

 remotesensing-11-00673

remotesensing-11-00673

Remote Sens. 2019, 11(6), 673; doi:10.3390/rs11060673

Article

A Parallel FPGA Implementation of the CCSDS-123 Compression Algorithm

Milica Orlandić 1,*[image: Orcid], Johan Fjeldtvedt 1[image: Orcid] and Tor Arne Johansen 2[image: Orcid]

1

Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway

2

Centre for Autonomous Marine Operations and Systems (NTNU-AMOS), Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Norway

*

Correspondence: milica.orlandic@ntnu.no

Received: 27 February 2019 / Accepted: 16 March 2019 / Published: 21 March 2019

Abstract

:

Satellite onboard processing for hyperspectral imaging applications is characterized by large data sets, limited processing resources and limited bandwidth of communication links. The CCSDS-123 algorithm is a specialized compression standard assembled for space-related applications. In this paper, a parallel FPGA implementation of CCSDS-123 compression algorithm is presented. The proposed design can compress any number of samples in parallel allowed by resource and I/O bandwidth constraints. The CCSDS-123 processing core has been placed on Zynq-7035 SoC and verified against the existing reference software. The estimated power use scales approximately linearly with the number of samples processed in parallel. Finally, the proposed implementation outperforms the state-of-the-art implementations in terms of both throughput and power.

Keywords:

CCSDS-123 compression; parallel implementation; Field programmable gate arrays (FPGA); hyperspectral imaging; real-time processing

1. Introduction

In recent years, space development has moved towards small-satellite (SmallSat) missions which are characterized by capable low-cost platforms with introduced budget and schedule flexibility. Space-related applications, such as synthetic aperture radar (SAR), multispectral and hyperspectral imaging (HSI) require critical data processing to be performed onboard in order to preserve transmission bandwidth. In this respect, the compression algorithms are commonly used as a final step in onboard processing pipelines to reduce memory access and limit data transfer to Earth. To fulfill real-time data processing requirement, hybrid processing systems with reconfigurable hardware (FPGAs) have become the standard choice in small-satellite missions. The expansion of logic resources in the current FPGAs allows execution of complex algorithmic tasks in parallel and the trend for CubeSats and other SmallSat single-board computers is to use common SoC devices with commercial FPGAs due to their superior performance in terms of power, speed and resources compared to radiation-hardened FPGAs [1].

Hyperspectral and multispectral imaging have been both widely used in remote sensing Earth observation missions in recent decades. Unlike multispectral sensors, such as Landsat, MSG and MODIS [2], with a fairly limited number of discrete spectral bands, hyperspectral sensors record a very large number of narrow spectral bands. Airborne hyperspectral sensors such as Compact Airborne Spectrographic Imager (CASI), Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) [3], Infrared Atmospheric Sounding Interferometer (IASI) [4] and the Hyperspectral Imager for the Coastal Ocean (HICO) [5,6] have provided an expansion of hyperspectral research in the number of applications such as environmental monitoring, coastal ecosystems, geology and land cover. A hyperspectral imager has recently been deployed on an intellegent nano-satellite [7], where a key feature is intensive onboard data processing including operations such as comparisons of images in subsequent orbits. However, a mission with HSI payload to fulfill its objectives, in addition to smart onboard processing, requires compression for downlink of the acquired data.

The Consultative Committee for Space Data Systems (CCSDS) has developed image compression algorithms [8,9,10,11] specifically designed for space data systems. In particular, the CCSDS-123 compression standard [10,11] is an efficient prediction-based algorithm characterized by low complexity and, thus, is suitable for real-time hardware implementation. In fact, in the recent years several FPGA implementations of the CCSDS-123 standard are presented in the literature [12,13,14,15,16,17,18,19]. Keymeulen et al. [12] propose an on-the-fly implementation in BIP sample ordering. In the implementation proposed by Santos et al. [13], the focus is on low complexity and low memory footprint. The chosen BSQ sample ordering requires only one weight vector and one accumulator to be stored. However, the repeated computations of local differences decrease the input bandwidth efficiency. This approach requires either the non-sequential memory access pattern with potentially reduction of streaming efficiency, or that the data is arranged in memory in the desired streaming order. The serial CCSDS-123 implementation with BIP ordering proposed by Theodorou et al. [14] relies on external memory to buffer samples coming from the image sensor such that the current, N and NE neighboring samples are streamed in parallel reducing greatly on-chip memory requirements. The downside is, however, lack of support for on-the-fly compression. Báscones et al. [15] propose an implementation with BIP sample ordering characterized by the ability to perform compression without relying on external memory. This is achieved by queuing incoming samples in internal FIFOs, resulting in linear dependence of memory usage with respect to the product of width and depth of a HSI cube. A parallel CCSDS-123 implementation proposed by Báscones et al. [16] consists of several instances of the CCSDS-123 core that share local differences. Other than sharing local differences, the cores operate independently by processing samples from a fixed subset of bands.

In this paper, an efficient parallel FPGA implementation of the CCSDS-123 compression algorithm is proposed. The high throughput is achieved by the use of several optimization techniques for data routing between parallel processing pipelines and for efficient parallel packing. In the proposed solution, parallel processing of several samples is only constrained by the logic resources of the chosen technology.

The paper is structured as follows: Section 2 presents an overview of the CCSDS-123 standard. The proposed parallel hardware implementation is described in Section 3. The influence of the number of pipelines and chosen architectural solutions on the logic use, timing and power are analyzed in Section 4. Finally, the conclusions are given in Section 5.

2. Background

The CCSDS-123 standard for lossless data compressors is applicable to 3D HSI data cubes produced by multispectral and hyperspectral imagers and sounders, where a 3D HSI data cube is a three-dimensional array (Nx, Ny, Nz). A sample in the HSI cube is specified by coordinates (x,y,z), whereas an HSI pixel is characterized by fixed (x,y) coordinates and consists of Nz components in spectral domain. The standard supports Band Interleaved (BI) and Band Sequential (BSQ) orderings for scanning the HSI coordinates. Special cases of BI ordering are Band Interleaved by Pixel (BIP) and Band Interleaved by Line (BIL). BSQ ordering traverses the components band by band - (z,y,x) order. In BIP ordering, each full pixel is accessed sequentially in (y,x,z) order. In BIL ordering, traversing is performed frame by frame in (z,x) order.

The integer samples of the HSI cube are labeled as sz,y,x or sz(t) where t=y·Nx+x. The sample sz,y,x is predicted by computation of a local sum σz,y,x of nearby predicted samples (sz,y,x−1, sz,y−1,x−1, sz,y−1,x, sz,y−1,x+1) at positions (W, NW, N, NE) with respect to sample sz,y,x. The reduced prediction mode computes central local differences dk for previously processed bands k=0,⋯,P as dk=4·(sz−k,y,x)−σz−k,y,x, whereas full prediction mode includes also directional differences [dW,dNW,dN] between neighbor samples (4·sz,y,x−1, 4·sz,y−1,x−1, 4·sz,y−1,x) and local sum σz,y,x, respectively. The created differences are then stored in the local difference vector Uz(t). Predictor parameters such as the number of prediction bands P, the local sum type and the prediction mode impact significantly the overall performance of the CCSDS-123 standard, and suggested non-normative default values of these parameters provide a reasonable trade-off between performance and complexity [10,20].

The computation of the rounded scaled predicted sample includes the dot product operation of weight vector Wz(t) and local difference vector Uz(t) and shifting operation of local sum σz(t) by parameter Ω which is defined as bit precision of the weight elements. The scaled predicted sample value s˜z(t) is a version of the rounded scaled predicted sample in the range [−2D,2D] for signed integers, where D is a dynamic range of HSI samples. The weights are dynamically updated based on the prediction error ez=2sz(t)−s˜z(t) by the weight update factor ΔWz(t) which depends on several user-defined parameters which control convergence speed of the learning rate at which the predictor adapts to the image statistics. The scaled predicted sample value s˜z(t) is re-normalized to the range of the input sample (D-bit quantity) resulting in s^z(t). Finally, the residual mapping converts the signed predicted residual Δz(t)=sz(t)−s^z(t) to a D-bit unsigned integer mapped prediction residual δz(t).

