
remote sensing  

Article

Rebuilding a Microwave Soil Moisture Product Using
Random Forest Adopting AMSR-E/AMSR2
Brightness Temperature and SMAP over the
Qinghai–Tibet Plateau, China

Yuquan Qu 1, Zhongli Zhu 1,*, Linna Chai 1, Shaomin Liu 1, Carsten Montzka 2 , Jin Liu 1,
Xiaofan Yang 1, Zheng Lu 1, Rui Jin 3, Xiang Li 1, Zhixia Guo 1 and Jie Zheng 1

1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science,
Beijing Normal University, Beijing 100875, China; 201621170046@mail.bnu.edu.cn (Y.Q.);
chai@bnu.edu.cn (L.C.); smliu@bnu.edu.cn (S.L.); liuj@mail.bnu.edu.cn (J.L.); xfyang@bnu.edu.cn (X.Y.);
legend.lz@mail.bnu.edu.cn (Z.L.); xiangli@mail.bnu.edu.cn (X.L.); 201621170058@mail.bnu.edu.cn (Z.G.);
201721170058@mail.bnu.edu.cn (J.Z.)

2 Forschungszentrum Jülich, Institute of Bio- and Geosciences: Agrosphere (IBG-3), 52428 Jülich, Germany;
c.montzka@fz-juelich.de

3 Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research
Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China; jinrui@lzb.ac.cn

* Correspondence: zhuzl@bnu.edu.cn

Received: 30 January 2019; Accepted: 17 March 2019; Published: 21 March 2019
����������
�������

Abstract: Time series of soil moisture (SM) data in the Qinghai–Tibet plateau (QTP) covering a period
longer than one decade are important for understanding the dynamics of land surface–atmosphere
feedbacks in the global climate system. However, most existing SM products have a relatively short
time series or show low performance over the challenging terrain of the QTP. In order to improve
the spaceborne monitoring in this area, this study presents a random forest (RF) method to rebuild a
high-accuracy SM product over the QTP from 19 June 2002 to 31 March 2015 by adopting the advanced
microwave scanning radiometer for earth observing system (AMSR-E), and the advanced microwave
scanning radiometer 2 (AMSR2), and tracking brightness temperatures with latitude and longitude
using the International Geosphere–Biospheres Programme (IGBP) classification data, the digital
elevation model (DEM) and the day of the year (DOY) as spatial predictors. Brightness temperature
products (from frequencies 10.7 GHz, 18.7 GHz and 36.5 GHz) of AMSR2 were used to train the
random forest model on two years of Soil Moisture Active Passive (SMAP) SM data. The simulated
SM values were compared with third year SMAP data and in situ stations. The results show that the
RF model has high reliability as compared to SMAP, with a high correlation (R = 0.95) and low values
of root mean square error (RMSE = 0.03 m3/m3) and mean absolute percent error (MAPE = 19%).
Moreover, the random forest soil moisture (RFSM) results agree well with the data from five in
situ networks, with mean values of R = 0.75, RMSE = 0.06 m3/m3, and bias = −0.03 m3/m3 over
the whole year and R = 0.70, RMSE = 0.07 m3/m3, and bias = −0.05 m3/m3 during the unfrozen
seasons. In order to test its performance throughout the whole region of QTP, the three-cornered
hat (TCH) method based on removing common signals from observations and then calculating the
uncertainties is applied. The results indicate that RFSM has the smallest relative error in 56% of the
region, and it performs best relative to the Japan Aerospace Exploration Agency (JAXA), Global Land
Data Assimilation System (GLDAS), and European Space Agency’s Climate Change Initiative (ESA
CCI) project. The spatial distribution shows that RFSM has a similar spatial trend as GLDAS and
ESA CCI, but RFSM exhibits a more distinct spatial distribution and responds to precipitation more
effectively than GLDAS and ESA CCI. Moreover, a trend analysis shows that the temporal variation
of RFSM agrees well with precipitation and LST (land surface temperature), with a dry trend in most
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regions of QTP and a wet trend in few north, southeast and southwest regions of QTP. In conclusion,
a spatiotemporally continuous SM product with a high accuracy over the QTP was obtained.

Keywords: soil moisture; random forest; Qinghai–Tibet plateau; SMAP; AMSR-E; AMSR2

1. Introduction

Soil moisture (SM) is a key state variable for understanding hydrological processes with a variety
of environmental applications (e.g., ecological, geomorphological and water resource management) [1,2].
Soil moisture also plays an important role in the climate systems from local scales to global scales, and
the Global Climate Observing System (GCOS) has deemed it as an essential climate variable (ECV)
in 2010 [3].

The Qinghai–Tibet plateau (QTP) is also called the “water tower of Asia”. It is the headstream
of seven major rivers in Asia. With an average altitude of more than 4000 m, the QTP has a great
influence on the Asian monsoon and the global atmospheric cycle, and is a sensitive area to climate
change. In other words, here global climate change can be effectively monitored. Obtaining a series of
accurate soil moisture data in the QTP can provide important observations to understand the dynamics
of land surface-atmosphere feedbacks in the global climate system [4]. However, observation data
from long time series are very scarce and statements about the temporal variation of SM in the QTP
remain vague. For example, long-term data products such as from the European Space Agency’s
Climate Change Initiative (ESA CCI) [5], where different sensor types were merged by a cumulative
distribution function (CDF)-matching procedure, temporal inconsistencies are introduced, e.g., due
to different responses to the challenging terrain (e.g., from different microwave frequencies, active
and passive operation modes etc.). Data assimilation products, such as from the Global Land Data
Assimilation System (GLDAS) [6,7], usually present soil moisture data from deeper soil layers, which
cannot respond to changes in the surface caused by some small precipitation events [8]. Additionally,
the matching to the Noah model [9] makes it not an independent monitoring product. Low-frequency
passive microwaves (such as the L-band) are less susceptible to vegetation and more sensitive to
soil moisture. However, soil moisture and ocean salinity (SMOS) data from 16 January 2010 to the
present [10] and soil moisture active passive (SMAP) data from 31 March 2015 to the present [11],
which are based on L-band passive microwaves, have relatively short time series [12]. Previous
studies [13–17] have shown that SMAP has a high accuracy both globally and over the QTP, but data
from only three years (31 March 2015 to present) are available. Chen et al. [18] evaluated SMAP over
the QTP and found good agreement according to the amplitude and temporal variation of the areal
soil moisture, as indicated by small values of the unbiased root mean square error (ubRMSE) and high
time series correlation coefficient (R), suggesting a satisfactory performance of the SMAP soil moisture
product in the QTP. SMOS is heavily affected by radio frequency interferences (RFI) in this area, so that
the number of valid soil moisture retrievals is limited. The advanced microwave scanning radiometer
for earth observing system (AMSR-E), from June 2002 to October 2011, and the advanced microwave
scanning radiometer 2 (AMSR2), from July 2012 to present have data from longer time series, and
they have similar configurations and constitute a continuous time series. However, they significantly
underestimate soil moisture and have a small variation range.

