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Abstract: To better understand and mitigate threats to the long-term health and functioning of
wetlands, there is need to establish comprehensive inventorying and monitoring programs. Here,
remote sensing data and machine learning techniques that could support or substitute traditional
field-based data collection are evaluated. For the Bay of Quinte on Lake Ontario, Canada, different
combinations of multi-angle/temporal quad pol RADARSAT-2, simulated compact pol RADARSAT
Constellation Mission (RCM), and high and low spatial resolution Digital Elevation and Surface
Models (DEM and DSM, respectively) were used to classify six land cover classes with Random
Forests: shallow water, marsh, swamp, water, forest, and agriculture/non-forested. Results
demonstrate that high accuracies can be achieved with multi-temporal SAR data alone (e.g., user’s
and producer’s accuracies ≥90% for a model based on a spring image and a summer image), or via
fusion of SAR and DEM and DSM data for single dates/incidence angles (e.g., user’s and producer’s
accuracies ≥90% for a model based on a spring image, DEM, and DSM data). For all models based on
single SAR images, simulated compact pol data generally achieved lower accuracies than quad pol
RADARSAT-2 data. However, it was possible to compensate for observed differences through either
multi-temporal/angle data fusion or the inclusion of DEM and DSM data (i.e., as a result, there was
not a statistically significant difference between multiple models). With a higher repeat-pass cycle
than RADARSAT-2, RCM is expected to be a reliable source of C-band SAR data that will contribute
positively to ongoing efforts to inventory wetlands and monitor change in areas containing the same
land cover classes evaluated here.

Keywords: wetlands; Random Forests; Synthetic Aperture RADAR; RADARSAT-2; RADARSAT
Constellation Mission

1. Introduction

Wetlands provide a number of ecosystem services to both plant and animal species, including
some that are at risk, threatened, or regionally rare [1]. For those that visit periodically or live
permanently within them, wetlands provide habitat essential for obtaining food, procuring shelter, and
breeding [2–4]. Humans also benefit directly from wetlands since they filter water, prevent shoreline
erosion, reduce flooding and are used for recreation [5]. Nevertheless, these sensitive ecosystems
continue to face pressures associated with the adverse and cumulative effects of anthropogenic
disturbance, pollution, climate change, and invasive species [6,7].

Climate change specifically is expected to alter ambient temperatures, precipitation levels, and
evapotranspiration rates, as well as modify and increase the variability of flow regimes [8,9]. This could

Remote Sens. 2019, 11, 670; doi:10.3390/rs11060670 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-4491-2971
http://www.mdpi.com/2072-4292/11/6/670?type=check_update&version=1
http://dx.doi.org/10.3390/rs11060670
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 670 2 of 28

affect the extent, structure, composition, and function of many wetlands, which are sensitive to changes
in their hydrology [8–10]. For species that are adapted to certain water depths and flood durations,
this is expected to impact both the quality and quantity of suitable habitat, and could create conditions
that are favorable for the expansion of native generalist and/or invasive species [11]. This is especially
concerning for places such as the Great Lakes Basin in North America, where invasive species such as
Phragmites australis are already widespread [12].

To better understand and mitigate current and future risks to wetland ecosystems, there is a
need to establish baseline conditions through comprehensive inventorying, as well as to monitor
changes through time. However, effective management of wetlands is complicated by the fact that
they can be both numerous and spatially extensive (e.g., in Canada, where the study area is located,
wetlands make up approximately 13% of the country’s landmass or ∼1.23 million km2 [13]). Further,
given the dynamic nature of wetlands, there is need for frequent monitoring in order to effectively
discern between the effects of short-term anomalies (e.g., abnormally wet spring), and long-term
trends (e.g., changing climatic conditions). For this reason, remote sensing and/or other geospatial
data, and machine learning techniques have been investigated to complement or serve as alternatives
to traditional field-based data collection [14–16].

With increasing quantities of free data and sensors providing a range of Synthetic Aperture
RADAR (SAR), optical, and Digital Elevation/Surface models (DEM and DSM, respectively),
multi-source/sensor fusion has become a valuable tool for a variety of applications, including land
use/land cover mapping [15–21]. However, there are limitations associated with relying on increasingly
complex datasets, especially those that contain optical imagery that can only be acquired during
cloud-free periods. This is because it can be difficult to reproduce the exact combination of data
types and/or acquisition dates, especially across large geographic areas. One solution is to combine
images from different seasons and/or years [16], however, results can be less informative for dynamic
wetlands that can also change from year-to-year. Furthermore, to recognize trends requires several
years of observations, which can be difficult to obtain.

On the other hand, SAR data are well suited for mapping and monitoring large geographic areas
at high temporal frequencies, since sensors operate within the microwave region of the electromagnetic
spectrum. As such, transmitted and received signals are largely unaffected by the presence of clouds
and haze. This is especially advantageous for establishing baselines and evaluating change since
images can be acquired under relatively comparable conditions through space and time (e.g., on
anniversary dates, at similar phenological states, under similar moisture and/or inundation conditions).
Nevertheless, sometimes SAR data alone are not sufficient for classifying very detailed wetland
classes [19,21], although accuracies can be improved in some cases through the addition of DEM/DSM
data [18].

In light of this, SAR data alone and in combination with DEM/DSM data were used to
classify several wetland (shallow water, marsh, and swamp), and non-wetland (water, forest, and
agricultural/non-forested uplands) land cover classes for a study area in Ontario, Canada. Using
Random Forests (RF), single and multi-angle/temporal C-band RADARSAT-2 data were classified to
determine the optimal incidence angle and/or acquisition timing, as well as whether accuracies can
be improved via multi-angle/temporal data fusion. Then, SAR and DEM/DSM data were combined
to determine whether classification accuracies can be improved. In preparation for the successor
mission to RADARSAT-2—the RADARSAT Constellation Mission (RCM)—all models were also re-run
following the substitution of quad (QP) for simulated compact pol (CP) data to determine whether
this mode will provide relevant information for wetland inventorying and monitoring.
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2. On the Use of SAR and/or DEM/DSM Data for Wetland Inventorying and Monitoring

2.1. Synthetic Aperture RADAR

SAR data can be suitable for wetland mapping and monitoring since sensors transmit and receive
relatively long (i.e., compared to optical) wavelength microwaves, which can penetrate vegetation and
provide information on sub canopy conditions, such as the extent of inundation. Often, backscatter
returns are enhanced in the presence of inundated vegetation because little incident energy is lost
via the transmission to lower layers of the surface (i.e., because of the high relative permittivity of
water [22,23]). So-called double bounce scattering can also occur in cases where incident microwaves
strike the horizontal saturated soil/water surface, then vertically oriented vegetation (or vice versa)
before being returned to the sensor [24]. This similarly results in enhanced backscatter and/or a
characteristic response that is often atypical/weaker for drier upland sites [25–27]. In some cases,
differences in the height, structure, biomass, and other physical attributes of the vegetation can also be
characterized with SAR [28], making it useful for discriminating wetlands by plant type/species [21,29].

Many remote sensing practitioners obtain much of their SAR data from the C-band RADARSAT-2
satellite, which has the capacity to collect multiple data types for a variety of applications. Of particular
relevance are the different polarization settings: either linear horizontal (H) or linear vertical (V),
which can number one (H or V), two (HH/HV, VV/VH, or HH/VV), or four (HH, HV, VH and VV)
transmit–receive combinations. The latter so-called QP mode provides the most information about
the target [30,31], and thus was evaluated in this research. Alternatively, single (SP) and dual (DP)
pol data require less system power, thus can be acquired across larger swaths and/or at finer spatial
resolutions. This is advantageous for some applications, although these data may not provide sufficient
information to separate the land covers of interest [32].