In the sample-adaptive encoding, code words are generated based on the average value of the input residuals in each band. The encoder updates an accumulator Σz(t) by storing recent sample values and then divides the result by the counter Γ(t) which tracks the number of processed samples. A code word generator computes quotient and residual pair, (uz,rz) from the division δz(t)2kz(t), where the parameter kz(t) is defined as the largest non-negative integer satisfying an inequality expression depending on relations between the accumulator Σz(t) and the counter Γ(t).

3. Implementation

The proposed parallel implementation contains Np pipelines for concurrent processing of multiple samples and shared resources for storing intermediate data. The block diagram of the proposed implementation for Np=4 is shown in Figure 1.

A number of data samples are streamed into the shared sample delay module in each clock cycle. The samples are rearranged and sent to pipelines where a pipeline contains a chain of modules performing the local sum and difference computation, prediction, residual mapping and sample adaptive encoding as illustrated in Figure 2. The predicted data computed in central local differences, the updated weight vector elements and accumulator values in sample adaptive encoding are routed to the central difference store, the weight store and accumulator store modules, respectively, which are shared between the pipelines.

The data packages streamed into the CCSDS-123 core contain Np samples. A lane is defined as a position of samples in the input package. Figure 3a,b show the sample placement grids for Np=4 lanes in the first 10 clock cycles for the number of bands is Nz=8 and Nz=9, respectively. The first sample in each pixel is highlighted. When the number of bands is divisible by the number of pipelines i.e., NzmodNp=0, lane i contains a fixed subset of bands for each pixel so that the sample from band z is always streamed in the lane i=zmodNp. For Nz not divisible by Np, samples from the same band are no longer confined to a specific lane. Instead, samples shift between lanes. After streaming the last sample in a pixel, the input stream can be stalled so that the first sample of the next pixel is in lane i=0. In this manner, a fixed subset of samples is processed by each pipeline similarly to the case when Nz is divisible by Np. The downside of the introduced stalling is reduced throughput and additional logic. To avoid stalling, an interleaved pipeline approach is proposed. In this approach, samples from the same bands are processed in different pipelines, requiring from pipelines to share additional information besides local differences. For instance, a sample arriving to the sample delay module in lane i=0 is also sent to pipeline 2 as the neighbor of a sample arriving to lane i=2. Furthermore, vector W0(1) is produced by pipeline 0 when processing s0(0), but it is then also used by pipeline 1 when processing s0(1). The advantage of the interleaved approach is a generic implementation with maximized throughput and independent of the parameters Nz and Np.

In the proposed interleaved approach, the data shifting is introduced for moving data from different lanes to corresponding processing pipelines. If a current sample is in lane i, then the sample with distance n from the current sample is in lane (i+n)modNp. The distance between neighboring samples sz(t) in lane i and sz(t+Δt) is given as NzΔt, where the lane of sample sz(t+Δt) is computed as:

shift(i,Δt)=(i+NzΔt)modNp.

(1)

In Figure 3b, sample s0(5) is streamed in the lane which is computed as shift(3,2)=0 based on the distance from sample s0(3) from lane i=3. Due to the data shifting, the number of clock cycles between samples within the same band is not constant. The number of clock cycles between two samples is equivalent to the number of rows between them in the grid. In the edge case, when sample sz(t) is in the left-most lane, sample sz+1(t) is streamed in the right-most lane of the next row. The time delay between sz+1(t) and sz(t) in lane i is computed as follows:

delay(i,Δt)=i+NzΔtNp.

(2)

3.1. Pipeline

A pipeline contains a chain of modules implemented as described in the previous work [19] on a sequential CCSDS-123 implementation. To accommodate parallel processing, adaptation of the sequential modules are required. This includes several modifications such as setting FIFO depths and RAM sizes to z/Nz instead of z.

3.2. Sample Delay

The sample delay module delays incoming samples so that the current sample and the previously predicted neighboring samples are available at its output. The proposed parallel implementation of sample delay module is shown in Figure 4.

For each lane i, there is a set of FIFOs with the depth determined by the delay(i,Δt) function. The outputs of FIFOs are then shifted according to the shift(i,Δt) function, so that the delayed samples are used as neighbors in (W,NW,N,NE) positions with respect to the samples which are currently processed by each pipeline. The performed sample delay operation described by the use of the streaming grid (lanes, clock cycles) is presented in Figure 5. In the example, W neighbors (s1(1),s0(1),s8(0),s7(0)) of samples (s1(2),s0(2),s8(1),s7(1)) are obtained by delay and shift operations.

3.3. Local Differences

The computed local differences are stored in the central difference store since there is a need to share differences between the pipelines. The local difference vectors Uz for each pipeline are assembled as a combination of local differences from lower indexed pipelines and from the central difference store. The pipeline with the lowest index contains P differences only from the central difference store. An example of local differences routing between pipelines and to/from the central difference store for Np=4 and P=5 is illustrated in Figure 6. Pipelines 0−3 produce local differences dz(t) to dz+3(t) for input samples sz(t) to sz+3(t), respectively. Since each pipeline requires P previous local differences, pipeline 3 requires differences [dz+2(t), dz+1(t), dz(t), dz−1(t), dz−2(t)] where the differences [dz+2(t), dz+1(t), dz(t)] are produced by pipelines [2−0] in the current clock cycle and the other two elements [dz−1(t), dz−2(t)] are fetched from the central difference store. After using P differences from central difference store to create Uz vectors, the differences from the bands in the range [(z−1),(z−(PmodNp))] are kept in the store to be used in the next clock cycle.

When z<P, it is required to use only z previous local differences and no local differences remaining from the previous pixel. In the serial implementation, the contents of the difference store is set to zero when z=Nz−1. For the parallel one, since previous local differences are used directly from the pipelines, the differences are masked based on the z coordinate. In this manner, the local differences with index i≤z are included in the local difference vector and elements with index i>z are set to zero.

3.4. Weights and Accumulators

Weights and accumulators are stored in two instances of the same module, shared store, with different element sizes of stored vectors. Figure 7 shows the shared store implementation with Np block RAMs of depth M=⌈Nz/Np⌉. A read counter rd_cnt and a write counter wr_cnt are used for computation of the read and write addresses in each bank. The counters are initialized as rd_cnt(i)=0 and wr_cnt(i)=delay(0,1). The write counter is used directly as the write address w_addr(i), whereas the read address r_addr(i) for bank i is computed as follows:

r_addr(i)=rd_cnt,i+NzmodNp<Np(rd_cnt−1)modM,i+NzmodNp≥Np,

(3)

creating the initial distance between the read and write addresses equal to delay(i,1).

The behaviour of the weight shared store for parameters Nz=61, M=16 and Np=4 is presented in Figure 8. The initial state after reset in Figure 8a shows that rd_cnt is initialized to 0 and wr_cnt is set to delay(0,1)=15. For lanes 0−2, the read addresses are equal to the counter value (rd_cnt=0), whereas for lane 3 the read address is 15 based on the condition (3+61mod4)≥4. However, the data read from weight shared store for the first pixel are not used since the standard defines no prediction for the first pixel. Figure 8b shows the write operation of the first weight samples of pixel 1 at the address of the weight store pointed to by wr_cnt. At this time stamp, counter rd_cnt is N positions from its initial position, where the delay N corresponds to several pipeline stages from the weight reading operation to the end of the weight update operation. The delay N is equal to 8+S, where parameter S is the number of pipeline stages in the dot product. In Figure 8c, the read counter is set to position M−1, the raddr are computed as [M−2,M−1,M−1,M−1] and the first weights [−,W0(1),W1(1),W2(1)] are read simultaneously with samples [s60(0),s0(1),s1(1),s2(1)] at the input of the compression core. Figure 8d shows the state of weight shared store after 15 cycles when samples [s59(1),s60(1),s0(2),s1(2)] arrive at the input.

