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Abstract: In microwave interferometric radiometers with a large field of view, as for example the
Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard the Soil Moisture and
Ocean Salinity (SMOS) satellite, one of the major causes of reconstruction error is the contribution
to the visibility of the brightness temperature outside the fundamental period, defined on the
basis of reciprocal grids. A mitigation method consisting of estimating this contribution through
the application of a brightness temperature model outside the fundamental period is proposed.
The main advantage is that it does not require any a posteriori addition of artificial scenes to the
reconstructed image. Additionally, a method to avoid the sophisticated matrix regularization and
inversion techniques usually applied in microwave interferometry is presented. Image reconstruction
algorithms are implemented on a minimum grid size in order to maximize their numerical efficiency.
An improved method to apply an apodization window to the reconstructed image for reducing
Gibbs oscillations is also proposed. All procedures are generally described considering the single
polarization case and successively implemented applying the MIRAS layout in both its single
polarization and full polarimetric modes. Results show similar performance of the proposed
algorithm with respect to the nominal one applied by SMOS. All algorithms are implemented
in the MIRAS Testing Software and have been successfully used for scientific studies by other teams.

Keywords: interferometric radiometry; image reconstruction; error correction

1. Introduction

Interferometric radiometers are passive imaging instruments whose operation is based on the
Van Cittert—Zernike theorem. Their main advantage with respect to other kinds of radiometers is
that they do not need moving elements to produce images, as these are entirely formed through data
processing of the raw measurements. This technique was firstly proposed for earth observation in Le
Vine et al. [1] and Ruf et al. [2]. One of the most representative examples is the Microwave Imaging
Radiometer with Aperture Synthesis (MIRAS) [3,4] embarked on board the SMOS (Soil Moisture and
Ocean Salinity) satellite [5], launched by the European Space Agency in 2009 and still providing useful
geophysical data to the scientific community.

As originally derived for optical signals, the Van Cittert-Zernike theorem states that the mutual
intensity of a radiation is the two-dimensional Fourier Transform of the intensity distribution across
the source. In microwave radiometry terms, the visibility function is the two-dimensional Fourier
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transform of the brightness temperature image. An inverse Fourier transform should then allow
recovering of the brightness temperature from the calibrated visibility measurements. Nevertheless, in
wide field of view instruments, those imaging an extended source covering most of the space in front
of the antenna, there are non-negligible effects such as antenna patterns differences, obliquity factor,
decorrelation, crosstalk and others that alter substantially this basic relation [6,7].

The visibility function is measured by cross-correlating all pairs of analytic signals collected by
individual antennas. Assuming these ones evenly distributed on a fixed structure (as in the MIRAS case,
shown in Figure 1) the visibility function becomes sampled at discrete points (1, v) on a space-limited
regular grid [8]. Since the visibility equation is ultimately a Fourier transform, the recovered brightness
temperature is affected by aliasing in case the antenna separation fails to meet the Nyquist rate, which
is usually the case. In addition, the fact that the visibility is limited in space (due to the instrument’s
finite size) is equivalent to having a spatial filter that sets the spatial resolution of the recovered map
and produces ripples in sharp transitions (Gibbs effect). Moreover, the combined effects of antenna
pattern differences and spatial decorrelation make the visibility equation depart from a simple Fourier
transform, inducing errors even in the alias-free field of view [9].

E=sin(0) cos(d)
n=sin(0) sin(dh)

e

Figure 1. Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) instrument layout and
coordinate definition. Courtesy of AIRBUS Defence and Space [formerly EADS CASA Espacio].

The objective of this paper is to present an alternative image reconstruction algorithm for 2D
interferometric radiometers. The algorithm is tested on a set of real measurements acquired by the
MIRAS sensor, from which good results consistent with those obtained through the SMOS nominal
processing chain are obtained. The paper is organized as follows: The main steps of the algorithm
as well as MIRAS characteristics relevant to its application are described in Section 2; the results of
the image reconstruction relying on the proposed algorithm are presented in Section 3; the discussion
about these latter and those used by the SMOS nominal processing is given in Section 4; and finally
the main conclusions are summarized in Section 5.
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2. Methods

The main steps of the proposed image reconstruction algorithm are here presented by referring
to the case of a single polarization measurement, and later extended to the case of a full polarimetric
one. The algorithm is applied to the specific layout of the MIRAS radiometer (Figure 1). After
the introduction of the visibility Equation (Section 2.1) and its conversion into a linear system of
equations (Section 2.2), the algorithm develops through regularization of the matrix associated to the
linear system of equations (Section 2.3), its inversion (Sections 2.4 and 2.5) and image reconstruction
(Section 2.6). Lastly, the case of including the apodization into the processing chain is evaluated in
Section 2.7 and the case of full polarimetric measurements is assessed in Section 2.8. Application to the
MIRAS radiometer is illustrated throughout all the sections when needed.