For the upcoming RCM (scheduled to launch in 2019), C-band SAR data will continue to be
provided via three identical satellites with the capacity to achieve a four-day repeat-pass cycle and
near-daily global coverage. This increase in temporal coverage (relative to RADARSAT-2 with a
24-day repeat-pass cycle) could make RCM a preferred data source for wetland inventorying and
monitoring. However, for RCM QP data will only be available for experiments and instead CP will
be offered as a standard imaging mode. CP consists of the transmission of a single polarization and
coherent reception of two orthogonal polarizations (RCM satellites will transmit in the right-hand
circular (R), and will receive linear horizontal (H) and linear vertical (V)) [31]. While containing less
target information than QP data, CP data also have the advantage of requiring less system power
(reducing costs), while providing additional inter-channel phase information that is not available
with incoherent DP data. Each RCM satellite will also operate with a higher Noise Equivalent Sigma
Zero (NESZ) value than RADARSAT-2. This will impact its sensitivity to differences in backscatter,
especially for low-intensity features (due to the higher proportion of noise). To assess the impact of
both the difference in polarization and NESZ values on classification accuracy, simulated RCM data
are also classified [33].

2.2. Digital Elevation and Surface Models

DEMs (including general elevation products and Digital Terrain or bare earth models) often
provide useful information for identifying wetlands [17,20,34,35] since they are typically located in
topographic depressions, where water accumulates and is retained for extended periods [36]. However,
wetland inventories generated from DEMs alone can only provide baseline (static) information, as
the elevation of wetlands tends to remain constant. Over the course of years or decades, however,
flooding extent, plant health, and/or species composition can change dramatically (e.g., due to the
propagation of an invasive species). Thus, identifying trends requires other sources of information.
Alternatively, DSMs with sufficient vertical accuracy can be used to discriminate wetland types based
on differences in the height of vegetation [37]. In fact, Millard and Richardson [37] found that only
Light Detection and Ranging (LiDAR) data are needed to classify multiple wetland types and that
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model accuracy does not improve with the addition of SAR data. However, there are currently no
satellite-based LiDAR sensors consistently acquiring multi-temporal DSM data. Furthermore, both
DEMs and DSMs generated from high spatial resolution optical data are similarly limited in availability
to cloud-free periods.

In light of these limitations, DEM and DSM data were evaluated as complementary data sources to
available SAR. Throughout the study area two freely available datasets were identified and evaluated:
(i) high spatial resolution DEM and DSM data derived from stereo orthophotos that are acquired on
a five-year rotating schedule throughout Ontario, Canada by the Ministry of Natural Resources and
Forestry (MNRF); and (ii) low spatial resolution Shuttle RADAR Topography Mission (SRTM) data,
which are available near-globally, although only acquired at one time.

3. Objectives

Given the benefits of SAR data, and the potential to improve accuracies, where necessary, with
DEM and DSM data, the following objectives were addressed:

(i) Evaluate the effect of acquisition incidence angle and timing on RF model accuracy To address this
objective, multiple RF models were constructed with single SAR images acquired at different
incidence angles (steep versus shallow), and during different seasons (spring versus summer),
and their accuracies were compared.

(ii.) Determine whether RF model accuracy can be improved via fusion of multi-temporal and/or multi-angle
SAR data. Images used to address Objective (i) were combined as inputs to RF, and their accuracies
were compared.

(iii.) Determine whether RF model accuracy can be improved via fusion of SAR data with high or low spatial
resolution DEM and DSM data. Single SAR images, and all combinations of SAR images were
classified with the high spatial resolution DEM and DSM data. Select datasets were then
re-processed and re-classified using the low spatial resolution DEM data, and their accuracies
were compared.

(iv.) Evaluate the effect of substituting QP RADARSAT-2 for simulated CP RCM data. All models (from
Objectives (i)–(iii)) were re-run after substituting QP for simulated CP data to evaluate how
accuracies were affected by the difference in information content and higher NESZ value of the
latter, as well as the simulation process.

4. Study Area and Land Cover Classes

4.1. Study Area

The study area is located on the Canadian side of Lake Ontario (Figure 1), and encompasses the
entirety of Prince Edward County, the towns of Belleville, Shannonville, and Greater Napanee. Here,
the climate is relatively mild with warm summers and cool winters. Daily average temperatures peak
in July at around 21 ◦C, while rainfall is greatest for the month of September at around 90 mm [13].
The majority of the region is underlain by Paleozoic (limestone) bedrock, and glacial till. Peat, muck,
and marl (organic materials) are also fairly widespread, with most located coincident with the
numerous and often spatially extensive swamps and marshes present throughout the region (by
comparison, shallow water wetlands are less common). Soils here are rich and fertile, thus most land
is used for agricultural production, although there are many built-up areas. The local topography is
mostly low-lying and flat [38].
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Figure 1. Location of the study area on the northern shore of Lake Ontario, Canada showing the
footprint of the FQ5W (orange) and FQ17W (green) RADARSAT-2 images evaluated in this research.

4.2. Land Cover Classes

The Canadian Wetland Classification System [39] was used as a basis for defining the wetland
types classified within the study area (Table 1). Three general, non-wetland land covers were also
classified (Table 1). Note that, for all models constructed with just spring images, it was necessary to
combine the shallow water and water classes since no vegetation was present in the former until later
in the growing season.

Table 1. Description of the land cover classes identified throughout the study area.

Land Description Training Validation TotalCover Sample Sample

Water All water bodies. 274 183 457

Transitional zones between marshes and lakes that
Shallow became densely vegetated by aquatic/emergent 59 39 98

Water vegetation during the growing season.

Marsh Wetlands dominated by emergent vegetation 141 94 235
(sedges, rushes and/or reeds).

Swamp All wetlands containing 30% or more tall woody 178 119 297
vegetation, including shrubs/trees.

Agriculture/ All lands used for agricultural production and all 313 209 522
Non-Forested other non-forested uplands.

Forest Stands of coniferous and/or deciduous trees. 155 103 258

Total 1120 747 1867
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5. Data and Methods

5.1. Model Training and Validation Data

To create model training and validation data, point vectors were randomly distributed across
the entire study area, and then manually labelled one of the seven land cover classes (Table 1). To do
this, points were either labelled in the field during site visits in the spring, summer and fall of 2016,
2017 and 2018, or following visual interpretation of UAV (collected at various times in 2016, 2017 and
2018) or WorldView imagery (Table 2). In some cases, other freely available data (e.g., Landsat) were
also referenced if the other imagery did not provide coverage or were acquired at an inopportune
time (e.g., too early in the growing season). Points that analysts could not confidently identify were
removed and new points were generated until 500 were accurately labelled. For example, if a point
was located adjacent to a marsh with only spring imagery providing coverage, it was not possible to
confidently identify the presence/absence of a shallow water wetland, which only becomes densely
vegetated later in the growing season.

Table 2. Acquisition dates of the data used in this research.

RADARSAT-2 FQ5W: 1 May 2016 and 12 July 2016, FQ17W: 27 April 2016 and 8 July 2016

SRTM DEM 11 February 2000 to 22 February 2000

MNRF DEM/DSM 26 April 2013 to 7 May 2013 and 12 April 2015 to 23 May 2015

WorldView 14 April 2016, 27 April 2016, 23 May 2016, 4 June 2016

For each class, the number of points was then increased approximately proportional to the areal
extent it covered [40] to maximize the number of points available for model training and validation
(Table 1). To do this, analysts drew polygons throughout the study area and assigned each a class label.
Points were then randomly distributed within polygons and given the same label. A small number
(<5% of the total) of points were also purposefully selected (based on opportunity, and not distributed
randomly) in the field using a hand-held Global Positioning System (Trimble Juno SB). All points were
spaced at least 40 m apart to account for the effects of spatial autocorrelation [40], and for each class
60% were randomly selected for model training, and the remaining 40% were used for independent
validation (Table 1).

