [2].
An ongoing project, the world urban database and access portal tools (WUDAPT) [54], is aimed to
gather such climate relevant surface information using freely remotely sensed data (i.e., Landsat
and Sentinel).

Based on the WUDAPT project, we collected a pair of Sentinel multispectral and SAR images to
create the Zhuhai-Macau LCZ dataset. The multispectral imagery with zero cloud coverage (Figure 3) was
collected on 21 March 2018, and the SAR imagery was collected on 19 March 2018. The study area
fully covered the cities of Zhuhai and Macau and a small part of the neighboring cities (Zhongshan,
Jiangmen, Shenzhen, and Hong Kong). After preprocessing of SAR image and registration, the images
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were resampled to 100 m spatial resolution using the nearest neighbor method. The study area with a
true color composite is shown in Figure 3.

The reference data were collected on Google Earth and some of the reference data that were
difficult to distinguish were checked in fields. The numbers of samples are shown in Table 3, and the
samples captured on high spatial resolution satellite images are shown in Figure 4. The LCZ-7 class in
this dataset was mainly green houses; the LCZ-C class is not taken into account as the study area is in
the subtropics, resulting in a total of 16 classes. The dataset contains very limited labeled samples with
a highly complex classification system, resulting a extremely difficult classification task. The size of the
image is 1098 × 1098 with 12 channels.

Figure 3. The Zhuhai-Macau LCZ dataset.

Figure 4. Local climate zones (except for water) in this study.
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Table 3. Number of samples for the Zhuhai-Macau LCZ dataset and the University of Pavia dataset.

The Zhuhai-Macau LCZ Dataset The University of Pavia

Class Trainning Samples Training Objects Test Samples Class Samples

LCZ-1 Compact high-rise 52 13 72 Asphalt 6631
LCZ-2 Compact mid-rise 26 10 36 Meadows 18,649
LCZ-3 Compact low-rise 168 118 251 Gravel 2099
LCZ-4 Open high-rise 141 81 98 Trees 3064
LCZ-5 Open mid-rise 50 31 32 Metal sheets 1345
LCZ-6 Open low-rise 73 41 55 Bare soil 5029
LCZ-7 Lightweight low-rise 127 46 157 Bitumen 1330
LCZ-8 Large low-rise 143 32 132 Bricks 3682
LCZ-9 Sparsely built 23 3 16 Shadows 947
LCZ-10 Heavy industry 19 1 40
LCZ-A Dense trees 88 43 76
LCZ-B Scattered trees 8 6 20
LCZ-D Low plants 36 4 103
LCZ-E Bare rock or paved 45 5 32
LCZ-F Bare soil or sand 59 39 23
LCZ-G Water 190 42 261

Total 1248 515 1404 42,776

2.3. The University of Pavia Dataset

The University of Pavia (The data were downloaded from http://www.ehu.eus/ccwintco/
index.php/Hyperspectral_Remote_Sensing_Scenes), a popular benchmark hyperspectral dataset,
is used to test the proposed method as well. This dataset was collected using the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor over the urban area of the University of Pavia, Italy,
on 8 July 2002. The size of the data is 610 × 340 with a spatial resolution of 1.3 m and 103 spectral
bands. There are nine classes in this dataset. The details of sample numbers are shown in Table 3 and
the false color map with reference data is shown in Figure 5. In the experiment, we conducted the
principal component analysis (PCA) and used the top three components for classification to remove
redundant features and simulate common high spatial resolution imagery with only RGB channels.

(a) (b)

Background
Asphalt
Meadow
Gravel
Trees
Metal sheets
Bare soil
Bitumen
Bricks
Shadows

Figure 5. The University of Pavia dataset. (a) False color map; (b) Reference data.

3. Methods

3.1. Object-Based Classification Strategy

3.1.1. OBIA

For the Sentinel Guangzhou dataset, image objects were delineated from the optical and SAR
images using the multiresolution segmentation algorithm embedded in eCognition [55]. Inspired by
Qi et al. [9], who conducted image segmentation on the Pauli RGB composition image of polarimetric

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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SAR data, we performed image segmentation on four spectral bands, which provide the highest spatial
resolution (10 m). We also slightly over-segmented the images to ensure the segmentation accuracy.
The suitable parameters were determined through a heuristic process. A scale parameter of 30 was
found suitable based on visual interpretation. The shape and compactness parameters were set as 0.10
and 0.80, respectively. The entire area was segmented into 329,725 image objects.