3.5. Packing of Variable Length Words

The last stage includes packing of the variable-length encoded words W0, …, WNp−1 with respective lengths L0, …, LNp−1 from Np pipelines into fixed-size blocks. The packing operation for Np=4 is illustrated in Figure 9. The packing process starts by shifting the word W0 from the first pipeline by the number of bits from the previous cycle, Lprev. After that, word W0 is concatenated to the bits remaining from the previous cycle, Wprev. In general, shifting of the word Wi by Lprev+L0+⋯+Li−1 positions is followed by concatenation of Wi to the chain WprevW0⋯Wi−1. It is observed that the number of shifts depends heavily on Np and maximum length Umax+D of each word. On the other side, the standard defines the fixed-size output blocks of size B which is extracted each time the sum of the words’ lengths exceeds B.

The block extraction limits the maximum word chain length to B−1 regardless of Np or maximum world length. Therefore, the number of bits left after block extraction and the number of extracted blocks are introduced. The number of bits left after block extraction si is computed as follows:

si=ΣLimodB,

(4)

where

ΣLi=Lprev+∑j=0i−1Lj.

(5)

The extraction count ei, indicating the number of blocks to extract, is defined as:

ei=ΣLiB.

(6)

If ei is non-zero, the number of accumulated bits ∑Li is greater than B.

The implementation of packer module is presented in Figure 10. In the first stage, computation of si and ei parameters is performed for input word Wi. In the second and third stage, a combiner chain combines input words using computed si and ei as shown in Figure 11.

The shifting operation for each word is performed in parallel by using si to select among shifted versions of Wi from a multiplexer. The last pipeline stage concatenates shifted words and extracts full blocks based on extraction count ei. The produced full blocks are added to the chain of complete blocks, the count of full blocks is updated and the remaining bits Wprev are stored into a register to be combined in the next cycle. Finally, the last flag is set when the remaining bits are output as a separate block. After combiner chain, a chain of full blocks, its length and the last flag are pushed into an output FIFO. To output blocks sequentially, there is a need to buffer the blocks sent from the combiner. The data word width of the FIFO is determined by the maximum number of blocks Nmax produced in one clock cycle given as:

Nmax=B−1+Np(Umax+D)B+1,

(7)

where (B−1) is the maximum number of leftover bits from the previous cycle, Np(Umax+D) is the maximum word length produced in one clock cycle and factor 1 accounts for the last block when the last flag is set. If the average bit rate of the encoded samples is higher than the output bus width, there is risk for FIFO to become full. Thus, it is required to stall the data streaming into the core before the overflow occurs by de-asserting ready signal at the input. This is done by setting a threshold Nth to the number of data words in the FIFO. In this manner, it is ensured that all encoded samples, which are streamed in from the cycle when de-assertion of ready signal happens, are stored. The threshold Nth is equal to S+15 which corresponds to the total number of pipeline stages from the core input to the FIFO. In the on-the-fly processing, stalling of the input stream is not possible and the choice of FIFO depth is dependant on the image statistics and speed of predictor’s ability to adapt.

The proposed serial packing of incoming words in combinatorial logic is feasible for Np<6. For larger Np values, the critical path in the initial pipeline stage does not meet timing requirements due to the dependence of sum of word lengths Li on Np. For this reason, a modified version of the packer module is presented in Figure 12. The modified packer distributes the incoming words across several combiner chains operating in parallel. Large critical paths are then avoided by displacing each combiner chain by one clock cycle. The generic parameter Nper_chain is introduced to define the number of words per combiner chain where 1≤Nper_chain≤Np. The number of combiner chains Nc is then computed as:

Nc=⌈Np/Nper_chain⌉.

(8)

Parameters si and ei are computed sequentially for each combiner chain across Nc clock cycles as shown in Figure 12.

Since this operation takes more than one clock cycle, Lprev is not available when computation starts. Therefore, the partial sum of word lengths are initially computed as follows:

ΣLi¯=∑j=0i−1Lj,

(9)

whereas the complete length ΣLi=ΣLi¯+Lprev is computed in the Nc-th clock cycle. Large critical paths can be created due to existing data dependence between combiner chains. To avoid this, large delay registers for the left-most chains are used to keep the full blocks from each chain synchronized with the last chain Nc−1. The proposed solution is that each combiner chain shifts its input words by Lprev without concatenating it with the remaining bits. Instead, the concatenation is done at the output of each combiner chain. The outputs of each combiner chain are a block set and a length of the produced block set which is sent to a block set FIFO. The output logic controls the streaming of created blocks and tracks which FIFO contains the packed blocks for that particular set of words. In particular, the control FIFO monitors which block set FIFOs contain valid data. For each block set pushed to the block FIFOs, a new word is pushed to the control FIFO with a block set mask and the last flag, where the bits in block set mask correspond to one of the combiner chains. In Figure 13, block set mask ’101.1’ for Nc=3 indicates that valid block sets are from combiner chains 0 and 2 and last flag is high.

4. Results

The proposed parallel architecture of the CCSDS-123 compression algorithm is described by the VHDL language, and the Vivado tool is used for synthesis, implementation, power estimation, testing and verification on a PicoZed board with a Zynq-7035 FPGA. The implementation supports BIP sample ordering and both on-the-fly and offline processing. In addition, the implementation is tested against the reference software Emporda [21] and it is fully compliant with the standard allowing user-defined parameter selection.

The proposed core implementation is tested as a part of a larger system supported by AXI bus [22]. Since the internal stalling of output stream is not supported by the core, it is necessary to buffer the output data in a FIFO as shown in Figure 14. Data streaming into the core is stopped when the number of words in FIFO is larger than a certain limit. The FIFO capacity limit Nlimit is determined as follows:

Nlimit=FIFOcapacity−Nstages(Umax+D)B,

(10)

based on the assumption that each pipeline stage has valid data and each data word has the maximum length of Umax+D. The depth of the FIFO is a trade-off between area usage and frequency of output stalling. It is, however, required the depth to be larger than Nlimit.

4.1. Utilization Results

The resource use is affected by several parameters such as the number of bands used for prediction P and sample bit resolution D. As reported in [19], both LUT and register use in the dot product, predictor and weight update modules in the pipeline scale linearly with P. However, in the proposed implementation throughput is not affected by the choice of parameters and remains Np samples per clock cycle for any chosen parameter configuration.

The proposed implementation of the CCSDS-123 algorithm supports the majority of the standard’s parameter settings, including full ranges of bit resolution D, number of previous bands for prediction P and output word size B. The implementation supports both neighbor- and column-oriented local sums, full and reduced prediction modes. However, only the sample adaptive encoder is supported. In the following resource use analysis for the proposed implementation, the chosen parameter configuration is set to the configuration provided in [10] with parameters D=16 and P=3. Table 1 shows resource use for the proposed implementation for a variety of different hyperspectral and multispectral image sensors. The main factor affecting the area use results is frame size Nx·Nz which determines the amount of memory required for storing delayed samples, weights and accumulators.

The used resources in terms of LUTs, registers and block RAM have been elaborated in more details for core configuration set for processing available 16-bit L1b HICO data cubes [5]. Initially, the number of block RAMs varied considerably for different number of pipelines. In particular, weight store and sample delay block RAM use varied depending on Np. This happens due to the synthesis tool which extends depth of an array to the closest power of 2, and by that increases significantly used block RAM resources. To avoid this, LUT elements are used as Distributed RAMs instead of block RAMs. Since one LUT element in 7-series FPGAs [23] can be configured as a 32×1 bit dual port RAM, LUTs are used as RAM for storing weights, accumulators and in the one-pixel delay FIFOs, whereas block RAMs are used in NE FIFO module. The LUT use increases then linearly with Nx·Nz. Regarding register use, each lane has its own memory element with read data registers and the register use in these modules scales linearly with Np. The resources in terms of LUTs, registers and block RAMs used for the total design and the main components are presented in Table 2 and Table 3, respectively. The packer module is the largest contributor in logic use among shared modules due to the fact that as Np grows, the size of combiner chains for Np≤4 and the number of combiner chains for Np>4 also increase. With the larger number of combiner chains, the number of block sets to select in the output logic also increases, requiring larger multiplexers for selection. Figure 15 shows that the resource use for a pipeline chain for Np≥4 stabilizes at 72% of total resources, whereas the ratio of used and available resources for the complete core grows linearly with Np as presented in Figure 16. Thus, the choice of Np for the selected set of compression parameters and image size are constrained by available LUT resources.