2.1. Visibility Equation

The visibility equation to be used in aperture synthesis radiometry, derived in Corbella et al. [6],
is a modified version of the Van Cittert—Zernike theorem to include the effect of the coupling between
receivers and to fulfill the principle of energy conservation. In the single polarization case, after
canceling the contribution of the receivers’ physical temperature (i.e., approach 2 of Corbella et al. [8])
it is given by

V(w0) = [[ 7@ pe Pt azay, M

24+n2<1

where T'(&, 77) is the so-called “modified Brightness Temperature”, expressed as:

Fe (& mE; (S, 1) j<
V18212 [0 ]

By~ ), @)
in which T(¢, ) is the scene brightness temperature, Fy ; are the complex field antenna patterns for
the two elements k and j, () ; is their corresponding antenna solid angles and 7y;( ) is the normalized
fringe washing function [6], which depends on the receivers’ frequency responses. Only in the case
of having identical antennas and neglecting the fringe washing function, the modified brightness
temperature (Equation (2)) becomes independent of the specific antenna pair and Equation (1) reduces
to a two-dimensional Fourier transform V (u,v) = Z[T'(&,1)].

The domain variables for visibility (u,v) and brightness temperature (&, 1) are defined as

T'(&n) =T )

u=(xj—xx)/Ao v=(y;—yx)/Ao 3)
g=x/r n=y/r,

where (x, y) are the Cartesian coordinates of the observation point located at a distance r from the
instrument. This latter is assumed to be centered on the origin of coordinates and aligned with the
z = 0 plane, with the antennas at coordinates (xx;, y,;) (see discussion below). Finally, A is the
wavelength at the center frequency fy, and ¢ and # are the director cosines of the observation point
with respect to axes x and y respectively, often expressed as a function of the elevation and azimuth
angles (6, ¢) as ¢ = sinf cos ¢ and = sin 6 sin ¢.

The antenna pattern of a given element Fi(,77) characterizes the electromagnetic field radiated
by the whole structure when this particular element is active and no signal is applied to the rest.
The antenna position (x, yx) in Equation (3) is the point at which its phase pattern is referenced to.
To measure the embedded antenna pattern, the whole structure must rotate around a mechanical
center of coordinates, so the radiated field becomes proportional to Fyo(&, 7)e /¥ /r where k = 27t/ A
is the wave number and Fi (&, 77) the pattern referenced to the coordinate center. The antenna phase
pattern can then be referenced to any arbitrary position (xy, yx, zx) by expressing r as r = ry + (r — 1),
with 7y the distance from this position to the observation point. For large distances, the differential
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length can be approximated by r — ry = ¢x; + yyx + vz where v = z/r = cos 0 is the third director
cosine. The antenna pattern with phase referenced to coordinates (xy, vy, z) is then

Fe(&,17) = Fro(& y)e KO tvmntzin), 4)

Using this equation, the “antenna position” (x, ¥, zx) can be chosen arbitrarily as long as the
pattern phase is referenced to it. The position of the center of a sphere on which the phase variation of
Fi(¢,n) is minimum is the antenna phase center, but this is not necessarily the best choice. In what
follows, without loss of generality, the antenna positions are assumed to be equal to the nominal values
and patterns are referenced to them. If antennas are properly designed, these positions should not be
far away from their respective phase centers. And this is the case for SMOS.

In consequence the visibility (Equation (1)) is sampled at the the (1, v) coordinates corresponding
to the nominal antenna positions (Equation (3)) using the regular distribution of antennas within the
instrument in the z = 0 plane, as shown in Figure 1 for the MIRAS case.

2.2. Discretization and G-Matrix

To solve Equation (1) the director cosine domain (&, ) must also be discretized. The visibility
equation becomes then a linear system of equations V = GT, where G is a complex matrix whose
elements are function of the individual antenna patterns [8], V is the vector of visibilities in the (1, v)
space and T the vector of brightness temperatures in the director cosine space (¢, 77). The G-matrix,
defined as linear operator relating visibility to brightness temperature, was originally proposed in
Tanner et al. [10]. In principle, recovering the brightness temperature requires only inverting the
system of equations: T = G~!V. However, the G-matrix just defined happens to be ill-conditioned [11],
so the solution is not straightforward.

The G-matrix has as many rows as visibility samples, including those corresponding to zero
spacing (single antenna). For an instrument having N antennas there are N(N — 1) /2 complex rows
(MIRAS, with N = 69, has 2346) and as many real rows as number of antennas used to measure the
antenna temperature (visibility at zero spacing). The current nominal SMOS processing uses only one,
but there is a backup mode that uses all or a selected set of antennas for the visibility at the origin [12].
The number of columns of the G-matrix is the total number of grid points (¢, 7) that fall inside the unit
circle defined as ¢% + 7% < 1.