For OBIA, the mean values; standard deviation; and four categories of textural information,
namely, gray-level co-occurrence matrix (GLCM) homogeneity, GLCM contrast, GLCM dissimilarity,
and GLCM entropy, were extracted from each image channel. Eighteen indicators related to shape
and extent, namely, border length, width, asymmetry, relative boarder to image border, elliptic fit,
density, number of pixels, radius of smallest enclosing ellipse, rectangular fit, length, length/width,
volume, radius of largest enclosed ellipse, shape index, compactness, roundness, area, and boarder
index, were also extracted. These features were used in OBIA-RF.

For the Zhuhai-Macau LCZ dataset with 100 m spatial resolution, the segmentation algorithm
was performed on all the channels. A scale of 20 was found suitable and the image was delineated into
71,583 image objects. For the University of Pavia dataset, the segmentation algorithm was performed
on the top three principal components from PCA. The image was delineated into 5275 image objects
under a scale of 8.

3.1.2. OBPR

To better clarify the proposed method, a systematic illustration of four approaches to obtain
object-based thematic maps is presented in Figure 6. The conventional OBIA (Figure 6a) extracts
spatial and textural features from image objects, and then uses one of the one-dimensional classifiers
to classify image objects. However, we need to manually design these features to utilize the spatial
information with OBIA.

The invention of CNNs simplifies the process of feature extraction, because CNNs can
automatically learn spatial features for classification with back-propagation during training.
To integrate deep learning with OBIA, we can treat a fixed-size image as the representation of an
image object (Figure 6b) and then convert the problem of assigning irregular image objects with LULC
types to a problem of classifying rectangular images to LULC types. Consequently, we can apply deep
learning models from computer vision directly for LULC mapping. But the image needs to be large
enough to cover the entire object, resulting inaccurate classification in small objects. The third solution
is based on FCNs (Figure 6c), where an image is fed in an FCN and produce a segmentation map.

As shown in Figure 7, OBPR was performed after pixel-based classification. After classification,
each pixel x has a predicted label c, where c ∈ {1, 2, ..., C}, and C is the number of LULC types. Based on
the segmentation, each pixel with the predicted label (x, c) belongs to an image object Rk. Pixels in the
same object should be classified as the same LULC type. Thus, for Rk = {(x1, c1), (x2, c2)..., (xnk , cnk )},
where nk is the number of pixels inside Rk, there should be only one corresponding label ĉk.
Assuming f (ck) is the frequency of the predicted labels inside Rk, the assigned label ĉk of the object is
determined as:

ĉk = argmax( f (ck)). (1)

Figure 6d shows an example of the OBPR strategy. If more than one major label exist in an image
object, a reasonable solution will be to assign the label with the highest occurrence in the entire image.
As there are many pixels inside an object, we can randomly assign the smallest or largest integer as the
object label without affecting the classification results. The analysis is presented in Section 4.7.2.
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Figure 6. A systematic illustration of four different approaches to obtain object-based thematic maps.

Optical and
SAR imagery Segmentation

Object
samples

Pixel
samples

Reference
data

CNN Pixel-based
classification map OBPR

Object-based
classification map

Refine classification by object boundaries

Figure 7. Flowchart of the proposed OBPR-CNN. The image is first segmented into image objects.
Based on reference data, we select object-based samples, and pixels inside image objects serve as
training samples in the CNN. After obtaining the pixel-based classification map, object boundaries are
applied to refine the classification result and obtain an object-based thematic map.

3.2. Machine Learning Algorithms

3.2.1. SVM

SVM is a competitive machine learning algorithm for its excellent generalization even with
limited training samples. This is because SVM distinguishes training samples by finding the separate
hyperplane related to the maximal margin and describes and specifies the hyperplane not by all the
samples but only by the support vectors, which are the subset of samples. However, it may take
considerable training time for huge datasets, especially when the most popular kernel Radial Basis
Function is adopted. When applying pixel-based SVM, we randomly downsampled the number
of samples to 400 per class to obtain the result within an acceptable time. The experiments with
SVM were conducted on Python 3.6 using scikit-learn [56], which uses LibSVM [57] as its core
algorithm. The parameters of C and γ were first coarse-grid-searched within {2−5, 2−3, ..., 215}
and {2−15, 2−13, ..., 23}. Then, the parameters were fine-grid-searched using the temporary best
parameters Ĉ, γ̂ within Ĉ, γ̂ × {2−1.75, 2−1.5, ..., 21.75}. Fivefold cross-validation was performed to
optimize the parameters.
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3.2.2. RF

RF is one of the powerful ensemble learning algorithms. There are mainly three advantages of
this algorithm. First, it can handle thousands of input features without feature selection. Second, it can
estimate the importance of input features. Third, it is insensitive to noise and outliers. Given the
aforementioned advantages, it has a great potential for LULC mapping with multi-source data.
We implemented the experiments using scikit-learn [56] with Python 3.6. The number of trees was
searched within {20, 40, ..., 200} because previous studies showed that the optimal number of trees
was within [20, 200] [58,59]. The number of max features was searched within {1, 2, ...,

√
n + 1}, where

n is the number of input features.