The LUT use in the packer module is analyzed in terms of several words per chain Nper_chain and block sizes B and results are presented in Figure 17. It is observed that regardless of Nper_chain, the block size is the main factor which greatly affects area use.

4.2. Timing

The maximum operating frequency of the proposed implementation for different Np is shown in Figure 18. It is shown that the operating frequency depends on Np with a downward trend and varies in the range 126–157 MHz. The critical path is in the output logic which produces the last flag signal obtained as a logical sum of the last signals from the control modules in each of the pipelines.

4.3. Power Estimation

The power estimation has been performed in Xilinx Vivado on the post implementation design in combination with data in post-implementation functional simulation. Figure 19 shows that power usage increases linearly with Np in all modules for 1≤Np≤8. Static power consumption of 0.125 W is mainly due to leakage in the memories in the stores, whereas dynamic power grows with respect to Np as presented in Figure 20. The estimates for stores refer to the power sum in the weight, accumulator, sample and local difference stores. The linear increase is due to the added logic for each pipeline and to increasing complexity of the packer module. Fluctuations appear in the power contribution of the stores when Np is power of 2 since inference of block RAMs in the NE FIFO of the sample delay module is the most effective when the depth of FIFO is a power of two. For example, for HICO data set the depth of FIFO, computed as NxNz/Np, is a power of two when Np is also a power of two.

4.4. Comparison with State-of-the-Art Implementations

The comparison of the proposed parallel implementation of CCSDS-123 algorithm with recent sequential [12,13,14,15,17,18] and parallel [16] FPGA implementations with regards to maximum frequency, the throughput performance and power is presented in Table 4. The majority of implementations target Virtex-5 FX130T FPGA which is commercial equivalent of radiation hardened Virtex-5QV. However, the detailed power and performance analysis on parallel implementation [16] is reported for powerful Virtex-7 FPGA device. The sensor maximum data rates for AVIRIS NG and HICO imagers, representing real-time sensor throughput requirements, are also given. The implementations with BIP ordering have a roughly similar architecture but with large performance differences. In the implementation proposed by Santos et al. [13], the chosen sample ordering requires that local differences are recomputed when needed. As a consequence, each sample is read 2(P+1) times and the input bandwidth efficiency is decreased. This approach requires either the non-sequential memory access pattern with potentially reduction of streaming efficiency, or that the arrangement of the data samples in memory follows the irregular streaming order, occupying 2(P+1) as much storage. The implementation SHyLoC [17] supports all three sample orderings, where a different architecture is suggested for each ordering. The implementation by Bascones et al. [15] achieves throughput lower than 50 Msamples/s on Virtex-7 suggesting less than one sample compressed per clock cycle.

In the parallel implementation proposed by Bascones et al. [16], the throughput of 3510 Mb/s is reported for C=7 compression cores employed in parallel. By fixing the subset of bands processed by each CCSDS-123 core, throughput degradation can be introduced when the number of bands is not divisible by number of cores C since this requires stalling of several cores when processing the last samples of each pixel. Another limitation is the serial nature of the final packing stage which creates a significant throughput bottleneck for large number of parallel cores. The paper suggests, however, that the serial packing circuit can be clocked faster.

The proposed parallel implementation builds up on the processing chain implemented in the previous work [19] which is characterized by a throughput of 2350 Mb/s. The CCSDS-123 processing chain adaptation for parallel processing and the structuring of several CCSDS-123 compression chains in parallel are introduced. The limitations of data routing between processing chains (CCSDS-123 cores) and packing operation in the work proposed by Bascones et al. [16] are successfully overcome in the proposed implementation. In fact, the throughput is maximized by the proposed interleaved data routing between parallel processing chains which eliminates pipeline stalling. In addition, the proposed parallel packing provides linear scaling of the throughput when the number of pipelines is increased. In fact, the ability to achieve high throughput for the number of spectral bands Nz which is not an integer multiple of Np, and to pack any number of variable length words into fixed-size words in each clock cycle are the greatest improvements of the proposed implementation. In comparison with the state of the art, the proposed parallel implementation achieves superior performance in terms of processing speed such as data rates of 9984 Mb/s and 12,000 Mb/s for Np=4 and Np=5, respectively.

Future work will include an hardware implementation of emerging Issue 2 of CCSDS-123 standard [25,26] which builds up on the current version (Issue 1) of CCSDS-123 compression standard [10]. The Issue 2 focuses on new features such as a closed-loop scalar quantizer to provide near-lossless compression, modified hybrid entropy coder for low entropy data and support for high-dynamic-range instruments with 32-bit signed and unsigned integer samples. The introduced data dependencies can affect the throughput and challenge parallel processing.

5. Conclusions

In this paper, a parallel FPGA implementation of CCSDS-123 compression algorithm is proposed. The full use of the pipelines is achieved by the proposed advance routing with shifting and delay operations. In addition, the packing operation of variable-length words is performed fully in parallel, providing throughput of user-defined Np samples per clock cycle. This implementation significantly outperforms the state-of-the-art implementations in terms of throughput and power. The estimated power use scales linearly with the number of input samples. In conclusion, the proposed core can compress any number of samples in parallel provided that resource and I/O bandwidth constraints are obeyed.

Author Contributions

Conceptualization, M.O. and J.F.; methodology, J.F.; validation, J.F., M.O. and T.A.J.; investigation, J.F.; writing—original draft preparation, M.O.; writing—review and editing, M.O., J.F. and T.A.J.; visualization, M.O.; supervision, M.O. and T.A.J.; project administration, T.A.J.; funding acquisition, T.A.J.

Funding

This work was funded by the Research Council of Norway (RCN) through the MASSIVE project, grant number 270959, and the AMOS project, grant number 223254.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

George, A.D.; Wilson, C.M. Onboard Processing With Hybrid and Reconfigurable Computing on Small Satellites. Proc. IEEE 2018, 106, 458–470. [Google Scholar] [CrossRef]

	

NASA. Moderate Resolution Imaging Spectroradiometer (MODIS). Available online: https://modis.gsfc.nasa.gov/ (accessed on 12 November 2018).

	

NASA. Airborne Visible InfraRed Imaging Spectrometer (AVIRIS). Available online: https://aviris.jpl.nasa.gov/ (accessed on 12 November 2018).

	

Aires, F.; Chédin, A.; Scott, N.A.; Rossow, W.B. A regularized neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument. J. Appl. Meteorol. 2002, 41, 144–159. [Google Scholar] [CrossRef]

	

Naval Research Laboratory. Hyperspectral Imager for the Coastal Ocean (HICO). Available online: http://hico.coas.oregonstate.edu/ (accessed on 12 November 2018).