Therefore, high-accuracy and spatiotemporally continuous soil moisture products over the QTP
for longer time periods are of great importance for monitoring the water and heat exchanges in this
region and their impact on changing the water cycle and regional climate of East and Southeast
Asia [19,20]. However, due to its topography, complex underlying surface and the effects of its freezing
season, the QTP is a region where retrieving soil moisture is difficult. Although many studies have
focused on merging multisource soil moisture products, the results obtained over the QTP usually
have low performance or even lack values obtained over the whole QTP, especially in global products.
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To solve this problem, multisource soil moisture products should be merged to take full
advantage of the data from different sensors and to rebuild a longer time series data set. Zhang
and Chen [21] presented a satellite and in situ sensor collaborated reconstruction (SICR) method
adopting linear regression, the least square method, geostatistical interpolation algorithms, and similar
pixel determination to reconstruct soil moisture data under full cloud contamination. Alyaari et al. [22]
used simplified statistical regression by adopting SMOS SM and AMSR-E brightness temperatures
(Tbs) to derive long-term global SM data sets with an average ubRMSE of 0.06 m3/m3. Another simple
way to simulate SM is to train a machine learning model using Tbs and auxiliary data as input data and
land surface parameters as output data. Rodriguez–Fernandez et al. [23] used a neural network (NN) to
establish a model composed of L-band SMOS Tbs complemented with C-band advanced scatterometer
(ASCAT) backscattering coefficients, as well as the moderate resolution imaging spectroradiometer
(MODIS), the normalized difference vegetation index (NDVI), and a reference SM data set (European
Centre For Medium-Range Weather Forecasts (ECMWF) model predictions). Cui et al. [24] used the
back-propagation neural network (BPNN) adopting MODIS products (LST, NDVI, and albedo), other
auxiliary data (longitude, latitude, digital elevation model (DEM), and day of the year (DOY)) and
the FY (FengYun)-3B/MWRI (microwave radiation imager) SM product to rebuild SM on the QTP.
The results show that the R2 (coefficient of determination) is greater than 0.56, root mean square error
(RMSE) is under 0.1 cm3/cm3, and bias is under 0.07 cm3/cm3. Yao et al. [25] also used the BPNN
method to reconstruct a global SM data, adopting Tbs and MVI (microwave vegetation index) from
AMSR-E/AMSR2 and SM from SMOS. The results agree well with network data, the R is 0.52, RMSE
is 0.08 m3/m3 and bias is 0.002 m3/m3. Lu et al. [26] used a nonlinear autoregressive neural network
(NARXnn) to retrieve SM in the Heihe River basin. They used daily Tbs, NDVI, precipitation, and
DEM information as input data and the fused SM from the Japan Aerospace Exploration Agency
(JAXA) and the land surface parameter model (LPRM) as output data. The results indicate that the
retrieved SM has a good performance, with high correlation coefficient (R ≥ 0.85) and lower bias
(−0.02 m3/m3 ≤ bias ≤ 0.02 m3/m3) and RMSE (RMSE ≤ 0.06 m3/m3).

Random forest (RF) is an ensemble classifier randomly selecting training samples and variables,
and then generate many decision trees. This method has been used in remote sensing because of its
high flexibility and precision [27]. RF is not easy to over-fit, and it has a very good anti-noise ability,
extremely high accuracy and fast training speed, thus allowing it to process very high-dimensional
data. It is widely used in classification [28,29] and prediction [30–32].

In this paper, we use the RF model to train AMSR-E/AMSR2 Tbs and auxiliary data (latitude,
longitude, the International Geosphere-Biospheres Programme (IGBP), DEM and DOY) onto SMAP
SM for the period of April 2015 to April 2017. The aim is to generate a consistent and high accuracy
soil moisture time series from 2002 to 2015. This paper is organized as follows: in Section 2 the study
area as well as the data set used in this paper are described. In Section 3, the description of the random
forest method is provided, and the processing strategy used for random forest soil moisture (RFSM)
generation is developed, including the training sample generation process and validation procedure.
The validation results and trend analysis are shown in Section 4. Finally, Section 5 concludes the results.

2. Study Area and Data

2.1. Study Area

The QTP is the highest mountain plateau in the world. It is also called “the third pole” or the
“water tower of Asia”, and it is located between 26.5◦–40◦N and 73◦–105◦E (Figure 1). The QTP is
approximately 2900 km long and 1500 km in wide, and the area is approximately 2.5 million km2.
Most of the QTP is located between 3000 and 5000 m above sea level, and the average elevation is
above 4000 m. Surrounded by the earth’s highest mountains, the QTP is bordered by the Kunlun
Range to the north, the Himalayan Mountains to the south, the Qilian Mountains to the northeast,
and the Pamir and the Karakoram Range to the west; thus, it has long been known as the “roof of
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the world” [33]. A long time series climatic data record from 1961–2010 shows that the mean annual
temperature is from −2.2 ◦C to 0 ◦C, the minimum value is −13.5 ◦C in January and the maximum
value is 9.7 ◦C in July. The mean annual sunshine duration is from 2730 h to 2915 h, the average annual
potential evapotranspiration is about 940 mm [34]. The mean annual precipitation is between 415 mm
and 512 mm, and 73% of the precipitation occurs in summer and autumn.
Remote Sens. 2019, 11, 683 5 of 31 

 

 
Figure 1. The locations of the sites within the Qinghai–Tibet plateau (QTP) in China. 

The Naqu network is located in the central QTP, at approximately 31°–32°N and 91.6°–92.5°E, 
and it has a cold, semi-humid climate. A dense monitoring network has been established at three 
spatial scales (1.0, 0.3, and 0.1 degrees) to measure temperature and soil moisture of 0–~5, 10, 20 and 
40 cm in depth [36]. The mean value of the 31 sites in the gray box, which contains four 0.25° pixels, 
was calculated. 

The Maqu network is located in the east of the QTP, at approximately 33.5°–34.25°N and 101.75°–
102.75°E, and it has a humid climate. Temperature and soil moisture data at a depth of 5 cm were 
monitored in 15 min intervals from 13 May 2008 to 20 May 2016. Eight sites in the four 0.25° pixels in 
the gray box were used to calculate the mean value. 

The Ngari network is located in the western region of the QTP, at approximately 79.75°–80.25°N, 
79.5°–79.75°E [37]. Its climate is arid, and most of the region is covered by bare land and grassland. 
Temperature and soil moisture data were recorded from 22 July 2010 to 13 August 2016 in 15 min 
intervals. The mean value was calculated from fifteen sites in Ngari. 

Figure 1. The locations of the sites within the Qinghai–Tibet plateau (QTP) in China.

The QTP also has a broad variety of ecosystem types, ranging from desert in the northwest to
forests in the southeast. The major land cover types in QTP include grasslands, shrublands, forest,
bare land and glaciers, and croplands. The grassland accounts for more than 55% of the total area,
which is the major land cover in QTP [35].

2.2. In Situ Network Data

In this paper, five soil moisture ground measurement networks are used, namely, the Naqu
network, the Maqu network, the Ngari network, the upper reach of the Heihe River Basin (uHRB)
network, and the Pali network. The DEM (GTOPO-30, https://lta.cr.usgs.gov/GTOPO30.org/) and

https://lta.cr.usgs.gov/GTOPO30.org/
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land cover map (GlobeLand30-2010, http://www.globeland30.org/) of each network are shown in
Figure 1.

The Naqu network is located in the central QTP, at approximately 31◦–32◦N and 91.6◦–92.5◦E,
and it has a cold, semi-humid climate. A dense monitoring network has been established at three
spatial scales (1.0, 0.3, and 0.1 degrees) to measure temperature and soil moisture of 0–~5, 10, 20 and
40 cm in depth [36]. The mean value of the 31 sites in the gray box, which contains four 0.25◦ pixels,
was calculated.

The Maqu network is located in the east of the QTP, at approximately 33.5◦–34.25◦N and
101.75◦–102.75◦E, and it has a humid climate. Temperature and soil moisture data at a depth of
5 cm were monitored in 15 min intervals from 13 May 2008 to 20 May 2016. Eight sites in the four
0.25◦ pixels in the gray box were used to calculate the mean value.

The Ngari network is located in the western region of the QTP, at approximately 79.75◦–80.25◦N,
79.5◦–79.75◦E [37]. Its climate is arid, and most of the region is covered by bare land and grassland.
Temperature and soil moisture data were recorded from 22 July 2010 to 13 August 2016 in 15 min
intervals. The mean value was calculated from fifteen sites in Ngari.