3.2.3. CNN

Deep learning has achieved considerable successes in computer vision and natural language
processing. CNN, as a successful deep learning architecture, has been applied to remote sensing
image classification and achieved state-of-the-art results. A comparison of CNN and other machine
learning algorithms is shown in Figure 8. CNN presents two advantages in remote sensing image
classification [60]. First, the convolutional layers automatically learn useful textural and spatial features
from the input patch-based samples. Second, the nonlinear layers, such as rectified linear unit and
batch normalization, construct powerful functions for use in fusing and transforming the extracted
features for the classification.

Op�cal and SAR data
3640 × 2890 × 12 Patch-based samples

for CNN
5 × 5 × 12

128 extracted features
spa�al/spectral/backsca�ering

128 fused features
for classifica�on

Output probabili�es
for each class

Pixel-based samples
for SVM/RF

1 × 12

Red

VH

Only spectral/backsca�ering 
informa�on considered

Random forest
classifier

One patch
5 × 5 × 12

One pixel
1 × 1 × 12

Feature extracton Feature fusion Softmax
classifier

Figure 8. Classification systems.

In this study, CNN was implemented using the Keras [61] library with TensorFlow [62] back-end
in Python 3.6. Wide contextual residual network (WCRN) modified from the contextual CNN by
replacing AlexNet with ResNet was adopted because it can run on CPU and perform competitively [34,63].
Twenty percent of the training samples were separated as the validation set, and then the model
that achieved the smallest loss in validation was used for classification. A total of 128 fused and
transformed spatial-spectral-backscattering features were extracted. The output scores z of each class
for one pixel were normalized as probabilities p by the softmax classifier:

pj(z) =
ezj

∑k ezk
(2)

where pj is the probability of the pixel to belong to the j-th land cover category and k is the number of
land cover classes.
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4. Results and Discussion

The proposed method was evaluated on three datasets, two optical-SAR datasets with diverse
spatial resolutions and one hyperspectral dataset. OBIA-SVM and OBIA-RF were selected as the
benchmark methods. The experiments were conducted on a machine equipped with a 3.5 GHz Intel
Xeon E3-1241 v3 CPU and 8G RAM.

4.1. Results on the Optical-SAR Sentinel Guangzhou Dataset

The classification results on the Sentinel Guangzhou dataset are shown in Table 4. The proposed
method achieved the highest classification accuracy, with OA of 95.33% and κ of 0.94, considerably
larger than those achieved by OBIA-SVM (OA of 90.22% and κ of 0.89) and OBIA-RF (OA of 88.20% and
κ of 0.86). The classification accuracy (OA of 91.10% and κ of 0.90) obtained by the standard CNN was
already larger than those by OBIA-SVM/RF. This result indicates that the spatial information extracted
by CNN was helpful in LULC classification. Among the LULC classes, urban LULC categories,
especially new town and roads, were better classified using the proposed method. New town is
well planned mid-rise to high-rise buildings. Both new town and roads are very small in the image,
surrounding by complicated urban structure. The spatial information for these LULC classes thus is
very important for their accurate classification. Therefore, the ability of CNN to extract spatial features
considerably helped the classification task.

Table 4. Classification accuracy (%) comparison among the proposed method and other competitors
using 10 m and 20 m optical-SAR data. Experimental results with the same background color were
produced by the same kind of classifier.

Classification Accuracy SVM OBIA-SVM OBPR-SVM RF OBIA-RF OBPR-RF CNN OBPR-CNN
New town 53.50 62.15 69.41 52.77 61.92 64.68 86.23 93.71
Old town 77.63 88.39 89.75 80.87 83.28 94.40 86.80 94.72
Bare land 90.29 92.19 92.69 90.04 91.20 91.68 94.15 96.70
Port area 77.38 86.57 82.46 77.67 83.97 80.80 88.92 91.89
Green houses 94.13 98.99 99.39 93.85 99.60 99.84 98.59 100.00
Lawn 81.22 84.88 85.56 81.55 82.13 85.56 80.96 87.89
Industry and commerce 89.04 93.10 91.93 90.86 89.63 92.17 93.61 94.61
Roads 55.52 67.98 61.99 53.38 58.76 54.78 76.12 87.54
Villas 66.76 81.40 79.95 71.89 78.87 84.07 84.12 92.18
Water 98.73 100.00 99.84 98.88 100.00 100.00 98.59 100.00
Trees 87.77 94.21 93.20 88.11 92.74 93.19 92.44 95.25
Overall accuracy (OA,%) 84.35 90.22 89.73 84.86 88.20 89.54 91.10 95.33
Kappa coefficient (κ) 0.82 0.89 0.88 0.82 0.86 0.88 0.90 0.94
Average accuracy (AA,%) 79.27 86.35 86.01 79.99 83.83 85.56 89.13 94.05