	

Corson, M.R.; Korwan, D.R.; Lucke, R.L.; Snyder, W.A.; Davis, C.O. The hyperspectral imager for the coastal ocean (HICO) on the international space station. In Proceedings of the IGARSS 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 4. [Google Scholar]

	

Soukup, M.; Gailis, J.; Fantin, D.; Jochemsen, A.; Aas, C.; Baeck, P.; Benhadj, I.; Livens, S.; Delauré, B.; Menenti, M.; et al. HyperScout: Onboard Processing of Hyperspectral Imaging Data on a Nanosatellite. In Proceedings of the Small Satellites, System & Services Symposium (4S) Conference, Valletta, Malta, 30 May–3 June 2016. [Google Scholar]

	

Consultative Committee for Space Data Systems. Lossless Data Compression-CCSDS 121.0-B-2. In Blue Book; CCSDS Secretariat: Washington, DC, USA, 2012. [Google Scholar]

	

Consultative Committee for Space Data Systems. Image Data Compression-CCSDS 122.0-B-1. In Blue Book; CCSDS Secretariat: Washington, DC, USA, 2005. [Google Scholar]

	

Consultative Committee for Space Data Systems. Lossless Multispectral and Hyperspectral Image Compression-CCSDS 120.2-G-1. In Green Book; CCSDS Secretariat: Washington, DC, USA, 2015. [Google Scholar]

	

Consultative Committee for Space Data Systems. Lossless Multispectral and Hyperspectral Image Compression-CCSDS 123.0-B-1. In Blue Book; CCSDS Secretariat: Washington, DC, USA, 2012. [Google Scholar]

	

Keymeulen, D.; Aranki, N.; Bakhshi, A.; Luong, H.; Sarture, C.; Dolman, D. Airborne demonstration of FPGA implementation of Fast Lossless hyperspectral data compression system. In Proceedings of the 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Leicester, UK, 14–17 July 2014; pp. 278–284. [Google Scholar]

	

Santos, L.; Berrojo, L.; Moreno, J.; López, J.F.; Sarmiento, R. Multispectral and hyperspectral lossless compressor for space applications (HyLoC): A low-complexity FPGA implementation of the CCSDS 123 standard. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 757–770. [Google Scholar] [CrossRef]

	

Theodorou, G.; Kranitis, N.; Tsigkanos, A.; Paschalis, A. High Performance CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Implementation on a Space-Grade SRAM FPGA. In Proceedings of the 5th International Workshop on On-Board Payload Data Compression, Frascati, Italy, 28–29 September 2016; pp. 28–29. [Google Scholar]

	

Báscones, D.; González, C.; Mozos, D. FPGA Implementation of the CCSDS 1.2.3 Standard for Real-Time Hyperspectral Lossless Compression. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 11, 1158–1165. [Google Scholar] [CrossRef]

	

Báscones, D.; González, C.; Mozos, D. Parallel Implementation of the CCSDS 1.2.3 Standard for Hyperspectral Lossless Compression. Remote Sens. 2017, 9, 973. [Google Scholar] [CrossRef]

	

University of Las Palmas de Gran Canaria, Institute for Applied Microelectronics (IUMA). SHyLoC IP Core. Available online: http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core (accessed on 12 November 2018).

	

Tsigkanos, A.; Kranitis, N.; Theodorou, G.A.; Paschalis, A. A 3.3 Gbps CCSDS 123.0-B-1 Multispectral & Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA. IEEE Trans. Emerg. Top. Comput. 2018. [Google Scholar] [CrossRef]

	

Fjeldtvedt, J.; Orlandić, M.; Johansen, T.A. An Efficient Real-Time FPGA Implementation of the CCSDS-123 Compression Standard for Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 3841–3852. [Google Scholar] [CrossRef]

	

Augé, E.; Sánchez, J.E.; Kiely, A.B.; Blanes, I.; Serra-Sagristà, J. Performance impact of parameter tuning on the CCSDS-123 lossless multi-and hyperspectral image compression standard. J. Appl. Remote Sens. 2013, 7, 074594. [Google Scholar] [CrossRef]

	

GICI Group, Universitat Autonoma de Barcelona. Emporda Software. Available online: http://www.gici.uab.es (accessed on 12 November 2018).

	

ARM. AMBA AXI and ACE Protocol Specification; Technical Report; ARM, 2011; Available online: http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022d (accessed on 12 November 2018).

	

Xilinx. 7 Series FPGAs Configurable Logic Block User Guide; Technical Report; Xilinx: San Jose, CA, USA, 2016. [Google Scholar]

	

Lewis, M.D.; Gould, R.; Arnone, R.; Lyon, P.; Martinolich, P.; Vaughan, R.; Lawson, A.; Scardino, T.; Hou, W.; Snyder, W.; et al. The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and data processing overview. In Proceedings of the OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges, Biloxi, MS, USA, 26–29 October 2009; pp. 1–9. [Google Scholar]

	

Consultative Committee for Space Data Systems. Low-Complexity Lossless and Near-lossless Multispectral and Hyperspectral Image Compression-CCSDS 123.0-B-2. In Blue Book; CCSDS Secretariat: Washington, DC, USA, 2019. [Google Scholar]

	

Kiely, A.; Klimesh, M.; Blanes, I.; Ligo, J.; Magli, E.; Aranki, N.; Burl, M.; Camarero, R.; Cheng, M.; Dolinar, S.; et al. The new CCSDS Standard for Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression. In Proceedings of the ESA On-Board Payload Data Compression Workshop (OBPDC), Matera, Italy, 20–21 September 2018. [Google Scholar]

[image: Remotesensing 11 00673 g001 550]

Figure 1. Overview of the parallel CCSDS-123 implementation for Np=4.

Figure 1. Overview of the parallel CCSDS-123 implementation for Np=4.

[image: Remotesensing 11 00673 g001]

[image: Remotesensing 11 00673 g002 550]

Figure 2. Overview of pipeline architecture.

Figure 2. Overview of pipeline architecture.

[image: Remotesensing 11 00673 g002]

[image: Remotesensing 11 00673 g003 550]

Figure 3. Sample placement timing diagram, (a) Nz=8, Np=4, (b) Nz=9, Np=4.

Figure 3. Sample placement timing diagram, (a) Nz=8, Np=4, (b) Nz=9, Np=4.

[image: Remotesensing 11 00673 g003]

[image: Remotesensing 11 00673 g004 550]

Figure 4. Sample delay processing chain described by delay(i,Δt) and shift(i,Δt) functions.

Figure 4. Sample delay processing chain described by delay(i,Δt) and shift(i,Δt) functions.

[image: Remotesensing 11 00673 g004]

[image: Remotesensing 11 00673 g005 550]

Figure 5. Sample delay operation for obtaining W neighbor samples for Np=4 and Nz=9.

Figure 5. Sample delay operation for obtaining W neighbor samples for Np=4 and Nz=9.

[image: Remotesensing 11 00673 g005]

[image: Remotesensing 11 00673 g006 550]

Figure 6. Routing of central differences between pipelines for Np=4 and P=5.

Figure 6. Routing of central differences between pipelines for Np=4 and P=5.

[image: Remotesensing 11 00673 g006]

[image: Remotesensing 11 00673 g007 550]

Figure 7. Implementation of the shared store module.

Figure 7. Implementation of the shared store module.

[image: Remotesensing 11 00673 g007]

[image: Remotesensing 11 00673 g008 550]

Figure 8. States of weight shared store for Nz=61 and Np=4 (a) after reset (b) during writing operation of the first weight samples for pixel 1 (c) during reading operation of the first stored weight samples for pixel 1 (d) after 15 cycles from the first reading operation for pixel 1.

Figure 8. States of weight shared store for Nz=61 and Np=4 (a) after reset (b) during writing operation of the first weight samples for pixel 1 (c) during reading operation of the first stored weight samples for pixel 1 (d) after 15 cycles from the first reading operation for pixel 1.

[image: Remotesensing 11 00673 g008]

[image: Remotesensing 11 00673 g009 550]

Figure 9. Operation of the variable length word packer.

Figure 9. Operation of the variable length word packer.

[image: Remotesensing 11 00673 g009]

[image: Remotesensing 11 00673 g010 550]

Figure 10. Implementation of variable length word packer.

Figure 10. Implementation of variable length word packer.

[image: Remotesensing 11 00673 g010]

[image: Remotesensing 11 00673 g011 550]

Figure 11. Implementation of combiner chain.

Figure 11. Implementation of combiner chain.

[image: Remotesensing 11 00673 g011]

[image: Remotesensing 11 00673 g012 550]

Figure 12. Implementation of improved variable length word packer.

Figure 12. Implementation of improved variable length word packer.

[image: Remotesensing 11 00673 g012]

[image: Remotesensing 11 00673 g013 550]

Figure 13. Memory organization for block set FIFOs.

Figure 13. Memory organization for block set FIFOs.