The uHRB network is located in the northeast of QTP, at approximately 37.75◦–38.5◦N and
100◦–101.25◦E, and it includes 40 WATERNET sites that were optimally laid out [38] on the upper
reaches of the Heihe River basin during the HiWATER experiment [39–43]. Soil moisture and
temperature data were monitored at 4, 10, and 20 cm in depth from 1 July 2013 to 31 December 2015.
The mean value of the forty sites in the two gray boxes in Figure 1, which contain four 0.25◦ pixels,
were calculated and used as in situ data.

The Pali network locates in the north of QTP, at approximately 27.75◦–28◦N and 89◦–89.25◦E.
There are 25 sites in this network, and it has a semi-arid climate. Temperature and soil moisture data
were recorded at depths of 5, 10, 20 and 40 cm from 21 June 2015 to 27 September 2016 in 0.5-h intervals.
In addition, 11 sites in the gray box in Figure 1 were used in this work, and the mean value of these
11 sites was used as reference data.

2.3. Data Sets for Random Forest

2.3.1. Brightness Temperature and Soil Moisture of AMSR-E/AMSR2

AMSR-E is the first satellite sensor used for SM monitoring expecting error levels less than
0.06 m3/m3 [44]. AMSR-E is a passive microwave radiometer with multifrequency capabilities aiming
to detect microwave emissions from land surface and atmosphere. Its time of ascending was 13:30
(local time) and its time of descending was 01:30 (local time), and its duration extended from June
2002 to October 2011. Double polarization brightness temperatures are measured at six frequencies
(6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz), with an incidence angle of 55◦.

AMSR2 was carried by the Global Change Observation Mission-W1 (GCOM-W1) satellite and
successfully launched by JAXA in May 2012. It has provided observational data since 3 July 2012.
AMSR2 is a continuation of AMSR-E, and it has the same ascending and descending times as AMSR-E.
Compared with AMSR-E, it contains a newly added 7.3 GHz channel at C-band, and its overall
reliability has thus been improved to a certain extent.

AMSR-E L3 Tb data has a spatial resolution of 25 km with equal-area scalable earth (EASE)-grid
projection (global cylindrical). The AMSR2 L3 Tb has a resolution of 0.25◦, with an equi-rectangular
(EQR) projection. Both AMSR-E and AMSR2 are used to generate two SM product lines. One is
produced by JAXA (Japan Aerospace Exploration Agency) and it is derived from a look-up table.
The other product is generated by the Free University of Amsterdam with the National Aeronautics
and Space Administration (NASA) using the land parameter retrieval model (LPRM) method.

In this paper, five descending Tb products (level 3, double polarization of 10.7 GHz and 18.7 GHz,
V polarization of 36.5 GHz) of AMSR2 from April 2015 to April 2017 were used to train the random
forest model. Tbs data from 19 June 2002 to 3 October 2011 from AMSR-E and those from 3 July 2012 to

http://www.globeland30.org/
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31 March 2015 from AMSR2 were used to rebuild a longer time series of SM data. In addition, two SM
products (Level 3, JAXA and LPRM) were used to compare the newly rebuilt SM products obtained
from the random forest model based on SMAP SM, AMSR2 Tbs and other predictors.

The Tb products and the JAXA SM products can be downloaded from the Globe Portal
Svstem (G-Portal), http://gportal.jaxa.jp/gpr/, and the LPRM SM product can be downloaded from
Goddard Earth Sciences Data and Information Services Center (GES DISC), http://disc.gsfc.nasa.gov/
hydrology/data-holdings.

2.3.2. The SMAP Soil Moisture Product

NASA’s SMAP satellite was launched on 31 January 2015. Its payload sensor uses the L-band
microwave frequency, which is most suitable for SM retrieval. The revisit interval of SMAP is 2–3 days,
thus allowing it to be used for the rapid monitoring of global SM [45]. Its ascending time is 6:00 pm
(local time), and its descending time is 6:00 am (local time). The active radar and radiometer of the L
band work together to measure SM and freeze-thaw state data. However, the L-band active radar only
produced data for 11 weeks before it stopped operation on 7 July 2015.

Previous studies have shown that the temperature in the morning is more uniform than that at
night, which is more conducive to SM retrieval. Therefore, the precision of the SMAP descending SM
product is higher than that of the ascending product [46]. For this reason, the SMAP L3 descending
SM data were used in this work; the product has a resolution of 36 km. The SMAP L3 daily SM
products [47] are freely available on the National Snow and Ice Data Center (NSIDC), at http://nsidc.
org/data/smap/.

This paper used three years’ worth of SMAP L3 SM products. The data from April 2015 to April
2017 (two years) were used to train the Tbs of AMSR-E/AMSR2 and auxiliary data to establish a
random forest model, and the data from April 2017 to April 2018 (one year) were used to test the model.

2.3.3. Other Auxiliary Data Used as Spatial Predictors

The global 30-arc second elevation dataset (GTOPO-30) is a global DEM covering all regions from
180◦W to 180◦E and from 90◦S to 90◦N. It has a resolution of 30 s. This data set was developed by the
United States Geological Survey (USGS). The elevation reference of GTOPO-30 is the mean sea level,
and the horizontal coordinate system is world geodetic system 1984 (WGS 84). Here, the GTOPO-30
data were resampled to a resolution of 0.25◦. The GTOPO-30 data can be obtained from the USGS
(https://lta.cr.usgs.gov/GTOPO30).

MCD12Q1 land cover data are based on one year of Terra and Aqua observation data. In this
paper, the land cover classification system of the IGBP was used. According to the IGBP, the land
cover data set contains 17 main types of land cover, including 11 natural vegetation types, three land
development and inlaid land categories and three non-grass land types.

Another MODIS data used in this paper was MOD11C3 monthly land surface temperature
(LST) with a resolution of 0.05◦. The LST is used to evaluate the temporal trend performance of
RFSM. The MCD12Q1 and MOD11C3 product can be downloaded from the EARTHDATA website
(https://search.earthdata.nasa.gov/).

In addition, precipitation data used in this paper were extracted from the gridded daily scale
data set of CN05.1 [48], which is an augmentation of CN05 [49], is based on the interpolation of more
station observations (~2400) and is characterized by a higher spatial resolution of 0.25◦ × 0.25◦.

2.4. ESA CCI Soil Moisture Product

The Soil Moisture Climate Change Initiative (CCI) project is an important part of the European
Space Agency (ESA) program on the Global Monitoring of Essential Climate Variables (ECVs).
This project aims to produce consistent global SM data set based on active and passive microwave
sensors [50].

http://gportal.jaxa.jp/gpr/
http://disc.gsfc.nasa.gov/hydrology/data-holdings
http://disc.gsfc.nasa.gov/hydrology/data-holdings
http://nsidc.org/data/smap/
http://nsidc.org/data/smap/
https://lta.cr.usgs.gov/GTOPO30
https://search.earthdata.nasa.gov/
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The ESA CCI SM has three data sets, namely, active, passive and combined data. In this work,
the passive data set (v03.2) was used to be compared with the RFSM. The dual-channel Land Parameter
Retrieval Model version 3 (LPRM v3; [51]) was used to convert the Tbs data into SM values.

The grid of the passive data set products is 0.25◦ × 0.25◦ based on WGS 84 reference system.
Its dimension is 1440 × 720. These products are available from the ESA CCI (https://www.esa-
soilmoisture-cci.org/).

2.5. GLDAS Soil Moisture Product

The GLDAS was developed by both NASA’s Goddard Space Flight Center (CSFC) and the
National Oceanic and Atmospheric Administration (NOAA) national centers for environmental
prediction (NCEP) [52]. It is an offline terrestrial modeling system providing optimal simulations
of the global land surface states and fluxes. These data are also available on the GES DISC (http:
//disc.gsfc.nasa.gov/hydrology/data-holdings).

In this paper, the GLDAS-2.1 Noah Land Surface Model L4 data with a temporal resolution of
three hours and a spatial resolution of 0.25◦ was used as the reference SM. The GLDAS-2.1 data are
archived and distributed in NetCDF format. To match the descending time of the SMAP SM data,
only the 06:00 values were used.