The proposed OBPR strategy remarkably improved the OA of CNN by 4.23%, indicating that
the spatial constraint by object boundaries was very useful for LULC classification. When OBPR was
combined with SVM/RF, the performance was as competitive as OBIA-SVM/RF (OA of 90.22% and
OA of 88.20%), obtaining an OA of 89.73% and 89.64%, respectively. Most of the previous studies
argued that the effectiveness of OBIA came from two aspects. One was that through OBIA we could
obtain object-based classification maps. The other was that we could generate textural features from
OBIA. Although the classification results in this study confirmed that OBIA-SVM/RF outperformed
pixel-based SVM/RF, the superiority actually came from the spatial constraint that pixels inside one
object should share the same label.

To evaluate the robustness of the proposed method, we constructed two subsets of training
samples; the results are presented in Table 5. The classification results with the subsets of training
samples were consistent with those using 150 object samples per class. The proposed method obtained
OA of 93.76% with 50 object samples per class, 4.65% and 7.26% higher than those by OBIA-SVM
and by OBIA-RF, respectively. When only 10 labeled objects per class available, the proposed method
significantly outperformed other classification algorithms, achieving OA of 89.81%, 6.22% greater than
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that of OBIA-SVM and 7.38% greater than that of OBIA-RF. The margin between OBPR-CNN and
OBIA-SVM/RF enlarged when the training samples became limited.

Previous studies demonstrated that sufficient samples (at least 50 samples per class) are need to
construct the classification system for remote sensing image classification. Otherwise the performance
of classifiers will be significantly degraded. As only 10 labeled objects per class were available,
the classification was not satisfactory with OBIA. However, 10 objects contained at least 163 pixels in
our study (Table 2). When the pixel samples were used, the number of pixel samples (163 per class)
would be enough for classifiers to construct powerful classification systems. Therefore, we observed
increases in OA of 3.03% and 3.62% from OBIA-SVM/RF to OBPR-SVM/RF.

Table 5. Overall accuracies (%) of the proposed method and the competitors. The best result of each
dataset (row) is highlighted in bold, and the best result of each method (column) is underlined. NoS
denotes number of training samples per class.

NoS Optical SAR SVM OBIA-SVM OBPR-SVM RF OBIA-RF OBPR-RF MLP OBPR-MLP CNN OBPR-CNN

150

10 m No 77.86 84.59 86.70 76.96 82.33 87.71 75.58 81.53 88.50 93.61
10 m Yes 81.31 86.58 87.84 81.94 86.39 89.04 80.89 87.02 89.70 94.57

10 m + 20 m No 83.27 89.88 90.20 82.34 86.69 88.89 79.08 85.52 90.11 94.43
10 m + 20 m Yes 84.35 90.22 89.73 84.86 88.20 89.54 82.69 88.14 91.10 95.33

50

10 m No 76.74 83.23 86.25 73.06 81.11 82.48 72.71 78.19 85.25 91.10
10 m Yes 78.40 84.96 86.74 79.84 85.50 86.55 79.23 85.58 87.57 92.40

10 m + 20 m No 79.68 88.94 88.23 79.77 85.74 86.36 73.68 80.26 87.20 91.21
10 m + 20 m Yes 82.65 89.11 89.40 83.18 86.50 88.80 79.46 85.01 88.91 93.76

10

10 m No 71.19 77.48 77.85 69.22 71.40 76.89 68.98 72.87 84.12 89.01
10 m Yes 75.53 77.68 82.62 73.40 78.19 80.91 61.16 65.45 82.13 86.46

10 m + 20 m No 78.81 81.28 87.83 75.48 78.45 82.58 70.20 76.07 84.47 89.70
10 m + 20 m Yes 79.20 83.59 86.62 78.69 82.43 86.05 74.03 79.18 84.41 89.81

4.2. Results on the Zhuhai-Macau LCZ Dataset

The second experiment was conducted on the Zhuhai-Macau LCZ dataset, and the results are shown
in Table 6. The proposed method outperformed other competitors in all cases. With full optical-SAR
features, OBPR-CNN obtained OA of 77.64%, whereas the best non-CNN method OBPR-MLP only
obtained OA of 70.94%, and the best OBIA method OBIA-RF achieved OA of 68.09%.