5.2. Remote Sensing Data and Image Processing Details

The RADARSAT-2 satellite was programmed to acquire images at different incidence angles
(i.e., 23.4–25.3◦ and 36.4–38◦ with the FQ5W and FQ17W beam modes, respectively), and on different
dates (April, May, and July) to determine the optimal acquisition geometry and/or timing, as well as
to better address the need for diverse sources of information to achieve high accuracies. Multi-angle
data were acquired since steep (low) angle images often show greater sensitivity to moisture and/or
inundation [41,42], while shallow (high) angle images can show greater sensitivity to the characteristics
of the vegetation, including height, density, and phenology [43]. It was similarly theorized that the
timing of the acquisition may be important for detecting classes such as shallow water, which only
become densely vegetated later in the growing season [44], as well as for detecting inundation since the
presence of leaves can result in attenuation of C-band radar at the top of the canopy [43,45]. As such,
images acquired before the leafing out of the canopy and during peak of growing season conditions
were evaluated (herein referred to as “spring” and “summer” imagery, respectively).

Using PCI Geomatica software (version 2017), all Single Look Complex (SLC) RADARSAT-2
images were represented as non-symmetrized scattering matrices in sigma-nought, then converted
to symmetrized covariance and coherency matrices. A 5 × 5 boxcar filter was applied to reduce the
effects of speckle, and several relevant variables were generated and combined into a single image
(Table 3) [19,32,46]. Each image was orthorectified via Rational Functions, first using the satellite orbit
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information and the high spatial resolution (MNRF) DEM as inputs. Then, select datasets (i.e., the
FQ17W spring and FQ17W summer images) were reprocessed using the low spatial resolution (SRTM)
DEM (Table 2). For this research, the pixel spacing of each image was selected based on its ground
range resolution (13.6 and 8.9 m for the FQ5W and FQ17W data, respectively). Following analysis of
each image individually, the FQ5W and FQ17W data were combined by re-sampling the latter to the
spatial resolution of the former.

Table 3. List of variables generated from each dataset for use in constructing RF models.

QP Simulated CP DEM/DSM

1–3 HH, HV and VV Intensity 1–4 Stokes Vectors: S0, S1, S2, 1 DEM
4 Total Power (SPAN) S3 [47] 2 Slope
5 HH/VV Intensity 5-6 Shannon Entropy: 3 Aspect
6 HV/HH Intensity Intensity and 4 Catchment Area [48]
7 HV/VV Intensity and Polarimetry [49] 5 Convergence Index [48]
8 Pedestal Height 7–10 RH, RV, RR, and RL 6 Valley Depth [48]
9 HH-VV Phase Difference Intensity 7 Channel Network Base

10–13 HH, VV: Magnitude, 11 RH-RV Correlation Level [48]
Phase, Real, Imaginary of Coefficient 8 Slope Length Gradient

Correlation Coefficient 12–14 m-chi Decomposition: Factor [48]
14–16 Freeman–Durden: Double, Double, Volume and 9 Catchment Slope [48]

Volume, Surface [24] Surface Scattering [47] 10 Modified Catchment
17–20 Cloude–Pottier: Entropy, 15 Cloude AlphaS [50] Area [48]

Anisotropy, Alpha, Beta [51] 16 Degree of Polarization [47] 11 SAGA Wetness
21–35 Touzi Decomposition: 17 Relative Phase [30] Index [48]

Dominant, Secondary, 18 Conformity [52] 12 Topographic
Tertiary: Psi, Eigenvalue, 19 Circular Polarization [30] Wetness Index [48]

Alpha-S, Phase, Helicity [53] Ratio [30] 13 Relative Slope
36–39 Touzi Discriminators: Position [48]

Maximum, Minimum, 14 Vertical Distance to
Difference, Polarization Channel Network [48]

Response [54] 15 DEM Ruggedness [48]
Shannon Entropy: Intensity 16 DSM

40–41 and Polarimetry [49] 17 Terrain Ruggedness [48]

Each QP image was then ingested into the RCM Simulator software developed and provided
by the Canada Centre for Mapping and Earth Observation [30]. Within the simulator, CP data were
synthesized by first storing the SLC RADARSAT-2 data in the Kennaugh matrix format, and then
multiplying by the transmitting Stokes vector in the right-hand circular polarization. To emulate
the radiometric data quality of a given RCM beam mode, a randomly generated NESZ pattern was
added to the first element of this vector only (i.e., no noise was added to the phase-related parameters).
The final simulated data were also stored in the Stokes vector format. For additional details and
equations are provided by [55]. To reduce the effects of speckle, a 5 × 5 boxcar filter was also applied,
and then several relevant variables were generated (Table 3) [19,30,32].

With relatively few training and validation samples, it was theorized that the generation of random
noise (i.e., non-repeating values between simulations) could result in different classification accuracies
between simulations. Thus, the simulation process was repeated six times for each RADARSAT-2
image: three times to generate three sets of high resolution mode data (NESZ pattern of −19 dB), and
three times to generate three sets of medium resolution mode data (NESZ pattern of −25 dB). With four
quad pol images, this resulted in 24 datasets. Each was then orthorectified using the same procedure
and satellite orbital information as the original RADARSAT-2 data, and the same pixel spacing (i.e.,
13.6 and 8.9 m for the FQ5W and FQ17W images, respectively). Notably, high and medium resolution
mode data from RCM have a nominal pixel spacing of 5 and 16 m, respectively. However, the effects
of resolution were not evaluated to avoid re-sampling of the raw RADARSAT-2 data.
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The high spatial resolution (i.e., 2 m) DEM and DSM data were downloaded as rasters from the
Province of Ontario’s open data catalogue—Land Information Ontario. Both were generated from
20 cm stereo orthophotos, some of which were acquired in 2013 and 2015 (combined to achieve full
study area coverage) (Table 2). To the DEM, a proprietary “steam rolling” algorithm had been applied
to reduced raised features, though because not all raised features were removed it is not referred to
as a DTM (true bare Earth model). Only the vertical accuracies of the DSM were provided, which
ranged by slope, topography, and land cover type (e.g., for open fields and deciduous trees accuracies
were ±0.15 and ±6.36 m, respectively, at 95th confidence level) [56]. For both the DEM and DSM
noise over water was masked using the approach described by Behnamian et al. [44]. The second
version of the SRTM DEM was also downloaded as a 30 m resolution raster from the United States
Geological Service’s Earth Explorer data catalogue. The vertical accuracies of this dataset are generally
less than 16 m [57]. From both DEMs and the DSM several variables were generated using the System
for Automated Geoscientific Analysis (Table 3) [37,48].

5.3. Applying RF and Evaluating Model Performance

All RF models were constructed in R using the randomForest package [58,59]. For each model
1000 trees were generated and default settings of randomForest were used to determine the number of
variables that were tested at each node (i.e., the square root of the number of inputs), and the total
number of nodes generated (i.e., unlimited). These were deemed sufficient, since during preliminary
testing adjusting values did not yield higher accuracies. Since user’s and producer’s accuracies varied
between different iterations of the same model (despite having the same inputs/classifier settings), the
mode prediction of 10 runs (i.e., the most commonly predicted class at each pixel for 10 models) was
generated and evaluated for each configuration (Table 4). The authors of [32,46] provided additional
details on and justification for using the RF classifier, which are not repeated for brevity.