3. Methodology

Random forest is a classifier that uses multiple classification and regression trees (CARTs), where
each tree is not related to another, to train samples and then to classify new input samples or to predict
values. The two most important parameters of random forest are the number of trees (ntree) and the
number of features (mtry). In random forest samples, the input data is organized in rows (samples)
and columns (features). For row sampling, the strategy is to perform replacement sampling, which
means that some samples may appear several times in the training set of a tree or may never appear.
In this way, during training, the input samples of each tree are not the total samples, which makes
it relatively unlikely to over-fit. Then, column sampling is performed (i.e., each sample is classified
based on the feature variable), and m features are selected from the entire set of M features (m < M).
Subsequently, the decision tree is established by using the complete split method on the sampled data.
After obtaining the forest, let each decision tree in the forest judge and regress separately when a new
input sample is entered. Then, take the average value of all trees as the final result. An important
advantage of random forest is that it is not necessary to cross-verify or to obtain an unbiased estimate
of the error with an independent test set. The error can be evaluated internally, i.e., an unbiased
estimate of the error can be established during the process of generation. For each tree (suppose for the
k tree), approximately a third of the training samples are not involved in the generation of the k tree,
which is called the out-of-bag (oob) sample of the k tree. After the random forest model is constructed,
these samples are classified, and the ratio of the number of misdivisions to the total number of samples
is used as the oob misclassification rate of the random forest.

3.1. Processing Strategy for Random Forest SM Generation

To build the random forest model, 10 input features and one output feature were used. The input
features include: 5 Tb products (double polarization of 10.7 GHz and 18.7 GHz, V polarization of
36.5 GHz), DEM (GTOPO-30), IGBP (IGBP global vegetation classification), latitude, longitude, and
DOY. The flow chart is shown in Figure 2.

https://www.esa-soilmoisture-cci.org/
https://www.esa-soilmoisture-cci.org/
http://disc.gsfc.nasa.gov/hydrology/data-holdings
http://disc.gsfc.nasa.gov/hydrology/data-holdings
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Figure 2. Flow chart of the random forest soil moisture (RFSM) product process.

It is worth noting that there is a correction process for AMSR-E Tbs in the flow chart (Figure 2).
The reason for this is that although the AMSR-E and AMSR2 sensors are similar, there are still
differences in the observed Tbs data caused by their different calibration procedures and sensor
specifications [53]. This requires the calibration of the two sensors so that their observations can
maintain a high consistency.

There are three methods to intercalibrate sensors [54]: (1) the simultaneous nadir overpass (SNO)
approach; (2) statistical intercalibration; and (3) double differencing (DD) methods. In this paper, the
correction results [55] shown in Table 1 were used. The DD method was applied in this paper using an
intermediate reference (MWRI) which both sensors have to quantify the Tbs differences between the
AMSR-E and AMSR2 Tbs data, because the integrated multisensor Tbs record was largely consistent
over most global regions. After the correction of biases, the AMSR-E Tb can be used as AMSR2 Tb in
the RF model.

Table 1. Brightness temperature biases correction of advanced microwave scanning radiometer for
earth observing system (AMSR-E) to the advanced microwave scanning radiometer 2 (AMSR2).

Pairwise Comparisons
bias

H_Pol V_Pol

10 GHz

MWRI-AMSR-E −1.39 −2.23

MWRI-AMSR2 −4.04 −4.43

AMSR2-AMSR-E 2.65 2.11

18 GHz

MWRI-AMSR-E 0.84 1.07

MWRI-AMSR2 −0.93 −1.07

AMSR2-AMSR-E 1.77 2.14

36 GHz

MWRI-AMSR-E - −2.84

MWRI-AMSR2 - −3.94

AMSR2-AMSR-E - 1.1
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Land cover types play an important role in the retrieval of SM; land cover data used here is the
IGBP global vegetation classification data from MCD12Q1. To simplify the model, the land cover types
used in this paper are divided into four categories based on their IGBP classifications, namely, barren
or sparsely vegetated, grasslands and shrublands, forests, and water and ice/snow cover. In this paper,
ice/snow cover data are not used to build the random forest model, and SM is not simulated over
ice/snow cover. The details are shown in Table 2.

Table 2. Classification used in random forest (RF)-based on International Geosphere-Biospheres
Programme (IGBP) global vegetation classification.

The Classification Used in RFSM IGBP Global Vegetation
Classification from MCD12Q1

IGBP Class
Number

Barren or Sparsely Vegetated Barren or Sparsely Vegetated 16

Grasslands and Shrublands

Closed Shrubland 6
Open Shrublands 7

Grasslands 10
Crop 12

Forests

Evergreen Needleleaf Forest 1
Evergreen Broadleaf Forest 2

Deciduous Needleleaf Forest 3
Deciduous Broadleaf Forest 4

Mixed Forests 5

Water and ice/snow cover
Water 0

Snow and Ice 15

In this article, the two-year data (April 2015 to April 2017) for each pixel were used to train the
model. To keep the orders of magnitude consistent between variables, including the input and output
variables, each variable was normalized to 0–1. After this simulation, the output variable was reversely
normalized to obtain the RFSM value.

3.2. Validation and Trend Analysis Procedure

The RFSM product needed to be tested before it can be applied. To test the training result,
it was necessary to compare the RFSM with the SMAP SM to test the prediction accuracy. Therefore,
we compared the RFSM values with the data obtained from the five in situ SM networks. As mentioned
in Section 2.2, we used the mean values of all sites located in the gray box in Figure 1 as the in situ
values. This evaluation was performed using the correlation coefficient (R), root mean square error
(RMSE), mean absolute percentage error (MAPE) and bias values, which are defined as follows:

R =
∑(xi − x)(yi − y)√

∑(xi − x)2 ∑(yi − y)2
(1)

where x and y indicate the mean values, xi is the RFSM value, and yi is the SMAP SM or in situ SM
observation value.

RMSE =

√
∑(xi − yi)

2

N
(2)

MAPE =
1
N
·∑
∣∣∣∣ xi − yi

yi

∣∣∣∣·100 (3)

bias =
1
N ∑(xi − yi) (4)

where N is the number of matching data points.
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However, the available quantity of in situ data is usually not sufficient, and these data thus
cannot reflect the precision of the product over the entire region. The three-cornered hat (TCH) is
an alternative method which can calculate the uncertainty of each product in each pixel over the
study area.

The TCH method is based on removing common signals from observations and then calculating
the uncertainties which can reflect their measurement errors [56]. Chin et al. [57] indicated that
this method is simple to achieve, but needs at least three data sets that are statistically independent.
This method has been used in geodesy and hydrology before [58]. A normal distribution of the
observational errors and the theory is assumed, and described as follows:

obsi = x + ei (5)

where obsi indicates observations, x is the true value, and ei is the associated measurement error.
Given three pairs of observations (i, j, k), the difference between observations (i, j) can be written as:

obsi − obsj = x + ei −
(
x + ej

)
= ei − ej (6)

The associated variance can be described as:

σ2
ij = σ2

ei + σ2
ej − 2·cov

(
ei, ej

)
(7)

We assumed the data sets are statistically independent, so that cov
(
ei, ej

)
equals zero. Finally,

the individual variances may be separated by:

σ2
ei =

1
2
·
(

σ2
ij + σ2

ik − σ2
jk

)
(8)

If the results were negative, the absolute value was taken, and then the standard deviation is used
as the uncertainty measure.