The best OA on this dataset was lower than 80%, indicating the complication of LCZ
classification [47]. One of the crucial problems is that different LCZs might have the same material and
result in the same spectral information in the satellite imagery. Thus, spatial information is essential
to distinguish them. The comparison between OBPR-CNN and non-CNN method (77.64% versus
70.94%) indicated the advance of CNN, and the comparison between the proposed method and OBIA
(77.64% versus 68.09%) illustrated the effectiveness of OBPR.

Table 6. Overall accuracies (%) of the Zhuhai-Macau LCZ dataset amongst the proposed method and
the competitors. The best result of each dataset (row) is highlighted in bold, and the best result of each
method (column) is underlined.

Optical SAR SVM OBIA-SVM OBPR-SVM RF OBIA-RF OBPR-RF MLP OBPR-MLP CNN OBPR-CNN
10 m No 58.40 61.61 63.32 63.75 57.05 67.09 60.40 62.68 70.30 72.15
10 m Yes 64.32 68.02 67.17 65.03 59.90 67.88 62.89 66.45 67.88 70.37

10 m + 20 m No 67.95 70.94 72.08 65.88 67.38 67.09 65.81 69.52 75.43 76.92
10 m + 20 m Yes 68.09 66.74 70.80 67.38 68.09 68.02 66.17 70.94 75.21 77.64

4.3. Results on the University of Pavia Dataset

A popular hyperspectral dataset, the University of Pavia, was used to test the proposed method
on high spatial resolution imagery. For this dataset, we randomly selected 5, 10, and 100 pixel samples
per class, while the remaining samples served for validation. The image objects where these pixels
lied in served as training samples in OBIA. All the pixels inside the training objects were used for
training. In this manner, the OBPR strategy is in fact applying semi-supervised learning based on
superpixels [64]. The OAs are presented in Table 7.

The proposed OBPR-CNN outperformed other methods among all sample sets. When training
samples were sufficient (i.e., 100 per class), OBPR-CNN obtained OA of 96.32%, whereas the best
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non-CNN method OBPR-RF achieved OA of 94.90%. With the number of training samples decreasing,
OBPR achieved OA of 95.70% using 10 sample per class and OA of 85.88% using five samples per class,
whereas OBPR-RF obtained OAs of 78.82% and 67.28%, respectively. We can observe that OBPR-CNN
was more superior when the samples were limited. This finding is contradictory to the common sense
that deep learning models like CNNs need a large amount of training samples.

Table 7. Overall accuracies (%) of the University of Pavia dataset amongst the proposed method and
the competitors. The best result of each sample set (row) is highlighted in bold. NoS denotes the
number of training samples per class.

NoS SVM OBIA-SVM OBPR-SVM RF OBIA-RF OBPR-RF MLP OBPR-MLP CNN OBPR-CNN
100 72.26 85.66 78.57 90.28 89.92 94.90 79.80 86.27 93.32 96.32
10 63.04 67.75 69.13 73.26 75.66 78.82 68.40 76.18 90.04 95.70
5 62.39 58.51 67.23 63.96 61.91 67.28 69.30 75.55 83.26 85.88

Not only OBPR-CNN obtained higher OAs than conventional OBIA methods, but also non-CNN
OBPR methods outperformed OBIA methods. Take RF for example as it is less sensitive to noisy
features. OBPR-RF consistently obtained higher OAs compared with OBIA-RF, e.g., 94.90% versus
89.92% using 100 samples per class. Such results illustrate that we should rethink of the OBIA strategy,
as we can obtain classification maps with higher OAs with OBPR. As mentioned before, the strategy of
OBPR is indeed one kind of semi-supervised learning, which is based on superpixels and can increase
the number of training samples. This explains why OBPR outperformed OBIA.