[image: Remotesensing 11 00673 g013]

[image: Remotesensing 11 00673 g014 550]

Figure 14. CCSDS-123 IP module.

Figure 14. CCSDS-123 IP module.

[image: Remotesensing 11 00673 g014]

[image: Remotesensing 11 00673 g015 550]

Figure 15. Resource use by pipeline logic with respect to the available resources.

Figure 15. Resource use by pipeline logic with respect to the available resources.

[image: Remotesensing 11 00673 g015]

[image: Remotesensing 11 00673 g016 550]

Figure 16. Resource use on Zynq Z-7035.

Figure 16. Resource use on Zynq Z-7035.

[image: Remotesensing 11 00673 g016]

[image: Remotesensing 11 00673 g017 550]

Figure 17. LUT use in packer module for various B and Nper_chain, Np=4.

Figure 17. LUT use in packer module for various B and Nper_chain, Np=4.

[image: Remotesensing 11 00673 g017]

[image: Remotesensing 11 00673 g018 550]

Figure 18. Maximum operating frequency for different number of pipelines.

Figure 18. Maximum operating frequency for different number of pipelines.

[image: Remotesensing 11 00673 g018]

[image: Remotesensing 11 00673 g019 550]

Figure 19. Power estimates for different Np.

Figure 19. Power estimates for different Np.

[image: Remotesensing 11 00673 g019]

[image: Remotesensing 11 00673 g020 550]

Figure 20. Dynamic power as percentage of total power usage.

Figure 20. Dynamic power as percentage of total power usage.

[image: Remotesensing 11 00673 g020]

[image: Table]

Table 1. Resource use for compressing HSI images from different sensors for Np=4.

Table 1. Resource use for compressing HSI images from different sensors for Np=4.

	Model
	D
	Nx
	Ny
	Nz
	LUTs
	Regs
	RAM

	SFSI
	12
	496
	140
	240
	9416
	8730
	46

	MSG
	10
	3712
	3712
	11
	7984
	8133
	16

	MODIS
	12
	1354
	2030
	17
	8859
	8682
	12

	M3-Target
	12
	640
	2843
	260
	10,824
	8827
	64

	M3-Global
	12
	320
	28,283
	386
	11,351
	9086
	48

	Landsat
	8
	1024
	1024
	8
	6583
	7410
	7

	Hyperion
	12
	256
	3242
	242
	9640
	8888
	28

	Crism-FRT
	12
	640
	510
	545
	12,882
	9313
	130

	Crism-HRL
	12
	320
	480
	545
	12,646
	9130
	68

	Crism-MSP
	12
	64
	2700
	74
	8803
	8843
	6

	CASI
	12
	405
	2852
	72
	8922
	8960
	16

	AVIRIS
	16
	614
	512
	224
	12,033
	10,696
	71

	AIRS
	14
	90
	135
	1501
	12,191
	8569
	68

	IASI
	12
	66
	60
	8461
	-
	-
	-

	HICO
	16
	512
	2000
	128
	11,589
	10,661
	35

[image: Table]

Table 2. LUT use in various stages for different Np.

Table 2. LUT use in various stages for different Np.

	

	
LUTS

	
Np

	
Pipeline

	
Sample

Store

	
Accum

Store

	
Weight

Store

	
Packer

	
Total

	
1

	
2137

	
468

	
112

	
504

	
526

	
3747

	
2

	
4247

	
672

	
128

	
366

	
884

	
6297

	
3

	
6435

	
866

	
196

	
566

	
1139

	
9202

	
4

	
8499

	
856

	
180

	
366

	
1665

	
11,566

	
5

	
10,723

	
1029

	
230

	
464

	
2263

	
14,709

	
6

	
12,765

	
1226

	
272

	
555

	
2513

	
17,331

	
7

	
15,005

	
1458

	
317

	
647

	
2826

	
20,253

	
8

	
16,550

	
1802

	
350

	
731

	
3238

	
22,671

	
9

	
19,297

	
2042

	
397

	
815

	
4131

	
26,682

	
10

	
21,191

	
1886

	
440

	
923

	
4668

	
29,108

	
11

	
23,584

	
2186

	
416

	
1014

	
5008

	
32,208

	
12

	
25,136

	
2268

	
454

	
1112

	
5455

	
34,425

[image: Table]

Table 3. Memory element use in various stages for different Np.

Table 3. Memory element use in various stages for different Np.

	

	
Registers

	
Block RAM

	
Np

	
Pipeline

	
Samp.

Store

	
Acc.

Store

	
Weig.

Store

	
Packer

	
Total

	
Samp.

Store

	
Packer

	
Total

	
1

	
1856

	
156

	
36

	
152

	
687

	
2887

	
32

	
1

	
33

	
2

	
3532

	
238

	
56

	
280

	
1069

	
5175

	
32

	
2

	
34

	
3

	
5394

	
351

	
78

	
410

	
1255

	
7488

	
33

	
2

	
35

	
4

	
6869

	
440

	
98

	
546

	
1636

	
9589

	
32

	
3

	
35

	
5

	
8921

	
540

	
120

	
670

	
2579

	
12,830

	
32.5

	
4.5

	
37

	
6

	
10,424

	
648

	
142

	
814

	
3033

	
15,061

	
33

	
5.5

	
38.5

	
7

	
12,460

	
756

	
164

	
951

	
3358

	
17,689

	
35

	
5.5

	
40.5

	
8

	
13,455

	
808

	
184

	
1085

	
3810

	
19,342

	
32

	
6.5

	
38.5

	
9

	
15,994

	
909

	
206

	
1209

	
4094

	
22,412

	
36

	
7.5

	
43.5

	
10

	
17,311

	
1000

	
228

	
1332

	
4507

	
24,378

	
35

	
8.5

	
43.5

	
11

	
19,546

	
1100

	
250

	
1476

	
4784

	
27,156

	
33

	
8.5

	
41.5

	
12

	
20,479

	
1200

	
272

	
1611

	
5189

	
28,751

	
36

	
9.5

	
45.5

[image: Table]

Table 4. Performance comparison of CCSDS-123 implementations.

Table 4. Performance comparison of CCSDS-123 implementations.

	
Implementation

	
Order

	
P

	
D

	
Platform

	
fmax

	
Throughput

	
Power

	
[MHz]

	
[MSa/s]

	
[Mb/s]

	
[mW]

	
AVIRIS-NG [3]

	
-

	
-

	
14

	
Sensor Max.

	
-

	
30.72

	
430

	
-

	
HICO [5,24]

	
-

	
-

	
14

	
Sensor Max.

	
-

	
4.78

	
66.92

	
-

	
Keymeulen et al. [12]

	
BIP

	
3

	
13

	
Virtex-5 (FX130T)

	
40

	
40

	
520

	
-

	
HyLoC, Santos et al. [13]

	
BSQ

	
3

	
16

	
Virtex-5 (FX130T)

	
134

	
11.2

	
179

	
1488

	
Theodorou et al. [14]

	
BIP

	
3

	
16

	
Virtex-5 (FX130T)

	
110

	
110

	
1790

	
-

	
Bascones et al. [15]

	
BIP

	
0–15

	
16

	
Virtex-7

	
50

	
47.6

	
760

	
450

	
Bascones et al. [16]—C=7

	
BIP

	
0–15

	
16

	
Virtex-5 (FX130T)

	
-

	
179.7

	

	
3040

	
Bascones et al. [16]—C=7

	
BIP

	
0–15

	
16

	
Virtex-7

	
-

	
219.4

	
3510.4

	
5300

	
SHyLoC, Santos et al. [17]

	
All

	
0–15

	
16

	
Virtex-5 (FX130T)

	
140

	
140

	
2240

	
-

	
Tsigkanos et al. [18]

	
BIP

	
3

	
16

	
Virtex-5 (FX130T)

	
213

	
213

	
3300

	
4720

	
Fjeldtvedt et al. [19]