Mann–Kendall is a nonparametric test method. It does not require samples to follow a certain
distribution, is not affected by anomaly data, and is suitable for sequential data. The Mann–Kendall
test has been successfully applied in hydrology and meteorology [59,60] to analyze trends in time
series. When using the Mann–Kendall method for trend analysis, the x value is regarded as a set of
independently distributed sample data, and the parameter Z is used as the pixel attenuation index.
The calculation formula is as follows:

Z


S−1√
VAR(S)

, S > 0

0 , S = 0
S+1√
VAR(S)

, S < 0
(9)

where, the S is the cumulative number of xi greater than or less than xj and VAR(S) is the variance of
S. They can be calculated as:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(10)

sgn
(

xj − xi
)
=


1 , xj − xi > 0
0 , xj − xi = 0
−1 , xj − xi < 0

(11)

VAR(S) =
n(n− 1)(2n + 5)

18
(12)
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where n is the number of data in the sequence. Z value is used to determine the significance level.
At a given significance level, here α = 0.05, the threshold of the normal distribution is Z1−a/2. When
|Z| ≤ Z1−a/2, the trend is insignificant, and when |Z| > Z1−a/2, the trend is significant.

4. Results and Discussion

4.1. Variable Importance in Random Forest Model

RF can indicate the relative importance of a variable as an increased mean square error (MSE) [61].
An increased MSE can be calculated by randomly assigning a variable to compute the extent of the
reduction in the accuracy of the random forest prediction. The larger this value, the greater the
importance of the variable. The results shown in Figure 3 indicate that the most important five
variables were DOY, Tb10V, longitude, Tb10H and DEM. As the time series in Section 4.3.1 shows,
the SM data on the QTP have very similar seasonal variation; in most areas, the amount of rainfall was
not high, thus making DOY a very important variable. The Tb of 10 GHz was used to retrieve SM in
the JAXA and LPRM SM products, and it was very sensitive to SM.
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Figure 3. Relative variable importance of random forest based on increased mean square error (MSE).
Tb36V is V polarization brightness temperature of 36.5 GHz, Tb18V is V polarization brightness
temperature of 18.7 GHz, Tb18H is H polarization brightness temperature of 18.7 GHz, Tb10V is V
polarization brightness temperature of 10.7 GHz, Tb10H is H polarization brightness temperature of
10.7 GHz.

As shown in the topography in Figure 1, the elevation of the west QTP was higher than that of
the east QTP, with large variations in the longitudinal direction and small variations in the latitudinal
direction. The distribution of SM is affected by DEM because the DEM indirectly affects vegetation,
precipitation and other factors that are very sensitive to SM [62]. Interestingly, latitude usually
represents the energy distribution, which is important to the SM distribution. However, the results in
Figure 3 show that longitude was a more important factor than latitude in the random forest model
because, as mentioned above, the altitude of QTP is high in the West and low in the East, so changes
in the latitudinal direction are not obvious, and the longitude also reflects the DEM information.
In addition, during the summer, the southwest monsoon from the Indian Ocean is blocked by the
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Himalayas, leading to relative drought in the southwestern part of the QTP, which makes the variation
in SM on the QTP smaller in the latitudinal direction than in the longitudinal direction.

4.2. Comparison of RFSM and SMAP

We evaluated the quality of the RF simulation results by analyzing the agreement between RFSM
and SMAP SM over the test period (May 2017 to May 2018) in terms of their R, MAPE, RMSE and bias
values. In addition, the density scatterplots based on different land cover types are shown in Figure 4.
The yearly mean values of SM and their error distribution maps are shown in Figure 5.
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Figure 4. Density scatterplots for RFSM (y-axis) vs. soil moisture active passive (SMAP) soil moisture
(SM) (x-axis) over the test period (May 2017 to May 2018).

In Figure 4, the total accuracy and the accuracies obtained in barren or sparsely vegetated land,
grasslands and shrublands, and forests are shown. In general, most of the points were located near
the 1:1 line, with high R values (R = 0.95) and low values of RMSE (RMSE = 0.03 m3/m3) and
MAPE (MAPE = 19%). Among the three land cover types, barren or sparsely vegetated land has a
relatively poor accuracy (R = 0.85 and MAPE = 22%), which is partly because the emissions from
bare land are significantly affected by surface roughness, which decreases the sensitivity of Tbs to
SM [63–65]. Although roughness is addressed in the retrieval algorithm of SMAP, AMSR2 Tbs data
are not calibrated for roughness. Therefore, the correlation between AMSR2 Tbs and SMAP SM was
relatively poor in barren or sparsely vegetated regions, but it is still acceptable. Moreover, as the
dynamic range of SM is small in desert or barren land, the correlation can become distorted by noise.
However, in contrast to barren or sparsely vegetated land, the accuracy in grasslands and shrublands
and forests was relatively good.
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Figure 5. Yearly average values of (a) SMAP SM and (b) RFSM and error distribution maps of RFSM vs.
SMAP SM over the test period (May 2017 to May 2018): (c) correlation coefficient ®; (d) mean absolute
percentage error (MAPE); (e) root mean square error (RMSE) and (f) bias values.

As shown in Figure 4, SMAP has a range of between 0.02 and 0.5, and the range of RFsm is between
0.02 and 0.5 as well. While the RFSM values are partly overestimated around 0.02 and underestimated
around 0.5 because AMSR2 Tbs and SMAP SM do not have a strictly linear relationship, that is, some
of the SM values around 0.02 or 0.5 match up with a wider range of Tbs values, and these Tbs values
may also correspond to higher or lower values of SM on other trees in the RF model. In addition,
random forest cannot make predictions beyond the input range (SMAP minimum and maximum
values are 0.02 and 0.5, respectively). This means that no values lower than 0.02 and higher than
0.5 can be predicted. Because the final prediction of random forest involves the average values of
multiple trees, this averaging process resulted in an overestimate or underestimate around 0.02 or 0.5,
respectively. For values between 0.02 and 0.5, the overestimation and undervaluation can be partly
offset by averaging multiple trees. Therefore, no obvious overestimation or undervaluation occurred
in the range of 0.02–0.5.

In Figure 5, the yearly average values of SMAP SM and RFSM are shown, and the errors of RFSM
vs. SMAP SM are calculated in terms of their R, MAPE, RMSE and bias values. Figure 5a,b show
that SMAP SM and RFSM have very similar spatial distributions, in which the Chaidamu Basin can
be clearly distinguished in the Northwest, Qinghai Lake is in the Northeast, high-value forest areas
are in the South and grassland that is often flooded in the East. However, there is a certain degree of
smoothness, especially over grasslands. This is affected by the classification error and the fact that
the final prediction of the random forest model is taken from the average values of multiple trees.
In Figure 5c, we can see that the accuracy of RFSM was very good, with a mean value of R = 0.79;
in most regions, the R value was relatively high (R > 0.85), and most of the low values are distributed
in the Northwestern and Eastern regions of the QTP. The land cover of the Northwestern QTP is barren
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land, with ice and snow cover located in the West, where the R values are low (R < 0.6). As shown
in Figure 4, the RFSM accuracy in barren or sparsely vegetated land (R = 0.85) was not as good as
that observed in the other two land cover types; in addition, it was also affected by ice and snow
cover, which may not be reflected in the IGBP resampling process. The other low R values located
in the East are affected by the smoothing effect, as shown in Figure 5a,b. The distribution of MAPE
is shown in Figure 5d; it had a mean value of 17%, which is acceptable, with high values occurring
in the regions of barren land where the correlation between AMSR2 Tbs and SMAP SM is not very
strong, or near waterbodies due to the classification error (waterbodies to grasslands). In Figure 5e, the
RMSE distribution map is plotted; it has a mean value of 0.03 m3/m3, and low values of ~0.02 m3/m3

occurred in most regions on the QTP. This indicates that the RF simulated result is relatively stable
compared to SMAP SM. High RMSE values are caused by the smoothing effect and the incorrect
classification of waterbodies and grasslands. Figure 5f shows the distribution of bias, which had a
mean value of −0.01 m3/m3 and exhibited high values emerging near waterbodies, similar to the
MAPE and RMSE data. This result shows that the RFSM was almost unbiased compared to SMAP
SM. All four parameters show that RFSM is very stable, unbiased and relatively similar to SMAP SM,
thus indicating that the RF model can be used to simulate SM data with high accuracy.