Using Equations (1) and (2), the elements of the G-matrix are written as

Fe(G,mE (&) _ (

= _u§+v71> e*]'27'[(u€+m7) (5)

Tki\ =5
V1=28 =12, [0 0

where the values of (1, v) and (, 77) are those of their respective grids and A§Ay is the elementary area
(see Section 2.4).

Gim = ACAW

2.3. Hermiticity and Redundant Baselines

Given the hermiticity property of the visibility V(—u, —v) = V*(u, v), for each complex row of the
G-matrix an additional one can be added by changing the signs of u and v, provided the corresponding
row of the visibility vector is conjugated. This operation has to be performed before dealing with the
redundant baselines.

Redundant baselines are those having identical (1, v) values. Even though they correspond to
the same visibility sample, they provide slightly different measurements with respect to each other
because of the diverse antenna patterns of the involved elements. Considering two redundant baselines,
the corresponding two distinct rows of the discretized visibility equation are:

Vl(”/ U) = ZGlme ; Vn(”: Z)) = ZGanm/ 6)
m m
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where the subscripts I and n refer to two (k, j) pairs of redundant baselines and the subscript m ranges
all (¢, ) pairs in the unit circle. Note that (, v) is the same in both by definition of redundant baselines.
These two equations can be averaged to form a third one relating to the visibility of the same (1, v)
point to the scene brightness temperature

VI(MIU) = Glm Tom, (7)

<11

where Vj(u,v) = (Vi(u,v) + Vy(1,v))/2 and Gy, = (G + Gum) /2. This last equation can be used
for inversion without any loss of information. As a matter of fact, different complete sets of visibility
samples V (1, v) are obtained by randomly choosing unique sets of non-redundant baselines. For each
one, the corresponding visibility function becomes related to the same brightness temperature image,
so the image reconstruction algorithm for each of them should yield the same result in the absence of
noise and errors. So only one set of non-redundant visibilities is enough to fully recover the brightness
temperature. Averaging all measurements of the same (1, v) is not needed in the ideal case but has the
effect of thermal noise reduction in practice.

The averaging operation must also be performed for the zero spacing visibility, which has a
redundancy order equal to the number of antennas used to measure the antenna temperature.

After hermiticity extension and averaging of redundant visibilities, the number of rows of the
G-matrix becomes equal to the total unique points in the (4, v) domain. In MIRAS it is equal to
2791, of which one is real and the rest are complex. These two operations notably improve the
G-matrix condition number, acting as a regularization method to make image reconstruction feasible.
This method was used in both references [8] and [13], although these references do not mention
it explicitly.

2.4. Aliasing and Floor Error

Since the visibility equation is fundamentally a Fourier transform, discretization grids for regular
sampling in both domains must be reciprocal to each other. The lattice depends on the overall geometry:
Rectangular for U-shaped instruments [14], or hexagonal [15] for Y-shaped (MIRAS), hexagonal [16] or
triangular ones. In any case, the visibility sampling coordinates (1, v) are a subset of the grid points
in the fundamental period (a square for rectangular grids and a star or an hexagon for hexagonal
grids). The minimum number of grid points in the fundamental period needed to include all measured
samples is N% where N7 = 4Ngp, + 1 for a hexagonal or triangular instrument, Nt = 3Ng, + 1 for a
Y-shaped instrument or Nt = 2Ngp, + 1 for a rectangular instrument [8]. In all cases, N is the number
of elements in one arm. Since MIRAS has Ng;, = 21, it follows that Nt = 64 in this case (The SMOS
Level 1 Operational Processor uses Nt = 196). The number of points in the fundamental period of
the corresponding (¢, 77) reciprocal grid is also N2. If reciprocal grids are used, the elementary area
AZAn in Equation (5) becomes then equal to 1/(N2d?) for rectangular grids or 1/(N2d?sin 60°) for
hexagonal grids [8] where d is the minimum antenna spacing normalized to the center wavelength.

Figure 2 shows the MIRAS reciprocal grids for Ny = 64. The fundamental hexagon is depicted
in blue in both domains, the green star in (#, v) includes all measured visibility points and their
conjugate ones; and the extension of the (¢, ) grid to the unit circle is drawn in gray. Both fundamental
hexagons have the same number of points, in this case equal to 642 = 4096. A larger value just enlarges
the (1, v) hexagon while keeping the star shape identical, and provides a thicker grid in (¢, 77) [8].
The fundamental hexagon in this domain has a fixed side, independent of the number of points, equal
to 2/(3d) where d is defined in the previous paragraph. This hexagon always falls inside the unit circle

ifd > 1/V3.
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Figure 2. MIRAS reciprocal grids for visibility (left) and brightness temperature (right) using Ny = 64.
Fundamental hexagons in both domains are drawn in blue. Two areas with hermitic (1, v) points are
highlighted in the left plot. Unit circles aliases are added in the right plot.