	
BIP

	
0–15

	
16

	
Zynq-7000

	
147

	
147

	
2350

	
295

	
Proposed work—Np=4

	
BIP

	
0–15

	
16

	
Zynq-7000

	
157

	
624

	
9984

	
440

	
Proposed work—Np=5

	
BIP

	
0–15

	
16

	
Zynq-7000

	
150

	
750

	
12,000

	
515

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
Wite data ety Read data

Fomppeine0 b Toppeineo

From ppetne 374 toppains
From pipeline 2 S ~> To pipeline 2
From pipeline 3 To pipeline 3
pesines 2) i 3 [
Bank0 | | Bank 1| | Bank2 | [Banks
Optonal
delay
wite — g
|
| N

' Read address calculation

media/file4.png

| Central || Updated | | Updated |
—» local i weight ' accumulator !
. difference !! vector Bl Wi
1
Control _
signal Weight
generation update
!
_____ Local T
: Current : sum S, ST
I neg;ﬁ)or N Local w rodouct Predictor mZSI ili]a Encoding
_____ Direction. A A
difference
A
Previous e e . S S
local = ; Weight ' Accumulator
differences ! vector ! i

[-

Encoded :
sample

media/file30.png
% of total

—e— LUTs pipelines —#— Regs pipelines

50
1

|
2 3 45 6 7 8 9 10 11 12
NP

media/file39.jpg
10

=)
3

=)
°

(%) 1omod drureudq

40

media/file18.png
Clock Variable-length words from encoders
cycle Pipeline 0 Pipeline 1 Pipeline 2 Pipeline 3
Ll I T T 1]
) I |
1 [wol JLw Jl[we [[w] | Remaining bits iy
i i register
[: Clock cycle 1
R ' ¥]
ool] T M Iw[w [M Jw] w [[w{ Hwa]w]]]
Full blocks + | T
[el | T O
|
[l Clock cycle 2
| il {""":
R M II s M | M| | |
Full bIocks$ ¥ |

Remaining bits
register

v
L

media/file35.jpg
3 4 5 6 7 8 9 1011 12

o~

—
Q 1 o 1 Q ;v 9o 1
T ©® B F¥ F 8 &
D L

(zHN) £ouanbaiy Sunerado wmurxey

media/file21.jpg
Remaining
ms

Extracted —]
blocks count

Fullblocks W,

media/file26.png
Control
FIFO

Block set FIFOs

101,1

100,0

‘ ‘ 100,0 ‘

6

‘ ‘ 111,0 ‘

3

2

media/file27.jpg
Output
Input AXI Stream
AXI Stream

tdata,
tdata, > tlast,
tvalid Output tvalid

FIFO

:readv'—C <limity -0 ey

media/file3.jpg
Gontral

oca
r aronce

Contrar
signal
generation

1

Tocal
sum

h
1 curent

Local
difference

2 s

Residual
mapping

[} Encoding

Direcion.
diference

1

=

aiferonces

Accumulator

media/file22.png
2 2 3 3

W0 S, W1 S

»| or Remaining
bits
/ \
Extract ol
\ 4
Extracted —
blocks count Extract or
| \ 4
R Extract oir
Extract

v

Full blocks W|_,

media/file19.jpg
W, W, W, W, L4 Loy

U N 2

Counters
(shifts and extraction counts)

F—— L, register

,,,,,,,,,, - Combiner chain

L L, register

T

Y

Full blocks FIFO

read prog_full
Output Logic
¥

Output ready Output block. Over threshold

media/file7.jpg
Route lane
P

media/file28.png
Input
AXI Stream

tdata,

tvalid

tready

CCSDS123
core

Output
AXI Stream

< limit?

_ count

Y

Output
FIFO

tdata,
tlast,
tvalid

<4— tready

media/file10.png
Incoming stream From W FIFO From W FIFO shifted
Clock
3 2 1 0 3 2 1 0 3 2 1 0 cycle

33(0) 32(0) 31(0) SO(O) r T delay(0,1)
delay(1,1) shift(0,1)
5,00) | 5,(0) | 5400) | s,0) | | Leelav@.D) || | Fremro=s J

y

| shift(3,1)

s,(1) | s,(1) | 84(1) | s4(0) s,(0) | s,(0) | s,(0) s,(0) | s,(0) | s,(0)

Ss(1) | s5(1) | s,(1) | s,(1) $,(0) | s4(0) | s,(0) | s,(0) s5(0) | s:(0) | s,(0) s3(6)

$,(2) | 84(2) | s4(1) | s,(1) s_(0) | s,(1) | s4(1) | s4(0) s,(1) | so(1) | s4(0) | s,(0)

S:(2) | 8,(2) | 85(2) | 54(2) S,(1) | s5(1) | s,(1) | s,(1) Se(1) | s,(1) | s5(1) | (1)

$o(3) | 85(2) | 5,(2) | 85(2) | | 86(1) | 85(2) | 8(1) | 8,(1) | | 8p(2) | 85(1) | 8,(1) | 85(1) \

media/file40.png
10

-
0

-
O

(o4,) Mod dTUTeUA(q

media/file33.jpg
3,000

2,000

LUTs

1,000

—e—1 per chain
—=—2 per chain
—e—4 per chain

816 32 64 128
Block size

media/file32.png
LUTs
—m— Registers
—e— BRAMs
—— DSPs

+

25

20

15
10

(9,) S92INOSANY

2 3 4 5 6 7 8 9 10 11 12

1

media/file14.png
Write data

From pipeline O
From pipeline 1
From pipeline 2
From pipeline 3

write j

Route bank i to

pipeline shift(i, 1)

Read data

o Wm Em mm mm

{

S~

Write
address
counter

Bank O

Bank 1 Bank 2

Bank 3

s e e o A

Read address calculation

-~
~ /

/)—> To pipeline 0

To pipeline 1
To pipeline 2
To pipeline 3

Optional
delay

——

[

read

Read
address
counter

media/file11.jpg
Local Differences

Pipeline 3

Pipeiine 2 || g

Pipetine 1 || s

Pipeline0 ||

Next

Central Difference Store.

Current

Dot Product
U, [Pipeline 3]
i e e [
U, [Pipeline 2]
o 0 ER s
U, [Pipeline 1]
G | d | da | G| 9
U, [Pipeline 0]
G | G | tho | 9 | s

media/file6.png
Clock

Cycle
0

5,0)

5,0)

s,(0)

$,(0)

85(1)

So(1)

s,(1)

8,(1)

$5(2)

$o(2)

5,(2)

8,(2)

$5(3)

$o(3)

s,(3)

$,(3)

$5(4)

So(4)

s,(4)

$,(4)

Clock

Cycle
0

$,(0)

$,(0)

s,(0)

s,(0)

s,(1)

$4(0)

s:(1)

s,(1)

5,(2)

s,(1)

$5(2)

$,(2)

$o(3)

5:2)

5,(3)

5,3)

5:0)

5:(3)

$,(4)

So(4)

media/file36.png
2 3 4 5 6 7 8 9 10 11 12

160
155
1501
145
140
135
130
125 1

(ZHIN) Aduanbaiy Sunyerado wmwrxey

media/file15.jpg

media/file37.jpg
Power (W)

—e— Total
—a— Packer
—e— Stores
—+— Pipelines

0.8

0.6

0.4

0.2 : :I
0

nav.xhtml

 remotesensing-11-00673

 		
 remotesensing-11-00673

media/file16.png
Read
counter

‘

Write
counter

I i

Read data after routing to shift(i, 1)

(a)

Read
counter

i

—

F

Z I

Wirite
counter

Read
counter

:
'

W) [Wi(1) | W,(1) [W,

W, (1) | W) | W) | wi)

Wo(1) | W) | Wi | W)

Read data after routing to shift(i, 1)

(c)

W,i(2)

W,(2)

W,(2)

W;(2)

Wirite
counter

'

Wi,(2)

Wig(1)

W, (2)

Wy(1)

W,2)

w,,(1)

W,,(2)

Wig(1)

Read
—]
counter
i

'

(d)

Read data after routing to shift(i, 1)

media/file2.png
Input samples

¢
Central
So?mple difference Weight store BTV
elay store store
T S S N M M
: Routing !
N e = - — -
| S S T S R A T |
Pipeline 0 Pipeline 1 Pipeline 2 Pipeline 3
! ! ! !
Packer

!