4.3. Evaluation of RFSM

4.3.1. Comparison Against In Situ Data

To further evaluate the performance of RFSM over time, the validation results of SMAP SM
over the period from 1 April 2015 to 31 December 2016 is listed in Table 3 as a reference. We used
the data collected from the five networks from 1 January 2010 to 31 December 2015 (including the
AMSR-E, AMSR2 and SMAP periods), with JAXA, LPRM, ESA CCI and GLDAS as the reference SM
products. The validation results are shown in Table 4, and the time series figures are plotted in Figure 6,
the scatter plot is shown in Figure 7.

Table 3. The performance metrics for soil moisture active passive (SMAP) soil moisture (SM) data over
the five networks, during 1 April 2015 to 31 December 2016. The value N indicates the number of data
can be used to validate SMAP over five networks.

In Situ
Network

The Whole Year Unfrozen Seasons

RMSE R Bias N RMSE R Bias N

Naqu network 0.076 0.867 0.008 152 0.076 0.861 0.011 148
Maqu network 0.079 0.691 −0.051 134 0.063 0.710 −0.032 100
Ngari network 0.033 0.829 −0.028 132 0.033 0.829 −0.028 132
uHRB network 0.107 0.643 −0.101 92 0.110 0.536 −0.104 86

Pali network 0.029 0.705 0.003 104 0.029 0.683 0.002 100
All five network 0.065 0.747 −0.034 614 0.062 0.724 −0.030 566

As shown in Tables 3 and 4, RFSM maintains the precision of SMAP well, with mean value of
R = 0.75, RMSE = 0.06 m3/m3, bias =−0.03 m3/m3 of RFSM contrast with R = 0.75, RMSE = 0.06 m3/m3,
bias = −0.03 m3/m3 of SMAP over the whole year, and R = 0.70, RMSE = 0.07 m3/m3,
bias = −0.05 m3/m3 of RFSM contrast with R = 0.72, RMSE = 0.06 m3/m3, bias = −0.03 m3/m3

of SMAP over the unfrozen seasons. It should be noticed that the performance of RFSM was better
than SMAP over the whole year but slightly worse than SMAP over unfrozen seasons. This may due
to the prediction of SM values with good performance over frozen seasons of RFSM, while SMAP has
many missing values over this period. Over unfrozen seasons, the validation results of RMSE and
bias between RFSM and SMAP are very close, especially at Ngari, uHRB and Pali. The R value of
RFSM is lower than SMAP at Naqu, Maqu and Ngari, however it has higher R value at uHRB and
Pali which could be due to a small sample size of SMAP. The results indicate that RFSM maintains the
value distribution of SMAP SM well but has weaker response to precipitation events than SMAP.
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Table 4. The performance metrics for random forest soil moisture (RFSM), Japan Aerospace Exploration
Agency (JAXA), land surface parameter model (LPRM), European Space Agency’s Climate Change
Initiative (ESA CCI) and Global Land Data Assimilation System (GLDAS) soil moisture (SM) data
over the five networks from 1 January 2010 to 31 December 2015. Bold numbers indicate the best
performance of root mean square error (RMSE), correlation coefficient (R) and bias. The value N
indicates the number of data points that can be used to validate RFSM over the five networks.