In total 154 different models (again, the mode prediction of 10 runs per dataset is treated as one
model) were evaluated (Table 4) [32,46,58]. To address the objectives of this research, model accuracies
were compared using: (i) independent overall accuracy (proportion of all validation points that were
accurately classified); (ii) independent overall accuracy of wetlands (proportion of validation points
for wetlands that were accurately classified); (iii) user’s accuracy (for a given class, the proportion of
points classified as a given class that were actually that class); and (iv) producer’s accuracy (for a given
class, the proportion of points accurately classified divided by the total number of validation points
for that class). The McNemar’s test (95% confidence interval) [60] was also used to determine whether
observed differences between models were statistically significant.

While RF runs efficiently even on relatively large datasets, it has been reported that reducing the
number of variables can improve model performance [40]. To determine whether this would impact
classification accuracies, the method described by Banks et al. [32] was first applied to 10 configurations
selected at random (from all configurations). Highly correlated variables (r > 0.9 for spearman rho)
were first grouped, and only that which had the highest Mean Decrease in Accuracy (MDA) based
on 10,000 trees [44] was retained. MDA values were then recalculated and variables with the lowest
importance were removed 10 at a time, until just 10 remained or accuracies decreased significantly
based on the McNemar’s test (95% confidence interval) [60].
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Table 4. List of variables generated from each dataset for use in constructing RF models. Note that
the column indicating the total number of models for CP data was calculated based on the number of
simulations. For example, for models based on SAR data only, 24 different CP models were generated:
for all 4 images×3 simulations of high resolution data, and 4 images × 3 simulations of medium
resolution data.

Objective Dataset(s)
Number Number Number

QP CP of
Variables Variables Models

i/iv (SAR Data Only) FQ5W Spring 41 19 4 QP
FQ17W Spring 41 19 24 CP
FQ5W Summer 41 19
FQ17W Summer 41 19

i/iv (Multi-Angle/ FQ5W Spring and FQ5W Summer 82 38 7 QP
Temporal SAR) FQ17W Spring and FQ17W Summer 82 38 42 CP

FQ5W Spring and FQ17W Spring 82 38
FQ5W Spring and FQ17W Summer 82 38
FQ5W Summer and FQ17W Spring 82 38

FQ5W Summer and FQ17W Summer 82 38
All Images 164 76

iii/iv (SAR and DEM FQ5W Spring 58 36 11 QP
/DSM Data) FQ17W Spring 58 36 66 CP

FQ5W Summer 58 36
FQ17W Summer 58 36

FQ5W Spring and FQ5W Summer 99 55
FQ17W Spring and FQ17W Summer 99 55

FQ5W Spring and FQ17W Spring 99 55
FQ5W Spring and FQ17W Summer 99 55
FQ5W Summer and FQ17W Spring 99 55

FQ5W Summer and FQ17W Summer 99 55
All Images 181 93

6. Results and Discussion

6.1. Effect of Reducing the Number of Variables Provided to the Model

Overall, RF was observed to effectively extract relevant information from even large datasets,
containing a number of variables. In all cases, decreasing the number of variables to as few as 10 did
not have a statistically significant effect on model accuracy (McNemar’s test statistic; 95% confidence
interval [60]). Independent overall accuracies never differed by more than 3%, and in a majority of
cases user’s and producer’s accuracies differed by less than 5%, and did not always increase (note
that here and throughout the manuscript the percent point or arithmetic difference is used when
referring to the difference in accuracy between models). However, a 7% increase was observed for one
model, although this was just for one class (shallow water). Generally, values increased for one class
while decreasing for another (and vice versa), and/or user’s accuracies increased while producer’s
accuracies decreased (and vice versa). Visual inspection of the final classification maps also show that
models based on all or the top most important variables were comparable, especially for the majority
class predicted across large wetland complexes (Figure 2). These findings are consistent with [32,46].

In light of this, effort was not made to reduce the number of variables of the other datasets
(Table 4), as it was assumed that the accuracies achieved using all variables (and based on the mode
of 10 runs) could provide an adequate estimate of the efficacy with which a given dataset could
classify the land covers considered here. However, in the future, effort will be made to determine an
optimal, reduced number of inputs because of the benefits of reduced data storage requirements and
processing times.
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Figure 2. Top shows classifier results for the second simulation of medium resolution (NESZ−25 dB)
CP data that included the FQ5W summer and FQ17W spring imagery, orthorectified using the high
spatial resolution DEM, and based on all 25 variables (left), versus the top (right). Examples of marsh
(1), shallow water (2), and swamp (3) are indicated. For comparison, results of the m-chi decomposition
indicating the proportion of total power attributable to double bounce (red), volume (green), and
surface (blue) scattering are provided for the FQ5W summer (bottom left) and FQ17W spring (bottom
right) images [47].
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6.2. Models Based on Single Date/Incidence Angle SAR Data

No models based on single SAR images achieved acceptable accuracies (≥∼80%) for all classes
(Figure 3), though in many cases, user’s and producer’s accuracies were higher for models constructed
with QP compared to CP data. This has been observed in other studies [19,32], and is attributable to
the fact that the QP data contain more target information, and less noise. In most cases, accuracies
were also higher for models constructed with medium compared to high resolution CP data, which
is to be expected as the latter contain more noise. However, often the highest accuracy of the model
based on high resolution CP data was close to or exceeded the lowest accuracy of the model based on
medium resolution CP data (i.e., when considering all six simulations). Thus, it has been demonstrated
that multiple simulations may be required to provide confidence in the reliability of the results.

(a) FQ5W Spring (b) FQ17W Spring

(c) FQ5W Summer (d) FQ17W Summer

Figure 3. User’s (UA) and producer’s (PA) accuracies for water (W), shallow water (SW), marsh (M),
swamp (S), forest (F), and agriculture/non-forested (A) for models based on single QP (blue), CP
medium (orange), or CP high resolution (green) images.

Accuracies were often higher with high resolution CP data because of the combined effects of
the quality of training/validation data (i.e., few samples in some cases), application of the NESZ
pattern (random values, non-repeating between simulations), and low class separability. Specifically,
for a given class, the addition of noise shifted a varying proportion of pixels either outside or within
a multivariate feature space that was separable from others. This effect was also more obvious for
shallow water, which had few training/validation samples, and low separability with classes like
agriculture/non-forest. At least some of this variability is also attributable to the way RF randomly
selects training data, and predictor variables used for node splitting though this effect was minimized
by taking the mode prediction of 10 runs.



Remote Sens. 2019, 11, 670 12 of 28

For most classes, there was less than 10% difference in the user’s and producer’s accuracies
between the three sets of simulated high or three sets of medium resolution CP data. However, for
forest and shallow water accuracies differed by up to 13% and 16%, respectively. However, all three
simulations of high or three simulations of medium resolution data tended to misclassify the same
classes (albeit at different rates), and per class accuracies were generally either relatively high or
low (> or <∼80%). Therefore, only results for the first simulations are shown in Figure 3, while the
following is applicable to and references results for all simulations.

Low accuracies were observed for shallow water (Figure 3), mostly because of confusion with
agriculture/non-forest. This is unsurprising since in many cases both classes were observed in the
field to exhibit similar surface roughness conditions. To a lesser extent, shallow water was also
confused with water and marsh. This is likely because vegetation density was low in some areas
(thus surface water was dominant), and because some places contained a high proportion of cattails
(dominant in marshes). Models constructed with QP and CP data misclassified shallow water and
agriculture/non-forest about the same number of times (i.e., 18–24 misclassifications), although the
latter confused shallow water, water, and marsh more often.