A Fourier transform needs zero padding to complete the (1, v) fundamental period. The resultant
modified brightness temperature is then obtained in the (¢, 7) fundamental period. The periodic
repetition of the phase produces the well known phenomenon of aliasing, resulting in that the same
image is repeated at all adjacent periods. All unit circle aliases for the MIRAS case are depicted in
Figure 2. The zone in which these circles do not overlap is the alias-free field of view. Out of it, the
image is always contaminated with replicas of other areas of the same image. In principle, error-free
imaging is only possible in the alias-free field of view unless the overlapped image content is null,
as for example in the case of having a small target in the center of the field of view surrounded by
a very low background. Contrarily, for wide field of view imagers, aliasing is a strong source of
errors. Changing the normalized antenna spacing d to a value lower than the Nyquist sampling rate
(1/2 for rectangular grids and 1/+/3 for hexagonal grids) would make the circle be inscribed within
the fundamental period, so eliminating the aliases.

For the minimum MIRAS reciprocal grid of Figure 2, the total number of (¢, #7) points within
the unit circle is N, = 8491, so this is the number of columns of the G-matrix in this case. Splitting
the columns into the fundamental hexagon Gy and the rest of the unit circle Gyyy (see Figure 2),
the discretized visibility equation can be written as

V=1 Gu Gnu } l = GuTy + GNaTNH, 8)

TNH

where the same nomenclature applies to Ty and Tyg. Clearly, inverting only the G-matrix in the
fundamental hexagon T = G;I1V neglects the term Gyy Ty and produces what is sometimes called
“floor error” [17,18]. Contrarily to the case of aliases in Fourier inversion, this one also spreads into the
alias-free field of view unless considering identical antenna patterns and no fringe washing function.
In this limiting case, imaging with G-matrix is equivalent to an inverse Fourier transform and the floor
error is reduced to the aforementioned aliasing error.
In any case, the floor error can be mitigated by subtracting from the visibilities an estimation based
on a forward a priori brightness temperature model outside the hexagon Myy. Using Equation (8),
the equation to invert becomes
V — GNaMnNy = Gy Ty, )

which leads to
Ty ~ G5 (V — GnuMnn) = G5'V — FE Mg, (10)

where FE = Gﬁl Gng is the floor error matrix. Even though computationally expensive, the floor error
matrix is specific of the sensor and thus needs to be computed only once.
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In conclusion: Image reconstruction is carried out by multiplying the inverse of the regularized
G-matrix in the fundamental hexagon by the measured visibilities and substracting from the result an
estimation of the floor error, which is equal to the product of the floor error matrix times a scene model
outside the fundamental hexagon. Needless to say, the closer the model to the actual image, the lower
the reconstruction error.

2.5. Matrix Extension and Inversion

Assuming that the regularization described in Section 2.3 has been applied and that the minimum
reciprocal grids are used, the complex matrix Gy has, in the MIRAS case, 2791 rows and 4096 columns,
corresponding respectively to the (1, v) unique grid points with measured visibilities (green star of
Figure 2) and the fundamental hexagon in ({, 7). Its condition number is about 3.2. The matrix Gy
can thus be inverted using a Moore-Penrose pseudoinverse algorithm, as in Corbella et al. [8], by a
conjugate-gradient method as in Camps et al. [13] or by other methods listed also in this reference.

A different approach is proposed here. First, the matrix is extended in the (1, v) domain (rows)
up to the whole principal hexagon (blue dots of Figure 2) using an average antenna pattern and unit
fringe washing function. Using Equation (5), the G-matrix rows corresponding to the blue dots in
Figure 2 (left), that is outside the star, are computed as

a 2
Glm — AgAT] |Fn(§/ 77)| €7j271(u€+2117)' (11)

V- 70

The extended G-matrix becomes then square with size N x N2 and keeps the condition number,
so it can be straightforwardly inverted with standard algorithms. Note that, if all antenna patterns
were substituted by the average pattern and the fringe washing function was neglected, this extended
G-matrix would be a Fourier matrix with all columns multiplied by the average antenna pattern.
The product Gy T would become then equivalent to the product of a Fourier matrix and the modified
brightness temperature, as expected. The proposed method can be viewed as a modification of the
Fourier inversion to include different antenna patterns. Although not specifically reported elsewhere,
this inversion method has been successfully implemented in the MIRAS Testing Software [19] since its
first version.

2.6. Image Reconstruction

The brightness temperature map is recovered by multiplying the calibrated visibility by the
inverted extended Gy matrix. For X or Y polarization the brightness temperature is real and Gﬁl is
hermitic, so the first term of Equation (10) can be written as

Va
} Vo :G51‘0V0+2%6[G§1‘AVA}, (12)

'V = [Gﬁl‘A Gﬁl‘o Gr' v
B

’

where the subscript 0 refers to the origin (u = v = 0) and A and B are two grid point subsets (matrix
columns) having opposite (u,v) signs. The ones used in the MIRAS Testing Software are shown in
Figure 2 but the splitting is arbitrary. For points outside the star the visibility is ignored (see comment
below about zero padding), so the corresponding columns of Gﬁl are not used. The last equality in the

above equation holds because of the hermiticity property of visibility function. Since both Gﬁl o and

} : (13)

Wy are real, this equation can be written in a more compact form as

Vo
Va

GV = Re { [ca'|, 267 ]
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In MIRAS, using the minimum reciprocal grids, this operation involves the multiplication of a
4096 x 1395 complex matrix by a complex vector of 1395 elements.