In Situ
Network Product

The Whole Year Unfrozen Seasons

RMSE R Bias N RMSE R Bias N

Naqu
network

RFSM 0.051 0.849 −0.016 1273 0.050 0.840 −0.021 644

JAXA 0.128 0.570 −0.072 1252 0.152 0.483 −0.077 671

LPRM 0.125 0.848 0.107 843 0.133 0.831 0.116 656

ESA CCI 0.077 0.879 0.052 772 0.082 0.870 0.060 632

GLDAS 0.049 0.840 −0.015 1979 0.059 0.668 −0.031 996

Maqu
network

RFSM 0.085 0.787 −0.050 1424 0.088 0.545 −0.060 771

JAXA 0.241 0.406 −0.217 1420 0.28 0.362 −0.027 770

LPRM 0.094 0.676 0.040 1353 0.093 0.318 0.017 760

ESA CCI 0.086 0.693 0.007 1358 0.100 0.320 −0.006 775

GLDAS 0.122 0.760 −0.091 2183 0.142 0.400 −0.124 1124

Ngari
network

RFSM 0.032 0.555 −0.023 1275 0.040 0.639 −0.034 673

JAXA 0.045 0.387 −0.034 1265 0.052 0.477 −0.045 665

LPRM 0.118 0.554 0.106 376 0.118 0.554 0.106 376

ESA CCI 0.071 0.712 0.053 341 0.071 0.712 0.053 341

GLDAS 0.097 0.658 0.082 1987 0.108 0.431 0.108 1003

uHRB
network

RFSM 0.111 0.763 −0.044 736 0.127 0.619 −0.118 412

JAXA 0.217 0.701 −0.181 736 0.278 0.478 −0.273 412

LPRM 0.208 0.617 0.172 419 0.216 0.488 0.182 376

ESA CCI 0.179 0.702 0.147 372 0.188 0.557 0.159 332

GLDAS 0.132 0.660 −0.065 906 0.163 0.311 −0.152 506

Pali
network

RFSM 0.042 0.808 −0.021 133 0.033 0.869 −0.014 133

JAXA 0.081 0.847 −0.073 131 0.081 0.847 −0.073 131

LPRM 0.207 0.752 0.202 92 0.207 0.752 0.202 92

ESA CCI 0.099 0.852 0.093 74 0.099 0.852 0.093 74

GLDAS 0.121 0.691 0.113 194 0.121 0.691 0.113 194

All five
networks

RFSM 0.064 0.752 −0.031 4841 0.068 0.702 −0.049 2633

JAXA 0.142 0.582 −0.115 4804 0.169 0.529 −0.099 2649

LPRM 0.150 0.689 0.125 3083 0.154 0.588 0.124 2260

ESA CCI 0.102 0.767 0.070 2917 0.108 0.662 0.072 2154

GLDAS 0.156 0.722 0.122 7249 0.161 0.500 0.118 3823

In general, the RFSM data agree well with the in situ data obtained from the five networks over
the whole year and during the unfrozen seasons, as shown in Table 4. In addition, we can see that the
N values of RFSM were almost the same as those of JAXA but less than those of GLDAS, which is a
terrestrial modeling product that has almost no missing values. This indicates that its missing values of
RFSM were less than those of LPRM and ESA CCI (which had the most missing values). The N values
of LPRM and ESA CCI over the whole year were almost the same as those of the unfrozen seasons
over uHRB, Naqu and Ngari, which means that there were almost no data over frozen seasons. The
RMSE values of RFSM from four networks (all except Naqu) over the whole year and all five networks
over the unfrozen seasons have the best performance, which means that RFSM is very stable over both
the frozen and unfrozen seasons. We can also see that the bias over three networks (uHRB, Pali and
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Ngari) over the whole year and those from four networks (all except Maqu) over the unfrozen seasons
have the lowest values, which indicates that the RFSM values were very close to the in situ values and
were almost unbiased. The R values of RFSM were slightly weaker than those of ESA CCI obtained
at Naqu and Ngari, with little difference observed at Naqu but a difference observed at Ngari, with
values of 0.64 for RFSM and 0.71 for ESA CCI. This is caused by using DOY as input data to train the
seasonal cycle of SMAP from April 2015 to April 2017. Although DOY played an important role in the
RF model and there was a strong seasonal trend over the QTP, this parameter had some problems in
responding to anomalous events such as precipitation, resulting in the slightly lower R values than
those of ESA CCI at these three networks. However, at the other three networks (uHRB, Maqu and
Pali), RFSM performed better than ESA CCI, especially at uHRB and Maqu.Remote Sens. 2019, 11, 683 20 of 31 
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Figure 6 shows the time series of the in situ data, RFSM and JAXA, LPRM, ESA CCI, GLDAS
from 1 January 2010 to 31 December 2015 over the Naqu, Maqu, Ngari, uHRB and Pali networks.
The dynamic ranges and seasonal features of these five SM products are depicted; JAXA was stable
all the time, with the smallest dynamic range, and it substantially underestimated SM over all five
networks. Because of its smaller dynamic range, its response to precipitation events is not obvious.
In addition, the JAXA products of AMSR-E and AMSR2 were not consistent; the performance of
AMSR2 was better than that of AMSR-E, and the AMSR-E product exhibited weak or even negative
correlations with in situ data, resulting in the poor performance of JAXA over the validation period.
Because the LPRM and ESA CCI passive products adopt the same LPRM arithmetic, they fall almost
within the same range of 0.8 and overestimate SM, especially over uHRB, with bias of >0.14 m3/m3.
In contrast to JAXA, their response to precipitation events was too strong. However, there were still
minor differences between them; for example, ESA CCI adopts the CFD matching approach [66],
it exhibited strong correlations with in situ data but also high values of RMSE and bias. GLDAS was
relatively sensitive to precipitation events, exhibited robust seasonal tendencies with in situ data over
the uHRB, Maqu and Naqu networks, and performed well over Naqu, where land cover and elevation
are homogeneous, but it yielded underestimates over Maqu and uHRB, which may be caused by the
stratification of soil properties induced by the high soil organic carbon contents in the Tibetan Plateau,
which will lead to larger soil porosities and water retention capabilities and thus larger surface soil
moisture values. However, this has not been well represented in the LSMs. It also yielded grave
overestimates over arid and semi-arid regions (Pali and Ngari); for example, in May, there was a peak
in GLDAS, but the change of in situ data was not obvious. Additionally, although its seasonal tendency
is obvious, GLDAS cannot effectively respond to small changes in SM, as these values change too
continuously over time, which induces low R values (R = 0.49). As shown in Table 4 and Figure 6,
RFSM can reflect changes in precipitation and has a complete time series throughout the entire year,
and it yields good consistency between the SM values simulated from AMSR-E and AMSR2. It also
exhibits a good performance in terms of its R, RMSE and bias values, with the time series lines over
Maqu, Naqu and Ngari being very close to the in situ data observed over the unfrozen seasons but
slightly overestimated over the frozen seasons. Because the uHRB is strongly heterogeneous in terms
of its elevation, all five of these SM products were not very well correlated to in situ data, but RFSM
performs better over both the whole year and the unfrozen seasons among the five products. It should
be noted that although the training results show that RFSM was relatively weakly correlated (R = 0.85)
to SMAP over barren or sparsely vegetated land, it still exhibited a good performance over Ngari, with
lower RMSE (0.03 m3/m3) and bias (−0.02 m3/m3) values than those of LPRM, ESA CCI and GLDAS.
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To further test the performance of RFSM against in situ network data, Figure 7b shows the scatter
plot of RFSM over five networks. Since we used SMAP SM data as the output variable during the
training process of the RF model, special features of SMAP may be maintained in RFSM, as shown in
Figure 7a.

In general, the distribution patterns were very similar between SMAP and RFSM, as shown in
Figure 7, especially over the uHRB, Maqu and Ngari. However, there existed an underestimation
around 0.15 over Pali and around 0.3 over Naqu against SMAP, while the slopes of RFSM and SMAP
were very close over Naqu (in the range of 0.2–0.35).

When comparing with in situ data, RFSM performed well over Naqu, Ngari and Pali, and most
of the points over these three networks are located near the 1:1 line. RFSM performed not very well
over the uHRB and Maqu, which was corresponding to the performance of SMAP over these two
networks. It should be noticed that, there was an overestimating trend in RFSM during dry conditions
(in frozen seasons), which is corresponding to the results shown in Figure 6. In addition, there is a
slight underestimating trend when the SM value is around 0.35 over the uHRB and Maqu, which is
due to the fact that SMAP generally underestimated around 0.35 over these two networks as shown in
Figure 7a. Over Naqu, although RFSM showed underestimation of around 0.3 comparing with SMAP,
it performed better when compared with in situ data.

In addition, the TCH method was used to calculate the uncertainties of the four SM products
(RFSM, JAXA, ESA CCI and GLDAS) because both the LPRM SM and ESA CCI passive SM used the
LPRM method and data from AMSR-E/AMSR2. However, errors that are independent of each other
were needed for the TCH method. Considering that the LPRM SM product was more overestimated
than the ESA CCI product, as shown in Figure 6, we chose ESA CCI as one of reference products used
to evaluate uncertainties. The TCH results are shown in Figures 8 and 9.

Figure 8 shows the relative errors and relative uncertainties of RFSM (Figure 8a), JAXA (Figure 8b),
GLDAS (Figure 8c), ESA CCI (Figure 8d), and the relative error performance map (Figure 8e) and
relative uncertainty performance map (Figure 8f) obtained using the TCH approach. Figure 9 shows
the distribution of the errors of all four products calculated by the TCH method. The error maps
show that RFSM, JAXA and ESA CCI had similar spatial trends, with high error values located in
the Southeastern QTP, where the land cover is forests and grasslands. However, in the Northwestern
QTP, where the land cover is deserts and barren lands, RFSM and JAXA show low error values
(0.2–0.4 m3/m3), while ESA CCI shows high error values (approximately 0.6 m3/m3 or even higher
than 0.14 m3/m3 in the West corner). In contrast, the error map of GLDAS shows low values in the
Southeast, which indicates that GLDAS performs well in this region. However, the high error values
(approximately 0.6 m3/m3) observed in the Southwest and midland indicate that the performance of
GLDAS over grasslands and shrublands is not as good as that over forests. As shown in Figure 8e,
RFSM performs the best over more than half of the region (56%) on the relative error performance map,
mainly over barren lands or grasslands and shrublands, and GLDAS performs best in the Southeastern
QTP, which is consistent with previous studies [67,68] that found that the GLDAS always shows a
higher simulation skill in wetter regions than in drier regions. The relative uncertainty performance
map (Figure 8f) shows the same pattern. The distribution of errors is shown in Figure 9, where we can
notice that RFSM and JAXA have lower and more concentrated errors (i.e., lower than 0.05 m3/m3,
with a mean value of approximately 0.01 m3/m3) than GLDAS and ESA CCI, thus indicating the good
performance of RFSM over the entire QTP.
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4.3.2. Spatial Distribution of RFSM

To evaluate the spatial performance of RFSM, the spatial distribution of precipitation is presented
in Figure 10, and the spatial distribution diagrams over January (frozen season) and July (unfrozen
season) are plotted in Figures 11 and 12, respectively, using GLDAS and ESA CCI as reference data.
Here, the data from 2010 and 2014 were chosen to represent the RFSM values simulated from AMSR-E
and AMSR2 Tbs, respectively.
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Figures 11 and 12 show that the RFSM simulated from both AMSR-E and AMSR2 have the
same spatial distribution patterns and similar ranges of values; together with the results analyzed in
Section 4.3.1, this result indicates the successful use of AMSR-E/AMSR2 Tbs to obtain correct and
consistent RFSM values from 2002 to 2015. These diagrams also show that there are almost no ESA
CCI values in January, and overestimates (i.e., SM values of even higher than 0.5 m3/m3) and missing
values occur in the Southeast and West of the QTP in July. However, only a few missing RFSM values
are observed in January, and they fall within a rational range.
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In general, the three SM products had similar spatial distributions, with high values in the
Southeast and low values in the Northwest, which is consistent with the spatial distribution of
precipitation shown in Figure 10. However, there were also differences between these three SM
products; the ESA CCI can obviously reflect the grassland in the West corner of the QTP, but it has a
tendency for overestimation. RFSM and GLDAS only have values of approximately 0.3 in this region.
As shown in Figure 11, GLDAS and ESA CCI are overestimated over desert and barren lands located
in the Northwestern QTP, but their RFSM values are closer to in situ data, which is the same as the
results in Sections 4.3.1 and 4.3.2. As shown in Figure 10, in July, high precipitation values occurred
near Qinghai Lake in the Northeastern and Southeastern QTP, whereas low values were located in the
Northwest, including Chaidamu Basin. All three products exhibit responses in the low-precipitation
region, but in the high-value region, only RFSM had good performance, as GLDAS and ESA CCI
exhibited smooth patterns in this region. Because GLDAS is a terrestrial modeling product using
1D water balance formulations, it can describe evapotranspiration and soil moisture processes in the
vertical direction but always neglects the horizontal hydrological processes controlled by topography,
geomorphology, and other conditions. These horizontal hydrological processes will introduce obvious
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two-dimensional features of soil moisture that have not been well described in GLDAS. Moreover,
GLDAS always deals with horizontal runoff processes roughly; for example, it assumes the ground
to be uniform without considering the influence of the heterogeneity of infiltration capacity and
water storage capacity on runoff [69]. In addition, the ESA CCI SM product adopts a pixel-level
CDF-matching approach that may modify the spatial information of the retrieval data [70]. In January,
however, all three products have almost no response to precipitation because there is no liquid
precipitation in winter, and snow or ice cannot be reflected in microwave soil moisture products.
Only GLDAS in January 2014 can reflect the precipitation in the south central QTP, which may be
caused by the fact that precipitation data are used as forcing data to retrieve soil moisture on GLDAS.
However, in most regions of the QTP, we can see that RFSM and GLDAS have similar values.