For marsh high accuracies (Figure 3) were only achieved for models constructed with the QP
FQ17W summer image. In contrast, accuracies were low for all models (QP and CP) based on the
FQ17W spring image due to confusion between marsh and swamp. This is sensible since both classes
exhibited similar backscatter characteristics in the spring (i.e., high total power attributable to double
bounce and volume scattering). In the summer however, double bounce decreased more in swamps
due to the leafing out of the canopy (i.e., mean values decreased 12.0 and 4.4 dB for swamp and
marsh, respectively), thus making them more separable. On the other hand, accuracies for marsh
were low with all FQ5W images, mostly due to confusion with agriculture/non-forest, forest, and
swamp (82 and 97–102 misclassifications with QP and CP spring data, respectively; and 44 and 58–69
misclassifications with QP and CP summer data, respectively).

For swamp accuracies were high (Figure 3) for all FQ5W spring images, regardless of polarization
and NESZ value. With the FQ17W spring image, lower but still acceptable accuracies were also
achieved, though just with QP image. This decrease in accuracy with the FQ17W images is attributable
to the fact that at shallower angles, the path length between the sensor and saturated soil/water
surface is greater, increasing the number of features with which the signal interacts, and resulting
in increasingly similar backscattering characteristics between flooded and non-flooded areas due to
greater signal attenuation, volume and/or multiple scattering [41,42]. Notably, the lower information
content and higher NESZ of the CP data appears to have compounded the effects of incidence angle,
since no models based on CP FQ17W spring image achieved acceptable accuracies. Accuracies for
swamp were low for all models based on summer images, since the leafing out of the canopy similarly
resulted in dominant signal attenuation and volume/multiple scattering that also increased confusion
with forest, especially at shallower angles (72–91 versus 47–56 misclassifications for all QP and CP
models based on the FQ17W and FQ5W summer images, respectively). Thus, as was observed for
marsh, the separability of swamp from other classes was similarly affected by the acquisition timing,
incidence angle, polarization, and NESZ value of the SAR image.

Accuracies were high for water in all cases, indicating that this class may be less sensitive to the
differences between QP and CP data. For forest, only the model constructed with the QP FQ17W
spring image achieved acceptable accuracies, as this class was similarly confused with swamp in the
summer. Agricultural/non-forest was only accurately classified by models based on FQ17W spring
data (both QP and CP data).

6.3. Models Based on Multi-Angle/Multi-Temporal SAR Data

Multiple models based on two or four QP images achieved high accuracies (≥∼80%) for all
classes, demonstrating the benefit of multi-temporal fusion for inventorying and monitoring wetlands
(Figure 4). This increase in accuracy (relative to single SAR images) is due to multiple class pairs having
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similar backscatter characteristics in one, but not both seasons. For example, Figure 5 shows that for
marsh and swamp the proportion of surface, double bounce, and volume scattering (Freeman–Durden
or m-chi decomposition) was similar in the spring, but differed in the summer. However, values were
also similar between swamp and forest in the summer, while differing in the spring. Thus, to separate
all classes required information from both seasons. These results are consistent with others that have
similarly demonstrated the benefit of multi-temporal SAR data for classifying wetlands [21,29]. On
the other hand, multi-angle data alone appears to have been less effective for separating these classes,
as accuracies were lower for models based on both spring, and especially both summer images (Figure
4). Accuracies were also lower with both FQ5W images, demonstrating preference for having at least
one image acquired at a relatively shallow angle.

With CP data, only models based on all four images achieved acceptable accuracies for all classes
and all simulations, demonstrating the need for more diverse sources of information to achieve high
accuracies (multi-angle and multi-temporal) (Table A1). As was observed with single SAR images,
accuracies were generally higher with medium compared to high resolution CP data, although, again,
the highest accuracy among the three simulations of the high resolution data often equalled or exceeded
the lowest accuracy among the three simulations of the medium resolution data. For all classes except
shallow water though, differences in accuracy between the high and medium resolution CP data never
exceeded 9%, and in a majority of cases the difference was less than 5%. Therefore, for these classes,
there may be little benefit to acquiring medium resolution CP data at 16 m, compared to the high
resolution data at 5 m, especially since both will have the same swath width (30 km).

For shallow water though more models achieved acceptable accuracies (≥∼80%), and accuracies
were up to 21% higher with medium versus high resolution CP data (Table A1). However, the
effects of spatial resolution similarly need to be evaluated, since this class can occupy relatively
small areas, as the presence and density of vegetation can be spatially variable. Notably, because
accuracies varied between simulations, so too did observed differences between models based on high
or medium resolution data. For example, with the FQ5W spring and FQ17W summer models, user’s
and producer’s accuracies for shallow water differed by as much as 9% and 21% (third simulation
of high versus first simulation of medium), to as little as 6% and 11% (second simulation of high
versus third simulation of medium). Again, this demonstrates that multiple simulations are required
to provide confidence in the reliability of results.

Shallow water was also the only class for which the difference in accuracies between the three
simulations of high or three simulations of medium resolution CP data exceeded 10% (maximum
observed difference was 15%, although for some models differences were as low as 4%). For other
classes, user’s and producer’s accuracies differed by 5% or less in a majority of cases, and, again, all
simulations of high or medium resolution data generally misclassified the same classes, and accuracies
tended to be relatively high or low (> or <∼80%). Therefore, Figures 4 and 5 only show results for the
first simulations, although all are referenced in the following section (Table A1).

With the exception of models based on both summer images, all QP and medium resolution CP
datasets accurately classified shallow water (user’s and producer’s accuracies ≥∼80%). With high
resolution CP data, however, only models based on all images achieved acceptable accuracies for all
simulations (Table A1). It is worth mentioning that the low accuracies for models constructed with just
summer data were again due mostly to confusion with agriculture/non-forest, and that, despite the
combination of two angles, the number of misclassifications remained the same as models based on
single SAR images (16–23 with both QP and CP data). This demonstrates the value of multi-temporal
data for separating these classes.
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(a) FQ5W spring and FQ17W spring

(b) FQ5W spring and FQ5W summer (c) FQ17W spring and FQ17W summer

(d) FQ5W spring and FQ17W summer (e) FQ5W summer and FQ17W spring

(f) FQ5W summer and FQ17W summer (g) All

Figure 4. User’s (UA) and producer’s (PA) accuracies for water (W), shallow water (SW), marsh (M),
swamp (S), forest (F), and agriculture/non-forested (A) for models based on multi-angle/temporal QP
(blue), CP medium (orange), or CP high resolution (green) images.
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(a) QP Spring (b) CP Spring

(c) QP Summer (d) CP Summer

Figure 5. Average (%) contribution to total power attributable to surface (blue), double bounce (red),
and volume scattering (green), based on results of the Freeman–Durden decomposition (left) and m-chi
decomposition (right) applied to the FQ17W spring (top) and summer (bottom) images.

Marsh was accurately classified (user’s and producer’s accuracies ≥∼80%) by all models based
on QP data, except those constructed with just spring images, or the FQ5W spring and summer images.
For the model based on spring images, accuracies were low primarily due to confusion with swamp
and forest (13 and 20 misclassifications, respectively), while with the FQ5W spring and summer
images confusion was mostly with forest and agriculture (10 and 16 misclassifications, respectively).
Conversely, only models based on all four high or medium resolution CP images achieved acceptable
accuracies for all simulations, although for multiple configurations accuracies were close to acceptable,
or were acceptable for some but not all simulations.