If the complex polarimetric brightness temperature Ty, is being imaged, the full Gﬁl matrix
should be used instead of its real part, although points outside the star should also be discarded.

The second term of Equation (10) does not depend on the measurement since it is computed using
a model outside the hexagon. The hermiticity property of the X and Y polarizations can also be used
to reduce the size of the floor error matrix in this case.

(14)

The size of the MIRAS single polarization floor error matrix using the minimum size grids is
always 4096 x 4395 corresponding to the (, 77) points in both the fundamental hexagon and outside it
respectively. This matrix is real for Ty and T; and complex for Tyy.

A final comment about zero-padding is worth mentioning. The above equations detail the computation
of each one of the two terms of Equation (10) separately but in a consistent way. Considering the version
of this equation written at the first equal sign (that is Ty = Gﬁl (V — GNgMnng)), it comes out that zero
padding outside the star means using in these points the product Gy Myy, but not zero. In practice this
needs not to be done explicitly, as it suffices just to ignore the columns of Gﬁl outside the star.

2.7. Apodization

Due to the limited visibility coverage in the (1, v) plane, the reconstructed brightness temperature
is affected by the Gibbs effect showing ripples around abrupt changes in the original scene, as for
example coastlines. As it is well known from Fourier imaging, ripples can be reduced at the
expense of degrading spatial resolution by using an apodization window in the original domain.
In Corbella et al. [8] the apodization window was directly applied to the measured visibilities, which
is correct if a Fourier inversion is used but it is at least questionable for the G-matrix technique. A more
rigorous approach is to window the Fourier components of the reconstructed brightness temperature
image. In this case, the apodized brightness temperature is related to the reconstructed brightness
temperature T by

Tapodized = yil{wy{’r}}f (15)

where W is the window function, which in SMOS is always of Blackman type.

The reconstructed brightness temperature is defined in the (¢, 77) fundamental hexagon, so its
Fourier components, to which the window function is applied, are defined in the (1, v) fundamental
hexagon. The DFT operation involved in Equation (15) assumes implicitly that the reconstructed
brightness temperature (T) is a periodic function in (¢, #7) replicating itself in hexagons adjacent to the
fundamental one. Since in typical SMOS images the earth disk is at the bottom of the hexagon and
the sky at the top, there are abrupt changes at the border of the fundamental period that may induce
ripples. To mitigate them, constant temperature levels are subtracted from the sky and earth zones so
as to have a zero mean image. Specifically, the constant temperature subtracted to the sky pixels is
computed as the median of the recovered image in them, while the value subtracted to the Earth pixels
is computed so as to cancel the Fourier component at the origin. The consequent reduction of the
contrasts within the image cause the minimization of the associated ripples. The constant temperatures
are added back after Fourier inversion.

This approach is strongly inspired on the incremental visibility image reconstruction method
proposed in Camps et al. [13]. In that case, however, the method was applied to visibilities instead to
frequency components, but the idea is the same.
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2.8. Full Polarimetric Case

Considering a baseline formed by two dual-polarization antennas, the full polarimetric discretized
visibility equation [20] can be written in terms of G-matrices as

Vir = GRRT, + GECT, + GRCTy,, + GER T (16)
_ ~CC RR CR RC

VW - G}/y Tt GYY Ty + GW Txy + GW Tyx (17)

Viy = GRCT, + GER Ty + GRR Ty + G5 Ty (18)

where, for example, nyc denotes the G-matrix computed according to Equation (5) using the Reference
(co-polar) pattern of the X polarization antenna and the Cross-polar pattern of the Y polarization
antenna. The terms marked in boldface are the dominant ones, in case of antennas with negligible
cross-polar patterns, as considered in Equations (1) and (2).