4.4. Trend Analysis

By using the Mann–Kendall test, the seasonal trend of RFSM is estimated. Figure 13 shows the
Z values of SM, precipitation and LST from 2002 to 2015 in spring, summer, autumn and winter
respectively. Positive Z value indicates an increase trend and negative Z value indicates a decrease
trend. Only the area with significant trend (α = 0.05) is shown in the figures.
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Figure 13. Seasonal trend of SM, precipitation and land surface temperature (LST) from 2002 to 2015
with a significance level of α = 0.05: (a,d,g,j) are seasonal trends of SM in spring, summer, autumn and
winter respectively; (b,e,h,k) are seasonal trends of precipitation in spring, summer, autumn and winter
respectively; (c,f,i,l) are seasonal trends of LST in spring, summer, autumn and winter respectively.

Although some studies indicate that there was not a significant change in precipitation over QTP,
as was shown in Figure 13, in all four seasons, precipitation has a positive trend in the northeast of
QTP, while has a negative trend in the north and southwest of QTP.



Remote Sens. 2019, 11, 683 23 of 28

As shown in Figure 13c,f,i,l, in summer and autumn, there was mainly a positive trend in LST,
as for spring and winter, there was a positive trend in the north and southeast and a negative trend in
southwest of QTP.

As for SM, in most region, the trend corresponds with the change of precipitation, however in the
Northeast, there was an increase in precipitation and a decrease in SM in all four seasons. The trend
of SM is strongly related to the change of LST. In spring, LST showed a positive trend in Northeast
and Southeast, and a negative trend in Chaidamu Basin and hinterland of QTP, corresponding to the
decrease of SM in Northeast and Southeast and increase of SM in Chaidamu Basin and hinterland of
QTP. In summer, most regions of QTP show a positive trend of LST and negative trend of SM, and
only some regions in the Northeast show a negative trend of LST and positive trend of SM. In autumn
and winter, only in some North and Southwest regions as well as in the Chaidamu Basin, there was a
decrease in LST and increase in SM. In other regions, there was mainly an increase in LST and decrease
in SM. For SM, the positive trend was shown in some Southeast region and the West of QTP, as well
as the Chaidamu Basin, and a negative trend was shown mainly in the Southeast and North of QTP,
which was the same as the results of a previous study [71]. In conclusion, as for SM, there was a
dryness trend in most regions of QTP and a wetness trend was only shown in some North, Southeast
and Southwest regions of QTP.

5. Conclusions

In this paper, the possibility of using SMAP SM and AMSR-E/AMSR2 Tbs to simulate longer
period time series and high accuracy SM over the QTP using the Random Forest method is discussed.
We used Tbs data of five frequencies (double polarization of 10.7 GHz and 18.7 GHz, V polarization of
36.5 GHz) of AMSR2 from April 2015 to April 2017, as well as the longitude, latitude, DEM, IGBP, and
DOY as spatial predictors to build a Random Forest model with SMAP daily SM products. Then, the
deviation correction was carried out on the Tbs of AMSR-E to make them consistent with the Tbs of
AMSR2. The Tbs data from June 2002 to March 2015, including AMSR-E and AMSR2, were then used
to simulate RFSM.

To verify the reliability of the RF model, we simulated SM data with the Tbs of AMSR2 from
April 2017 to April 2018 and compared them with SMAP. The results show that the RF model has
high reliability, with high correlation (R = 0.95) and low values of RMSE (RMSE = 0.03 m3/m3) and
MAPE (MAPE = 19%). However, the retrieved SM data over barren or sparsely vegetated land has a
relatively poor but acceptable accuracy (R = 0.85 and MAPE = 22%), which may be due to the influence
of roughness. The error distribution map shows that there is good consistency between RFSM and
SMAP, with a mean RMSE value of 0.03 m3/m3, a mean bias of −0.01 m3/m3, a mean MAPE of
17% and a mean R of 0.79; the correlation is relatively poor (R = 0.5) only over bare land or around
wetland. The yearly average values of SMAP SM and RFSM show that SMAP SM and RFSM have very
similar spatial distributions but there is a certain degree of smoothness in RFSM. This is affected by the
classification error and the fact that the final prediction of Random Forest is taken from the average
values of multiple trees.

We also carried out a direct validation of these results using the traditional method. The comparison
of the results between RFSM and SMAP shown in Tables 3 and 4 indicates that RFSM maintains the
value distribution of SMAP SM well but has weaker response to precipitation events than SMAP.
The comparison of the results between RFSM, JAXA, LPRM, ESA CCI and GLDAS shows that RFSM
exhibits reliable accuracy at all five networks, with mean values of R = 0.75, RMSE = 0.06 m3/m3, and
bias = −0.03 m3/m3 over the whole year and R = 0.70, RMSE = 0.07 m3/m3, and bias = −0.05 m3/m3

over the unfrozen seasons. The scatter plot of RFSM and in situ network data also indicates that
RFSM maintains special features of SMAP and has a good performance against in situ data over Naqu,
Ngari and Pali, but with an underestimation around 0.35 over the uHRB and Maqu. The TCH results
indicate that RFSM has the smallest relative errors in 56% of the region, with the error distribution
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concentrated at 0.01 m3/m3, which is the best among those of the four products (RFSM, JAXA, ESA
CCI and GLDAS). This indicates that RFSM has the lowest uncertainty over the entire QTP.

The spatial distribution results show that three SM products (RFSM, GLDAS and ESA CCI) have
similar spatial distributions, with high values in the Southeast and low values in the Northwest, but
in some special regions, such as Qinghai Lake in the Northeast and the wetlands near the origin of
the Yellow River in the eastern QTP, RFSM can reflect more details than GLDAS and ESA CCI. At the
same time, RFSM exhibits very similar spatial patterns as precipitation maps in summer. The trend
analysis shows that the trend of RFSM agrees well with precipitation and LST. There is a dryness trend
in most region of QTP and wetness trend is only shown in some North, Southeast and Southwest
regions of QTP.

In conclusion, a spatiotemporally continuous soil moisture product with high accuracy and a
14 years’ time series over the QTP was obtained from the RF model; cross-comparison shows that
RFSM effectively maintains the high accuracy and spatial distribution of SMAP but prolongs the time
series, and the results of validation show that RFSM performs the best out of the five SM products.
However, efforts still should be made to obtain a longer-time-period RFSM product by adopting other
satellite data, which will be very useful for studies of climate change over the QTP.
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