4.4. Contribution of SAR Data to LULC Classification

Results of two optical-SAR datasets indicated the effectiveness of SAR data when it comes to
LULC classification. To analyze such effects, the difference of producer’s accuracy (PA) and the
user’s accuracy (UA) between optical-only and optical-SAR data on the Sentinel Guangzhou dataset
is presented in Figure 9. We found that the effects of SAR data depended on classifiers. When the
RF classifier was used, the PAs and UAs of all the LULC classes were increased, especially for urban
LULC types such as villas, roads, port areas, and new town. The improvement was less apparent when
SAR data were combined with 10 m and 20 m optical data, but the differences of PAs and UAs of roads,
port areas, and new town were still near 10%. Similar improvements were found in the classification
results of SVM. The improvements made by CNN were not as significant as those using RF. The reason
is that CNN can extract spatial information from the patch-based samples, whereas SVM and RF are
pixel-based classifiers and lack the ability to make use of spatial features.

The contribution of SAR data to LULC classification was partly because of the side-looking
imaging mode of radar remote sensing and the long wavelength of the C-band. The side-looking
imaging mode and the C-band radar signals resulted in the low intensity of some ground targets, such
as roads, which belong to the impervious surface and usually show high albedo in optical remote
sensing images. In Figure 10, the SAR backscatter from roads was low and provided different physical
information beyond optical remote sensing. The classification maps in Figure 10 show that with the
addition of SAR data, the roads were identified accurately. Moreover, the classification maps produced
by the combination of SAR and optical data presented minimal salt-and-pepper effects probably
because the data from different sensors exhibited varied noises and the signals from radar remote
sensing might have denoised the optical image.
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RF

SVM

CNN

Figure 9. The contribution of SAR data for LULC classification on the Sentinel Guangzhou dataset.
For RF and SVM, adding SAR data results in significant improvements on PAs and UAs of all the
classes, showing the usefulness of SAR data. For CNN, the improvement is marginal, indicating that
spatial information is more important for LULC classification than backscattering signals.

In Figure 11, the optical data suffered from shadow effects, which were severe in urban centers
with city skylines. Most of the shadows were mistakenly classified as water, when the optical images
were used alone, because the shadow effects were inevitable when a single data set from optical remote
sensing was used. The radar backscatter from water was markedly lower than that from urban areas,
due to the side-looking image mode of radar remote sensing and the complicated structure of the urban
center. The differences in radar backscatter and textural features between water and urban areas could
be extracted by CNN and resulted in accurate LULC classification, thus showing the advancement of
the proposed OBPR-CNN.
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Figure 10. Classification maps obtained by RF. The addition of SAR data helped distinguish between
roads and port area; the classification maps obtained with SAR data exhibited small salt-and-pepper
effects; the classification maps processed with OBPR were compact.

Figure 11. Classification maps obtained using OBPR-SVM, OBPR-RF, and OBPR-CNN. The addition
of SAR data and the use of OBPR-CNN resulted in accurate LULC classification in urban areas with
building shadows.

4.5. Feature Importance of the Sentinel Optical and SAR Data

The importance of features estimated by RF is presented in Figure 12 to illustrate the
aforementioned conclusion that OBIA outperformed pixel-based algorithms mainly because it can
obtain object-based thematic maps instead of utilizing textural features. The most important feature
is the mean value of Band 12, which belongs to the middle infrared with a spatial resolution of 20 m.
Other mean values of infrared spectral bands also played a significant role for LULC classification.
This may be because the signals from infrared bands were less affected by atmosphere and were
informative for LULC mapping. The mean values of 10 m spectral bands and the SAR backscatters
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(VH and VV polarizations) were crucial for classification as well. However, the GLCM textures
were not important (less than 2%) for classification as estimated by RF. The importance of features
illustrated that GLCM textures were not as important as object boundaries for LULC classification
using Sentinel optical and SAR data. Instead of using hand-crafted features, CNNs can learn spatial
features automatically, which were optimized by back-propagation and had a better performance than
hand-crafted GLCM textures.

0.00 0.01 0.02 0.03 0.04 0.05

NIR

Red

Green

Blue

20 m (Band 7)

20 m (Band 6)

20 m (Band 5)

20 m (Band 8A)

20 m (Band 12)

20 m (Band 11)

VV

VH

Feature importance

GLCM homogeneity
GLCM contrast

GLCM entropy
GLCM dissimilarity

Standard deviation
Mean value

Figure 12. Feature importance estimated by RF classifier. The GLCM textural features have a very
limited effect for LULC classification on the Sentinel Guangzhou dataset, whereas the mean value of
each channel plays a significant role. The features generated by OBIA are not important enough and
thus it might explain why OBIA is less competitive than OBPR-CNN.