Averaging redundant baselines, adding hermitic points and extending the matrix to the
full hexagon is here carried out for each of the sub-matrices using the procedures detailed in
Sections 2.3 and 2.5. Once this is done, the combination of the four equations can be written as
V = GT where now G is a matrix with dimension 4N% x 4N, where N2 is the total number of points
in the fundamental hexagon and N;, the number of points in the unit circle (4096 and 8491 respectively
for the MIRAS minimum grid). The floor error mitigation through the application of a model outside
the fundamental period can be carried out in the polarimetric case in exactly the same manner as done
for a single polarization. The part of the extended G-matrix inside the fundamental period has now a
size of 4N2 x 4N2 and, when inverted, provides as result a square matrix:

IGy1 IG1p IGi3 IGys
IGy1 IGy IGy; IGy
IGy1 IGay IGsz IGyy

Gyl = (20)

where IG;; are submatrices of size N% X N%.
Applying the hermiticity property to the matrices of the first two rows using the procedures of
Section 2.6 the following equations are obtained:

T, = Re {[IGH‘O 21Gy| | l “ZCO + 161, 21612| | [ “//;zo + (21)
A A
[ice], 216l ]| oo |+ [, 2ie],] | i |1,
A A
T, = Re {[1621‘0 21Gy| | “2‘0 + [ 162, 2162)| | “//yyo + (22)
A A
6], 26| ] | o |+ [, 2] ]| Y |},
A A
Tay = IG31 Vi + IG5 Vi + [Gag Vigy + G4 Vi, (23)

in which the rows of the inverted G-matrix outside the star are always discarded. Note that, by

definition, Tyx = Ty, so there is no additional equation for this term. Implementation wise it is found

that this identity holds to the machine precision, which is a consistency indicator.
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The floor error matrix is computed analogously to the case of single polarization measurements
(Section 2.6) but using the larger G-matrix defined here. The result is a matrix four times the size of
that for single polarization.

3. Results

The image reconstruction methodology outlined in the previous sections is fully implemented
in the MIRAS Testing Software [19]. This tool is being systematically used for scientific studies as a
flexible alternative to the nominal SMOS Level 1 data products and with successful results, as reported
for example in Gonzélez-Gambau et al. [21].

Exploiting the processing capabilities of this software, the proposed algorithm was tested relying
on a set of real MIRAS measurements. Specifically, a SMOS orbit was processed in full polarimetric
mode (Section 2.8) using the all-LICEF calibration approach [12]. Figure 3 shows the retrieved
geo-located images at X- and Y-polarizations corresponding to a single snapshot acquired on 24
January 2019 at 21:44 UTC, when the satellite was passing over the coast of Australia during an
ascending orbit. The Blackman window is applied using the methods in Section 2.7.

T_X[1143).24-Jan-2019 21:44:23 [K] 300 T_Y[1141].24-an-2019 21:44:21 [K] 300
.15 -15
250 250
-20 -20 T
o 200 b 200
S .25 =25
2 150 & 150
2-30 =-30
§ — 100 § e 100
-35 ‘gl» -35 %{ ST
50 p— 50
-40 -40
0 0
110 120 130 140 110 120 130 140
Longitude (deg) Longitude (deg)

Figure 3. Geo-located images, in the extended alias-free field of view, of the two snapshots of Figure 4.

Figure 4 shows the brightness temperatures of same snapshot in the (¢, 77) plane. Clearly, the
image reconstruction algorithm is able to capture all the scene features in the whole hexagon, not
only in the alias-free field of view. Ocean, land and sky areas are clearly distinguished and, at this
scale, aliases impact is minor. Differences between Ty and Ty are due to the stronger T, increments
associated to both the sea/land and Earth/sky transitions with respect to Ty. The model used to cancel
the floor error [Myy in Equation (10)] consists of a constant value in land zones (258 K for X-pol and
285 K for Y-pol), specular reflection in ocean areas using Fresnel reflection coefficients with climatology
salinity and temperature [22], a constant 8.5K to account for atmospheric effects and the L-Band sky
and Galaxy map available as auxiliary file in the SMOS data base.

Figure 5 shows the X-polarization case with both terms of Equation (10) drawn separately as well
as the difference between them, which is the final reconstructed image. The left panel shows the result
of multiplying the calibrated visibility by the inverse of the G-matrix (first term of Equation (10), the
center panel is the floor error and the right panel the corrected image. As expected, the floor error
is very small in regions where the earth aliases do not enter into the hexagon, which is the so-called
“extended alias-free field of view”, nominally used in SMOS images (as in the geo-located images of
Figure 3). Most of the artifacts of the raw image at the left are effectively removed in the corrected one.
Specifically, strong improvement in the image reconstruction is found in the sky area as well as in both
the bottom left and right strips. Contrarily, much lower effects are exhibited in the extended alias-free
field of view, where the floor error is minimum. Later it will be shown that there is indeed a small
improvement in this area. Apodization of the corrected image with a Blackman window, using the
procedure of Section 2.7, provides the final result seen at the left of Figure 4.
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Figure 4. Image reconstruction result of two individual Soil Moisture and Ocean Salinity (SMOS)
snapshots over the coast of Australia. Left is for X-pol and right is for Y-pol.

T_X Direct inversion. K] Floor error for X-pol K1 T_X after floor error correction. [K] 300

0.5 0 0.5
3 £

Figure 5. Floor error correction of the X-pol snapshot of Figure 4. Left and center images are first and
second terms of Equation (10) respectively, and the difference is shown at right.