Swamp was accurately classified by all combinations of QP and CP data (user’s and producer’s
accuracies ≥84%), except when models were constructed with just summer images. For the latter, this
was mostly due to confusion between swamp and forest (i.e., 57 and 50–62 misclassifications with QP
and CP data, respectively), and swamp and agriculture/non-forest (i.e., 15 and 29–40 misclassifications
with QP and CP data, respectively). Thus, it has been demonstrated that the availability of at least one
spring image is critical for the accurate classification of swamp.

All models constructed with multi-angle/multi-temporal SAR data accurately classified water
(user’s and producer’s accuracies ≥94%). On the other hand, accuracies were only high for forest with
models based on QP data (user’s and producer’s accuracies ≥79%), except when constructed with the
FQ5W spring and FQ5W summer imagery or the FQ5W summer and FQ17W summer images (user’s
and producer’s accuracies equalled 64–78% and 48–78%, respectively). With the CP data, accuracies
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were only consistently high for forest when all four images were combined. Agriculture/non-forest
was accurately classified by all models, except those based on CP data acquired just in the summer.

6.4. Models Based on Single SAR Images and High Spatial Resolution DEM/DSM Data

For all models constructed with single SAR images, overall accuracies increased significantly
(McNemar’s test statistic; 95% confidence interval [60]) following the addition of the high spatial
resolution DEM and DSM data (results for first simulation shown in Figure 6; all results provided in
Table A2). It is particularly notable that, for wetlands, independent overall accuracies increased by
19–39%. Despite this, accuracies were still relatively low for some classes, and only those constructed
with the QP FQ5W spring, QP FQ17W spring, or CP FQ17W spring images (combined with the DEM
and DSM) achieved acceptable accuracies (≥∼80%) for all classes. Accuracies were also relatively high
for models constructed with the CP FQ5W spring images, DEM and DSM data, although producer’s
accuracies were low in most cases for forest (ranged from 73–80%). Interestingly, the degree to which
accuracies increased varied between classes and SAR images, with little to no change being observed
in some cases (e.g., with QP FQ5W spring data user’s and producer’s accuracies for swamp only
increased by 6% and 2% with the addition of the DEM and DSM data).

(a) FQ5W Spring (b) FQ17W Spring

(c) FQ5W Summer (d) FQ17W Summer

Figure 6. User’s (UA) and producer’s (PA) accuracies for water (W), shallow water (SW), marsh (M),
swamp (S), forest (F), and agriculture/non-forested (A) for models based on single QP (blue), CP
medium (orange), or CP high resolution (green) images and DEM and DSM data.

Compared to models constructed with just the single SAR images, user’s and producer’s
accuracies differed less between QP and CP datasets when the DEM and DSM data was included
(i.e., up to 14% and in a majority of cases <3% difference between models based on either QP, DEM
and DSM data or CP, DEM and DSM data, compared to up to 55% and in a majority of cases >10%
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difference between models based on just QP or CP data). There was also less of a difference between
models constructed with high or medium resolution CP data (i.e., maximum of 7% and 16% when
classified with, and without the DEM and DSM, respectively). This demonstrates that the DEM
and DSM compensated both for the loss in information content and higher NESZ values of the CP
compared to the QP data, as well as the higher NESZ value of the high compared to medium resolution
CP data. With RCM then, DEM and DSM data are expected to become increasingly important as
complementary data sources for wetland mapping and monitoring.

For shallow water, the addition of the DEM and DSM proved critical in improving the separability
of shallow water and agriculture/non-forest, decreasing the number of misclassifications from 18–24
to 0–4 (for all QP and CP models). This is because, while both features exhibited similar backscatter
characteristics, they are also located at different topographic positions (mean elevation of shallow
water and agriculture non-forest is 74.4 and 93.3 m, respectively). For models based on CP data, the
DEM and DSM also reduced confusion with water, and marsh (i.e., from 8–25 to 4–6 misclassifications
for all models), while with QP data these classes were misclassified about the same number of times
(3–8) regardless of whether DEM and DSM data was included.

Marsh was accurately classified by all models constructed with single SAR images, DEM and
DSM data (user’s and producer’s accuracies ≥89%), and the range in accuracies between models was
relatively low (89–95%) compared to those based on SAR data only (30–86%). This shows that these
data again compensated for some of the observed differences in accuracy as a result of the timing,
incidence angle, polarization and NESZ value of the SAR image. As an example, for models based on
the QP FQ17W spring or QP FQ17W summer images, user’s and producer’s accuracies differed by
less than 4% when the DEM and DSM was included, compared to 16% and 22% when models were
constructed with just SAR data.

For swamp, user’s and producer’s accuracies were already relatively high for models constructed
with images acquired in the spring, however the addition of DEM and DSM data resulted in more
comparable accuracies between the FQ5W and FQ17W images compared to models based on either
SAR image alone (i.e., user’s and producer’s accuracies differed by 1% and 5%, compared to 11%
and 12%). This is because, for the FQ17W spring image, the DEM and DSM data reduced confusion
between swamp and marsh (29 and 18–23 fewer misclassifications for models based on QP and CP
data, respectively). For models based on SAR images acquired in the summer, accuracies for swamp
remained low regardless of the addition of DEM and DSM data, as this did not reduce confusion with
forest. This is because the DEM and DSM values for 96% of the 258 training and validation points for
forest were distributed throughout the same range as values for swamp, with many for forest also
being at low elevations. In light of this, it is expected that true bare Earth models and/or products
with higher vertical accuracy could improve the separability between these classes.

Water was accurately classified by models constructed both with and without DEM and DSM
information. Conversely, accuracies for forest remained low for models based on images acquired in
the summer, because of confusion with swamp. Agriculture/non-forest was accurately classified by
all models following the addition of DEM and DSM data.

6.5. Models Based on Multi-Angle/Multi-Temporal SAR Data and High Spatial Resolution DEM/DSM Data

Compared to single SAR images, the addition of the DEM and DSM to models based on
multi-angle/temporal SAR data had less of an effect on the overall accuracies of wetlands in some
cases, which increased by 1–21% (results for first simulation shown in Figure 7; all results provided
in Table A3). With QP data, accuracies only increased significantly (McNemar’s test statistic; 95%
confidence interval [60]) for models based on both spring images, both summer images, and the FQ5W
summer and FQ17W spring images. With CP data, however, the DEM and DSM provided additional,
relevant information in a majority of cases. As a result, accuracies increased significantly for all models,
except those constructed with the FQ5W spring and FQ17W summer images (one of six simulations
only), both summer images (four of six simulations), or all four SAR images (all simulations).
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(a) FQ5W spring and FQ17W spring

(b) FQ5W spring and FQ5W summer (c) FQ17W spring and FQ17W summer

(d) FQ5W spring and FQ17W summer (e) FQ5W summer and FQ17W spring

(f) FQ5W summer and FQ17W summer (g) All

Figure 7. User’s (UA) and producer’s (PA) accuracies for water (W), shallow water (SW), marsh (M),
swamp (S), forest (F), and agriculture/non-forested (A) for models based on multi-angle/temporal QP
(blue), CP medium (orange), or CP high resolution (green) images and DEM and DSM data.
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All QP and CP models also achieved acceptable accuracies (≥80%) for all classes, with the
exception of those based on the FQ5W spring and summer images, or both summer images, due to
low accuracies for forest, and low accuracies for swamp, and forest, respectively. Notably, multiple
configurations of just two QP or CP images, DEM and DSM data, achieved approximately the same
accuracies as models based on all four QP or CP images. In contrast, when only SAR data were
included as inputs, fewer models based on QP data achieved acceptable accuracies for all classes, and,
with CP data, only the combination of all four images achieved acceptable accuracies for all classes
and simulations. Again, this demonstrates the importance of the DEM and DSM data in achieving
acceptable accuracies with CP data, but that with QP data high accuracies are possible with just
multi-angle/temporal SAR data.