4.6. CNN as Feature Extractor

The power of CNN lies in its capability to extract spatial features and fuses the spatial-spectral
features into a high-dimensional feature space where the classifier can well distinguish the different
classes. If the extracted features serve as input of SVM and RF, then the results of SVM and RF should
be as competitive as those using CNN with the softmax classifier. As shown in Table 8, CNN-RF and
CNN-SVM represent classification results by RF and SVM based on spatial-spectral features extracted
by CNN. Notably, CNN indicates classification results based on the softmax classifier. The OAs using
CNN as feature extractor for SVM, RF and softmax are competitive. Interestingly, the best OA of
each dataset, including optical-only data and optical-SAR data, was obtained by RF. This may reflect
the excellent generalization of RF that it can handle noisy and thousands of input features without
feature selection.
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Table 8. Overall accuracy (%) of CNN (softmax), SVM and RF using CNN as feature extractor.

Optical SAR OBPR

10 m 20 m 10 m CNN CNN-SVM CNN-RF
√

93.61 94.65 95.31√ √
94.57 94.44 94.57√ √
94.43 94.7 95.47√ √ √
95.33 95.47 95.97

4.7. Sensitivity Analysis

4.7.1. Sensitivity Analysis of the Segmentation Scale

We have conducted experiments to analyze the sensitivity of the segmentation scale of
OBPR. The results are presented in Figure 13. For the Sentinel Guangzhou dataset (Figure 13a),
the performance of OBPR is effective. The optimal scale lies in the range of 40 to 80, whereas the
average number of pixels per object varies approximately from 80 to 200 (8000–20,000 m3). When the
scale is very small and each object contains very little pixels, the improvement made by OBPR is
limited yet observable. When the scale is very large (e.g., greater than 150), the performance of OBPR
is degraded. Nevertheless, the improvement by OBPR is stable and effective as the scale of 30 to 120
is quite wide and safe. From the segmentation images (Figure 14). We can observe that a scale of 30
produces a very fragmented segmentation, whereas a scale of 120 leads to under-segmentation. With a
heuristic process, one can easily find a proper segmentation scale in this range.
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(a) The optical-SAR Sentinel Guangzhou dataset with 10 m spatial resolution.
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(b) The optical-SAR Zhuhai-Macau LCZ dataset with 100 m spatial resolution.

Figure 13. Cont.
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(c) The University of Pavia dataset with 1.3 m spatial resolution.

Figure 13. Sensitivity analysis of the segmentation scale. (Left) OA as function of the segmentation
scale. (Right) Average number of pixels per object as function of the segmentation scale.

Scale = 30 Scale = 60
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´
0 200100 m

Figure 14. Segmentation maps with various segmentation scales. A scale of 30 leads to observable
oversegmentaton, whereas a scale of 120 leads to undersegmentation. Still, the performance of OBPR is
satisfactory in this range (Figure 13a).
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For the Zhuhai-Macau LCZ dataset (Figure 13b), the improvement by OBPR is not as effective
as that of the Sentinel Guangzhou dataset. The effective scale varies from 15 to 30 (0.1–0.4 km3 per
object). Since this dataset is with a very low spatial resolution (100 m), it might not be suitable for
object-based classification.

The result of the University of Pavia dataset (Figure 13c) confirms that OBPR can obtain very
satisfactory performance for high spatial resolution imagery. For classification maps by CNN and RF,
OBPR can consistently improve the OA. For the classification map produced by SVM, OBPR degrades
the result after the scale reaches to 60. A segmentation scale of 60 is extremely large, as each object
contains almost 2000 pixels and the whole image is segmented to no more than 200 objects. An OA of
63.04% is quite low. When applying the majority voting strategy, incorrect classification could lead to a
larger error. Nevertheless, with reasonable heuristic processing, it is easy to find a proper segmentation
scale. The sensitivity analysis indicates that OBPR is less sensitive to the scale. OBPR can be very
effective in a wide range of the segmentation scale with high to medium spatial resolution imagery.

4.7.2. The Choice of Three Majority Voting Strategies

The results of three choices of majority voting strategies are presented in Figure 15. From the left
side of Figure 15 we can observe that that the choice of the majority strategy has very limited effects
(less than 0.5%) on OA. The result is expected because many pixels were present inside an object.
Only a few objects encountered the situation in which at least two major labels were detected (right
side of Figure 15). In addition, the randomness of the dominant LULC type can ease the problem.
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(a) The optical-SAR Sentinel Guangzhou dataset with 10 m spatial resolution.

10 15 20 25 30 35 40 45 50
Segmentation scale

72

73

74

75

76

77

Ov
er

al
l a

cc
ur

ac
y 

(%
)

Largest
Smallest
Most

10 15 20 25 30 35 40 45 50
Segmentation scale

5.5

6.0

6.5

7.0

Pe
rc

en
ta

ge
 o

f a
t l

ea
st

 tw
o 

m
aj

or
 la

be
ls 

(%
)

(b) The optical-SAR Zhuhai-Macau LCZ dataset with 100 m spatial resolution.