The scale of Figure 4 does not allow one to assess the effect of the floor error correction in
the alias-free field of view. This is only possible using a differential image, plotting the brightness
temperature bias with respect to its expected value. Additionally, averaging several snapshots is
desirable in order to reduce thermal noise. Both requirements can be met if the scene is limited to
snapshots over the ocean, for which a very comprehensive model is available from the SMOS science
community (The authors would like to thank Joseph Tenerelli (OceanDataLab, France) for providing
the ocean forward model).

Figure 6 shows the bias with respect to the model of all snapshots ranging in a latitudinal range
of [-40°, —5°] over the Pacific ocean in an ascending orbit of 28 January 2011 (chosen quite often
for these kinds of analysis by the SMOS Level 1 team). In the area imaging the sky, the model is the
standard SMOS Galaxy map. All four polarimetric products are included in Figure 6, brightness
temperature at X and Y polarizations and real and imaginary parts of the complex brightness
temperature. Basic statistics, referring to the alias-free field of view only, are shown at the bottom of
each panel of Figure 6. Namely, spatial standard deviations and mean values are indicated by ¢ and
T respectively. The relatively large negative bias in the Y-pol image may be due to poor modeling at
high incident angles. In any case, these residual error images are compatible with the ones obtained
with the SMOS Level-1 Operational Processor and have similar statistics.
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Figure 6. Spatial bias computed as the difference between the reconstructed brightness temperature
and a model for the ocean. Blackman window is applied.

The same images have been produced without correcting the floor error, that is using only the first
term of Equation (10). Results are shown in Figure 7. In this case, the error outside the alias-free field
of view increases dramatically, especially in the areas in which the earth enters the hexagon. In the
alias-free field of view there is a small impact in spatial bias, quantified in the standard deviation
shown at the bottom. In all cases it increases with respect to the numbers provided in Figure 6. Note
that the extended alias-free field of view is quite well recovered even if no correction is applied.
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Figure 7. Spatial bias of Figure 6 without removing the floor error.
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4. Discussion

Years before SMOS launch in November 2009, methods for 2D interferometric radiometer imaging
were derived by different groups with the aim of having working algorithms as soon as visibility
measurements were provided by MIRAS [8,11,23]. Radioastronomy heritage showed to be not directly
applicable due to different instrument layouts, as for example the reduced antenna spacing, and
especially because of the larger instantaneous field of view typical of earth observation. Working with
simulated data it was early discovered that after a complete forward-backward simulation of a known
scene, the original brightness temperature was not perfectly recovered even in the alias-free field of
view. This misfit was called “scene-dependent bias” and was attributed to an underdetermination
of the mathematical problem. An efficient mitigation algorithm was proposed in Corbella et al. [24],
used in Anterrieu et al. [25] and improved later in Camps et al. [13]. This consists of subtracting
from the visibility measurements different contributions estimated by simulation, and inverting the
resultant “differential visibilities”. Some of the contributions are later added back to the reconstructed
image to recover the final brightness temperature map. The most recent implementation of this idea,
described in Khazaal et al. [26], is included in the version 7 of the SMOS Level 1 Operational Processor.
The method, even in its simplest version, is highly effective in canceling the sky aliases so expanding
the alias-free field of view—limited by the unit circle aliases—to the extended alias-free field of view,
limited by the earth shape. In its latest version [26], using a sophisticated model as “artificial scene” it
is able to further reduce the error in the alias-free field of view.

All these methods are based on inverting only the portion of the G-matrix inside the fundamental
hexagon discarding the rest. As already pointed out in Corbella et al. [17], discarding the G-matrix
outside the fundamental hexagon is responsible for the appearance of the aliases. If all antenna patters
were identical, this error would become limited to only the aliasing regions. In the real case, with
different antenna patterns, the error is indeed larger in these regions but spreads also in the alias-free
field of view (see center panel of Figure 5). The G-matrix in the whole unit circle is always used to
estimate the corresponding visibility of the model or artificial scene, so imaging differential visibilities
can be interpreted as removing an estimation of the aliases.

Using the concept of extended G-matrix of Section 2.5, it is easily shown that the method of
imaging differential visibilities is equivalent to removing the floor error. The reconstructed brightness
temperature from differential visibilities is

T =G5 (V- GM)+ Mg =G5V - (G5'G - U)M, (24)

where U is a matrix with the same size of G equal to the identity matrix for the columns inside the
hexagon and zero outside U = [I 0]. In this equation, the G-matrix is extended, so having as many
rows as number of points in the fundamental (1, v) hexagon, and thus Gp is a square and invertible
matrix. The first term of this equation is the same as that of Equation (10). The second term can be
expanded as

(6 [ o =11 0 )] 2 ][0 it | 2

= G5'GygMyy, (25
Mgt Mgy 1 GNnHMny,  (25)

which coincides with Equation (10). It is important to point out that this is only true if the visibility
simulation of the model uses a G-matrix in the full unit circle defined in the same grid as the one used
for inversion. That is, the matrix inverted is a subset of the complete one. Conceptually, a different
matrix could be used since V = GT is just a mathematical model of what the instrument actually
measures. Also, the equivalence shown is based on the use of the extended G-matrix concept defined
in Section 2.5. Different implementations of matrix inversion in Equation (24) are not equivalent.
The main advantage of using the floor error matrix defined in Equation (10) is that processing does not
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require estimating visibilities with the full G-matrix and does not require adding back any artificial
scene to the result. It is a correction applied directly to the reconstructed image.