As was observed with single SAR images, user’s and producer’s accuracies again differed less
between QP and CP models when the DEM and DSM data were included (i.e., up to 15% and in a
majority of cases <4% difference between models based multi-angle/temporal SAR, DEM and DSM
data, compared to up to 36% and in a majority of cases >7% difference between models based on
just SAR data). This difference is demonstrated in Figure 8, which shows the indepednent overall
accuracies of wetlands for models based on QP or the first simulation of high resolution CP imagery,
classified both with and without the DEM and DSM data.

(a) Without DEM and DSM

(b) With DEM and DSM

Figure 8. (a) shows the independent overall accuracies of wetlands for models based on just QP (blue)
data, or the first simulation of high resolution CP (orange) data. (b) shows the independent overall
accuracies of wetlands for these same models classified with the DEM and DSM data. Spring and
summer acquisitions are abbreviated as SP and SM, respectively.
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Differences in the user’s and producer’s accuracies between models based on high or medium
resolution CP data were also lower (maximum of 11% compared to maximum of 21% difference
when classified with and without the DEM and DSM, respectively). This again shows that these data
compensated for some of the difference in information content between the QP and CP data, and
between the NESZ value of the high compared to medium resolution CP data. It is worth mentioning
that, between simulations of high and medium resolution data, user’s and producer’s accuracies
differed by a maximum of 10%, and, in most cases, differences were less than 3%, thus only results for
the first are provided in Figures 7 and 8, while all are referenced in the subsequent section (Table A3).

The addition of the DEM and DSM was critical for improving accuracies for shallow water
for models based on both summer images (i.e., user’s and producer’s accuracies increased from
23–96% to 88–92%). Further, while lower accuracies were often observed for shallow water with
multi-angle/temporal high resolution CP data, all models accurately classified shallow water following
the addition of the DEM and DSM data. Thus, this information may prove critical in cases where only
high resolution data are available.

Addition of the DEM and DSM data also improved accuracies for marsh. With QP data, the
DEM and DSM data were necessary for achieving acceptable accuracies for models based on images
acquired just in the spring, and the FQ5W spring and summer images. With CP data, accuracies
for marsh were acceptable (≥88%) for all models and all simulations with the DEM and DSM data,
whereas with just SAR data, only models based on all four high or all four medium resolution images
achieved acceptable accuracies for all simulations.

For swamp accuracies were high for all models based on multi-angle/temporal SAR, DEM
and DSM data, except those based on just the two summer images. Notably, user’s and producer’s
accuracies did increase (by 8% and 10%, respectively) following the inclusion of the DEM and DSM
information, but remained relatively low (74% and 60%, respectively) due to confusion with forest.

Water, again, was accurately classified by all models, with user’s and producer’s accuracies
≥96%. Accuracies for forest, on the other hand, improved for a number of models, though
remained low for those based on both FQ5W images, and both SAR images acquired in the summer.
Agriculture/non-forest was accurately classified by all models, including those based on both summer
images, for which accuracies were low when based just on SAR data.

6.6. Models Based on SAR Data and Low Spatial Resolution DEM Data

Given that high accuracies were observed for models based on the FQ17W spring and DEM and
DSM data, and the FQ17W spring, FQ17W summer, DEM and DSM data, those QP images, and the
first simulations of high resolution CP data of those images, were re-processed using the SRTM data
as inputs to the orthorectification procedure. Each model was then re-run for comparison. Results
from this analysis show that both models achieved acceptable accuracies, which were not significantly
different (McNemar’s test statistic; 95% confidence interval [60] (Figure 9) compared to those based on
the high resolution DEM and DSM data. This demonstrates that the quality of the DEM, as well as
the availability of a DSM, may be less important in achieving acceptable accuracies, especially with
multi-temporal SAR data.

6.7. Limitations, and Future Work

Further work is necessary to validate the results observed for the simulated RCM data (i.e., with
real data), especially since the effects of resolution were not considered. This is especially true for the
high resolution mode data, which may be more effective for classifying smaller wetlands, as it will be
acquired at 5 m resolution. It is also notable that the NESZ values evaluated in this research are based
on projected specifications, thus may differ compared to real RCM data. It is necessary to test whether
these methods are transferable to other areas, for which the scattering characteristics of classes may
differ. Of particular relevance is whether the high accuracies observed for swamp will also be possible
in areas dominated by coniferous species, as those present in the study area contain mostly deciduous
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trees and/or shrubs. Future effort will also be made to address whether bogs and/or fens can be
accurately classified using a similar approach. For these classes, however, the authors of [19] already
demonstrated that a multi-sensor approach (including SAR, optical, and DEM data) is likely preferred.
In light of this, the combination of multiple datasets (depending on the wetland types present) may be
appropriate in some cases.

(a) CP high resolution FQ17W spring (b) QP FQ17W spring

(c) CP high resolution FQ17W spring and summer
(d) QP FQ17W spring and summer

Figure 9. User’s (UA) and producer’s (PA) accuracies for water (W), shallow water (SW), marsh (M),
swamp (S), forest (F), and agriculture/non-forested (A) for models based on QP or high resolution CP
data processed and classified using either high spatial resolution DEM and DSM data (blue) or low
spatial resolution DEM data (orange).

7. Conclusions and Future Work

Results from this analysis have provided insight regarding the effect of the timing, incidence
angle, and combination of SAR and/or DEM/DSM data on RF classification accuracies for three
wetland, and four non-wetland classes. High accuracies were achieved either via fusion of
multi-temporal/multi-angle data, or of SAR data and DEM/DSM data, demonstrating that an efficient
methodology based on one or two data sources is possible. Given that, for some combinations of
data, there were no statistically significant differences in accuracy between models based on QP or
simulated CP RCM imagery, it is expected to be a reliable source of C-band SAR data for inventorying
and monitoring the wetland types evaluated here.

The significant conclusions of this research are as follows:

(i.) Single date and incidence SAR data alone could not accurately classify all the land cover classes
evaluated in this research, although some classes were accurately classified in some cases, with
observed differences varying as a function of the acquisition timing, incidence angle, polarization,
and NESZ value.

(ii.) Multiple combinations of multi-angle/temporal QP SAR accurately classified all the land covers
evaluated in this research. With CP data, more diverse sources of information were required
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as accuracies were only consistently high for models based on the combination of all four SAR
images (multi-angle and multi-temporal data).

(iii.) Accuracies increased significantly when DEM and DSM data were added to all models based
on single SAR images, and some models based on multi-angle/temporal data. When classified
with DEM and DSM data, acceptable accuracies were observed for all classes and all simulations
with the FQ17W spring image, and all combinations of multi-angle/temporal data, except those
based on the two FQ5W images, or the two summer images.

(iv.) The DEM and DSM data compensated for some of the observed differences in accuracies as a
result of the timing of the acquisition, its incidence angle, polarization, and NESZ value.

(v.) High accuracies were observed regardless of whether low spatial resolution DEM or spatial
resolution DEM and DSM data were used for processing the SAR data, and provided as inputs
to the model.

(vi.) High variability was observed between simulations despite using the same settings in the
software, espeically for those cosntructed with single SAR images. Multiple simulations should
be evaluated to provide confidence in the reliability of the results.
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Appendix A

Table A1. Independent overall accuracies (IOA), independent overall accuracies for wetlands only
(IOAW), and user’s (UA) and producer’s (PA) accuracies for models based on multi-angle/temporal
QP, and the first (1), second (2), and third (3) simulations of high (H) and medium (M) resolution CP
SAR data. Values ≤ 80% are bolded, and italicized to identify relatively high and low accuracies for a
given class. Spring and summer images are abbreviated SP and SM.