Output bitstream

media/file20.png
WO W1 W2 W3 L L L L

0 1 2 3
Counters .
» L __ register
(shifts and extraction counts) prev 19

—

tll i

Combiner chain

_|—> L__ register

prev

Full blocks FIFO

read prog_full

|

Output Logic

Output ready Output block Over threshold

media/file23.jpg

media/file5.jpg
Lanes Lanes

3 2 10 o= 3 2 10
5,(0) | 5,(0) | 5,(0) | 5,(0) $5(0) | 5,0) | 5,(0) [54(0)
$,(0) | 54(0) [55(0) [5,(0) $,(0) | 540) | 5,(0) | 5,00
s5(1) | 8,01) | 5,01 | 85(1) s,(1) [5,(1) [84(1) | 5,0)
$,01) | 51 [s501) [s,(1) $6(1) | 85(1) | 8,(1) | 8,(1)
54(2) | 5,2) | 5,2) | 82 5,(2) [84(2) [s4(1) | s,(1)
5,2) | 542) | 552 | 5,2 5,(2) | 5,2 | 5,2 | 5,02
$,3) | 5,3) | 5,(3) | 8,(8) 5,3) | 542 | 5,2 | 552
5,3) | 503 | 503 | 5,3 5,3) | 5,3) | 5,3 | 5,3
S4(4) | 5,4 | 8,(4) | So(4) 553) | 5,(3) | 83) | 55(3)
5,(4) | 554) | 5,4) | s,(4) 5,4) | 5,(4) | 5,(4) | 8,(4)

(a) (b)

Clock
Cycle

media/file24.png
Nc clock cycles

W,-W, W,-W, L, L, L, L, L, L Ls L.
'S A B
Compute length sum and
shifts \
\ 4 \ 4 Y \ 4
‘ Compute Ien_gth sum and L register
shifts prev
1 4 l
Adjust shifts, Adjust shifts,
calculate extraction counts calculate extraction counts
v v R
Combiner chain .- Combiner chain -

remaining remaining

blocks valid blocks valid
\ 4
=r_or » or
\ y
\ 4 \ 4
or with first \o 1 or with first \o 1
block : block :
Remaining

J register

y \j y 4
4 4
write write
Control FIFO Block set FIFO Block set FIFO
read read
A
read

v v

=\\Select block set /

Output side
control logic

Current block shift
T register

Output ready

Output block

media/file29.jpg
% of total

70

60

50

—e—LUTs pipelines —#— Regs pipelines

1

2 3 45 6 7 8 9 1011 12
N,

media/file1.jpg
Input samples

Y

S N

Central
S:mple difference Weight store GesumnuEies
elay store store
1 Routing
.

g

Pipeline 0

Pipeline 1

Pipeline 2

Pipeline 3

i

i

i

1

Packer

!

Output bitstream

media/file31.jpg
Resources (%)

25

20

15

10

—e— LUTs
—=— Registers
—e— BRAMs
—+— DSPs

1

2 3 45 6 7 8 9 1011 12

Np

media/file25.jpg
Control

Block set FIFOs FIFO
101,1

100,0

6 100,0

3 111,0

3 2 001,0

1 1 011,0

media/file12.png
Local Differences

Pipeline 3

Pipeline 2 d

Pipeline 1 d

Pipeline 0 d

Dot Product

U, [Pipeline 3]

Central Difference Store

Next Current
s ss== |
1
1 z+3 : ; dz-1
1 I d
_>i z+2 : z-2
1 z+1 : dz-3
1
L _d_z _ _I dz-4
dz-1 = dz-5

z+2 z+1 z z-1 z-2
U, [Pipeline 2]
dz+1 dz z-1 z-2 z-3
U, [Pipeline 1]
| dz dz-1 dz-2 z-3 z-4
U, [Pipeline 0]
dz 1 dz-2 dz 3 z-4 z-5

media/file9.jpg
Incoming stream From WFIFO From W FIFO shifted

Gk
3 2 1 0 3 2 1 [J 3 2 1 0 cyce
©
o s [0] flsfon
S (o

50 [56050 | s | [[ECTT] | g
hift(3,1)
s,(1) 5‘11)-!,(0i 5,(0) !,(0). 5,(0) | 5,(0) sd ‘

y
S6(1) | 81) [8,(1) | 8(1) | | 5(0) | 84(0) | 5(0) | ,(0) [| 8,(0) | 5(0) | 8,(0) [5,(0)

s‘w-s,m EOEC sm-s,(v) s.m.s.(m 50

502) | 52 | 542 [5,) | [50 | 1) [) [5,00 | [50 | 5,01) | 8,00) [(1)

-s.tz) 5(2) | 5,2 5,11)-.,(1) (1) -s,n) (1) | 8,1

media/file0.png

media/file38.png
Power (W)

0.8

0.6

—e— Total
—m— Packer
—e— Stores
—— Pipelines

media/file8.png
Input Route lane i Route lane i

L W samples | L NE sampl
samples W FIFOs to shift(i, 1) | P NE FIFOs to shift(i, N -2) Sampies

r-——-—----- r———===---- 1 F-=—=—=-=-=-=---

- ! 0 0 : 0 0 i !

D Szyx delay(0, 1) I—\\ e S, yx-1 :4-| delay(0, N, -2) I— S Syy-txtt !

: | 1 NG e : 1 N 1 ! E

i Sz+1,yx :_’l de/ay(1) 1) Ii*\\ , N a——— Sz+1,y,x 1 i_’| de/ay(1) NX'2) \\ ,z’\\ /'—>: Sz+1,y—1,x+1:

! ' TNy : ! :<' \>’\ : '

| : 2 T2 - 2 NN 2 |

i SZ+2,yX :4’| de/ay(2, 1) ‘|7‘*,' _>: SZ+2,yX1 E__’| de/ay(2, NX-2) ,/‘\\ _—>: Sz+2,y_1,x+1:

i : 3 1/ \\\ 3 i i 3 ,", \\ 3 i l

: Sz+3,y,x :‘_’l de/ay(3, 1) Iil \'—>: Sz+3,y,x—1 :_’| de/ay(3, NX'2) I—, ™ Sz+3,y—1,x+1i
i Route lane i | N samples ‘ Route lane i NW samples

; N FIFOs to shift(i, 1) P NW FIFOs to shift(i, 1) P

C T 0 0 Tt i 0 0 r T

E Sz,y—1,x+1 ' _.l de/ay(o: 1) I_‘~\\ ,/'—T Sz,y-1 X i_’| de/ay(O, 1) I“~\\ ,l'—>i Sz,y—1,x1 '

l i 1 RN i l 1 N E

E Sz+1,y,x+1 ! _.l de/ay(1: 1) Ii*\\ ,/, D Sz+1,y—’l X E—.| de/a_)/(1, 1) Ii*\\ /l' \—>E Sz+’I y-1,x-1 1

: i 2 /7\‘\ 2 i i 2 ,’)\~\ 2 i i

i Sz+2,y—1,x+1: de/ay(z, 1) ‘*,l \'—T Sz+2,y—1 X : de/ay(z; 1) \x*/, _>i Sz+2,y-1,x 1 :

i i 3 \\\ 3 E E 3 1,/ \\\ 3 i i

' Sz+3,y—1,x+1: _.l de/ay(3, 1) Iil _T Sz+3,y—1 X :—.| de/ay(3, 1) Iil \—>: SZ+3,y-1,X-1 !

media/file34.png
\ \
—e— 1 per chain
—=— 2 per chain
—o— 4 per chain

3,000

LUTs
»
o
o
o

0L— | |
8 16 32 64 128

Block size

media/file17.jpg
oo Varableenglh words from encoders
G pgorwo ot Pooie Ppened

| B D) B =D

T Clokcyoe?.

ST T e
T 7 T