The outcome of the proposed methodology is the brightness temperature map of the scene.
This is not the case for the SMOS Level 1 Operational Processor which, based in the proposal
of Anterrieu et al. [11], defines the Level 1B data as the spatial frequency components of the brightness
temperature. This is done through the concept of J-matrix, the concatenation of the G-matrix
with the Fourier operator as dully explained in Khazaal et al. [26]. This approach is a different
method to regularize the system of equations that relates all measured visibility, including redundant
baselines, to brightness temperature. Due to redundancies the G-matrix in this case is ill-posed but
the corresponding J-matrix is well behaved and can be inverted. As pointed out in Section 2.7, since
the brightness temperature is not a periodic function, when recovering it from the corresponding
frequencies, ripples can appear in the limits of the fundamental hexagon. In practice, this does not
happen due to the imaging of differential visibilities used in the processor. The Level 1B data consists
actually of frequency components of the difference between the brightness temperature and an artificial
scene. After reconstructing the map including apodization, the latter is added back. Versions prior to 7
of the SMOS Level 1 Operational Processor use as artificial scene a constant in the earth disk and a sky
map for the sky. In the end the constant earth is added to all points, and this is why the nominal SMOS
images at Level 1B in the full hexagon show high temperature in the sky (see Figure 8). Here it has
been shown that averaging redundant baselines improves the condition of the matrix and makes it
invertible, so there is no need to compute the J-matrix. As a post-processing, however, the frequency
components are computed in order to apply the Blackman window, as explained in Section 2.7.

For completeness, equivalent images as those shown in Figures 4 and 6 are provided respectively
in Figures 8 and 9 using SMOS Level 1B data read from the ESA SMOS Online Dissemination Service,
produced by version 6.21 of the SMOS Level 1 Operational Processor.

0.6}

Figure 8. Same snapshots as in Figure 4 but using data from the SMOS Level 1 Operational Processor
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Figure 9. Same differential images as those in Figure 6 but using data from the SMOS Level 1
Operational Processor version 6.21. Deimos Engenharia, Lisbon (Portugal).

5. Conclusions

Accurate brightness temperature retrieval in 2D interferometric radiometers with a large field of
view is not straightforward. The simplest approach consists of applying an inverse Fourier transform,
which provides reasonable results in the alias-free field of view but large errors outside. The G-matrix
approach takes into account individual differences between antenna patterns and also the fringe
washing function and thus provides images of improved quality. In any case, the major error
contribution is localized in the alias regions where brightness temperatures from several spatial
directions overlap. For zones where the overlap is the sky the impact is low, but where aliases are
produced by the earth it may become significant, affecting also the alias-free field of view. The origin
of these errors is found in the contribution to the visibility of the brightness temperature from
directions that fall outside the fundamental period. Subtracting an estimation of these visibilities
to the measurements greatly reduces the error. Correction is carried out through the definition
of the floor error matrix and relying on a brightness temperature model defined only outside the
fundamental period.

Expressing the visibility equation as a linear system of equations, image reconstruction can
be implemented through the inversion of the associated matrix, called G-matrix. Unfortunately,
the G-matrix results are ill-conditioned and cannot be inverted without regularization. This is obtained
by averaging redundant visibilities and extending the G-matrix to fill the whole hexagon in the (i, v)
plane, resulting in a square and well-conditioned matrix that is easy to invert. Using this approach,
combined with the floor error removal, provides high quality images in the full hexagon, and especially
in the extended alias-free field of view. The method is applicable to the full polarimetric operation of
SMOS, with the only difference being increasing the size of the G-matrix. Results of SMOS complex
images and full polarimetric error maps over ocean demonstrate the procedure.

The inversion method presented in this paper uses the minimum number of grid points, allowing
for very fast and efficient programming. It has been implemented in the MIRAS Testing Software for
several years and is being successfully used by science teams for salinity and soil moisture retrievals.
In any case, the procedures outlined are not intended to replace the ones used by the SMOS Level 1
Operational Processor, but they are presented to the community with the objective of reporting other
means of solving the same problem with similar results.
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Abbreviations

The following abbreviations are used in this manuscript:

SMOS  Soil Moisture and Ocean Salinity
MIRAS Microwave Imaging Radiometer with Aperture Synthesis

DFT

Digital Fourier Transform
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