Figure 15. Cont.
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(c) The University of Pavia dataset with 1.3 m spatial resolution.

Figure 15. (Left) OA as function of the segmentation scale with different majority voting strategies.
Three choices of majority voting strategies. Largest: assign the largest integer as the object label.
Smallest: assign the smallest integer as the object label. Most: assign the most frequent class in
the candidates as the object label. (Right) percentage of at least two major labels as function of the
segmentation scale.

4.7.3. The Effect of Patch Size

Classification maps of diverse patch sizes are shown in Figure 16. A large patch size (35× 35)
results in inaccurate classification of small roads between mulberry fish ponds, whereas a small
patch size (5× 5) better captures small objects in the image. In addition, using a small patch size is
computationally efficient, providing users an opportunity to apply deep learning models on their
personal laptops without expensive GPUs.

´ 0 1 2.5
kmNew town

Old town
Bare land
Port area

Green houses
Lawn

Industry and commerce
Roads

Villas
Water

Trees

5 × 5 15 × 15 25 × 25 35 × 35 False color map

Figure 16. Classification maps produced by CNNs with different patch size. A large patch size leads to
inaccurate classification of small roads between fish ponds.

4.7.4. Number of Trees in RF

Previous studies have a wide discussion on the optimal number of trees when using RF
classifier [65]. We tested the RF classifier on the optical-SAR Sentinel Guangzhou dataset with the
number of trees in the range of [20, 500] (Figure 17). The classification accuracy is insensitive to
the number of trees as pointed out by Du et al. [59], especially after it is up to 60. In addition,
OBPR significantly outperforms OBIA regardless of the number of trees.
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Figure 17. OA as function of number of trees in RF. We can observe that number of trees has very
little effect on OA after it grows to 60. (Left) 10 samples per class. (Middle) 50 samples per class.
(Right) 150 samples per class.

5. Conclusions

In this study, we developed a new method that equips CNNs with the ability to produce
object-based thematic maps for LULC classification. Compared with other three methods, the proposed
method OBPR-CNN can present promising results with limited labeled samples. Our method
was tested on three datasets with diverse spatial resolutions and different classification systems.
It obtained a remarkable result with OA of 95.33% and κ of 0.94 on the Sentinel Guangzhou dataset
and a satisfactory result with OA of 77.64% with limited and imbalanced labeled samples on the
Zhuhai-Macau LCZ dataset using Sentinel multispectral and SAR data. Our method also achieved a
very competitive result (OA of 95.70%) on the popular hyperspectral dataset the University of Pavia
with only 10 labeled samples per class. Such results outperformed traditional OBIA methods.

Through further studies, we found that object-based GLCM textures were less important for
LULC mapping in this study. The performance of OBIA mainly lies in its capability to produce
object-based classification maps rather than generating textural features. The hand-crafted GLCM
textures were less superior than those learned by CNNs. Therefore, OBPR-CNN is better than OBIA
to obtain object-based thematic maps. The combined use of optical and SAR data depended on
classifiers. When CNNs were used, the addition of SAR data had limited improvement for LULC
mapping, whereas the addition of SAR data played a significant role in distinguishing urban ground
targets using one-dimensional classifier, i.e., SVM, RF and MLP. This study is the first to evaluate the
performance of optical and SAR data using CNNs. From the results, we may conclude that in the
era of deep learning, spatial information extracted by CNN is more crucial for LULC mapping than
the combined use of optical and SAR data. Nevertheless, the addition of SAR data and the spatial
information extracted by CNN helped distinguish urban LULC classes such as roads, new town,
and port areas.

Future studies may explore high spatial resolution SAR imagery (e.g., TerraSAR-X) using the
proposed method. The fusion of multimodal, multisource, and multitemporal data for complicated
classification tasks such as LCZ classification is worth investigation as well.
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Abbreviations

The following abbreviations are used in this manuscript:

SAR synthetic aperture radar
OBIA object-based image analysis
OBPR object-based post-classification refinement
LULC land use and land cover
FCN fully convolutional network
CNN convolutional neural network
SVM support vector machine
RF random forest
MLP multi-layer perceptron
LCZ local climate zone
OA overall accuracy
PA producer’s accuracy
UA user’s accuracy
GLCM gray-level co-occurrence matrix
VV vertical transmit and vertical receive
VH vertical transmit and horizontal receive
NoS number of samples
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