Inputs Type IOA OAW
W SW M S F AG

UA PA UA PA UA PA UA PA UA PA UA PA

FQ5W SP and FQ17W SP

QP 93 84 100 100 82 71 93 93 80 91 97 95

CP H1 89 76 98 99 74 57 88 91 72 83 95 95
CP H2 89 77 99 99 71 59 89 92 71 83 96 94
CP H3 89 76 98 99 73 56 87 92 75 83 95 95

CP M1 89 75 97 99 73 54 85 92 75 83 95 94
CP M2 89 77 99 99 71 59 89 92 71 83 96 94
CP M3 89 76 98 99 73 56 87 92 75 83 95 95

FQ5W SP and FQ5W SM

QP 90 87 99 99 90 92 88 74 97 96 78 74 84 92

CP H1 85 83 94 98 88 77 85 73 90 92 68 65 81 86
CP H2 85 83 95 98 84 79 84 74 88 90 68 67 83 86
CP H3 84 83 94 99 91 74 82 72 88 93 67 64 81 83

CP M1 86 86 99 98 90 95 85 73 91 92 68 65 80 87
CP M2 85 84 97 97 82 82 88 72 88 94 71 65 81 87
CP M3 87 88 99 98 90 90 87 80 90 93 70 67 83 87
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Table A1. Cont.

Inputs Type IOA OAW
W SW M S F AG

UA PA UA PA UA PA UA PA UA PA UA PA

FQ17W SP and FQ17W SM

QP 95 92 99 100 97 92 95 91 93 92 90 93 97 97

CP H1 89 84 95 98 89 82 85 80 91 87 74 83 94 91
CP H2 88 84 96 93 92 85 89 78 87 89 75 80 89 93
CP H3 88 85 93 93 79 77 87 79 87 92 75 81 92 91

CP M1 90 86 99 97 86 95 88 79 89 88 73 82 94 94
CP M2 90 85 99 99 88 92 87 80 89 87 73 81 95 94
CP M3 91 87 99 99 90 92 86 82 89 89 75 80 95 93

FQ5W SP and FQ17W SM

QP 92 92 99 99 92 90 93 87 95 96 79 82 91 92

CP H1 87 83 95 95 69 69 89 76 92 92 76 77 87 92
CP H2 88 85 97 95 74 79 90 82 91 90 74 76 88 91
CP H3 86 82 94 95 71 69 88 72 90 94 75 76 85 89

CP M1 90 88 98 96 80 90 93 80 93 93 78 79 88 92
CP M2 90 87 99 98 85 87 89 79 91 93 77 80 88 90
CP M3 89 87 99 97 83 90 92 81 90 92 74 74 88 92

FQ5W SM and FQ17W SP

QP 95 92 100 99 95 97 91 88 94 92 88 95 98 96

CP H1 89 85 96 96 77 85 84 77 89 91 77 83 94 90
CP H2 89 81 94 98 83 77 84 72 90 90 75 83 94 92
CP H3 89 85 94 98 82 79 82 79 89 91 79 84 95 90

CP M1 90 86 99 97 86 95 81 78 90 89 74 82 95 93
CP M2 89 84 96 97 82 82 79 77 87 91 76 81 96 91
CP M3 91 87 99 98 93 97 85 77 88 92 76 83 96 93

FQ5W SM and FQ17W SM

QP 82 78 98 99 96 59 92 85 64 79 60 48 82 87

CP H1 73 65 94 97 76 33 84 79 57 65 49 38 69 78
CP H2 73 65 92 97 64 23 85 77 60 71 57 38 67 80
CP H3 73 64 92 97 63 26 85 80 55 65 57 42 68 77

CP M1 76 70 96 98 77 26 86 83 58 74 58 37 72 83
CP M2 74 76 96 98 76 33 84 78 58 70 51 37 71 80
CP M3 75 68 97 98 75 23 83 79 62 74 54 37 70 83

All

QP 96 94 100 99 95 97 95 93 98 95 88 96 98 96

CP H1 94 91 97 98 84 82 93 87 94 97 86 88 96 96
CP H2 93 90 97 99 89 82 93 88 97 93 83 88 95 95
CP H3 94 90 98 99 87 85 94 87 95 94 84 90 96 95

CP M1 94 92 99 98 84 92 95 87 96 96 85 90 96 96
CP M2 94 93 99 98 88 95 93 89 96 95 83 90 97 94
CP M3 95 94 100 99 90 95 95 89 96 97 85 90 96 95
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Table A2. Independent overall accuracies (IOA), independent overall accuracies for wetlands only
(IOAW), and user’s (UA) and producer’s (PA) accuracies for models based on single QP, and the first
(1), second (2), and third (3) simulations of high (H) and medium (M) resolution CP SAR data classified
in combination with the high spatial resolution DEM and DSM data. Values ≤ 80% are bolded, and
italicized to identify relatively high and low accuracies for a given class. Spring and summer images
are abbreviated SP and SM.

Data Type IOA OAW
W SW M S F AG

UA PA UA PA UA PA UA PA UA PA UA PA

FQ5W SP

QP 93 93 98 99 91 90 97 96 83 81 91 93

CP H1 92 93 99 99 92 93 94 94 81 77 90 92
CP H2 93 94 99 99 91 93 94 95 84 76 90 92
CP H3 93 93 99 99 92 93 94 93 80 80 91 91

CP M1 92 93 99 99 92 93 94 94 81 73 89 92
CP M2 93 94 100 99 92 94 94 95 82 79 91 92
CP M3 93 94 99 99 92 94 95 95 83 77 90 93

FQ17W SP

QP 96 92 100 100 91 95 96 91 90 93 97 96

CP H1 93 92 99 100 90 91 92 92 82 81 93 92
CP H2 94 93 100 100 91 91 89 95 88 81 93 94
CP H3 94 94 100 100 90 94 92 94 87 83 94 93

CP M1 94 93 99 100 92 93 92 93 86 85 96 94
CP M2 94 92 100 100 91 91 92 93 85 83 94 93
CP M3 94 92 99 100 91 91 92 92 84 84 95 94

FQ5W SM

QP 87 87 99 98 88 90 93 89 76 83 71 54 86 93

CP H1 85 83 99 98 88 90 92 89 78 76 60 54 83 89
CP H2 85 84 99 98 88 90 92 89 81 77 62 57 83 89
CP H3 83 79 99 98 87 85 92 89 75 69 61 55 80 89

CP M1 85 84 99 98 88 92 92 90 78 76 64 56 84 90
CP M2 85 83 99 98 88 90 91 90 79 76 61 57 85 90
CP M3 85 84 99 98 88 92 91 91 77 76 59 52 85 89

FQ17W SM

QP 89 90 98 99 95 92 94 94 84 86 74 65 89 93

CP H1 87 86 99 99 92 87 92 93 81 81 69 62 87 91
CP H2 85 84 99 99 92 90 92 93 84 83 73 64 87 92
CP M3 88 86 99 99 92 90 93 94 82 79 70 67 88 91

CP M1 89 88 99 99 92 90 92 93 80 83 74 67 90 92
CP M2 88 88 99 99 92 90 92 93 84 83 73 64 87 92
CP M3 89 87 99 99 92 92 91 91 80 82 73 66 90 92
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Table A3. Independent overall accuracies (IOA), independent overall accuracies for wetlands only
(IOAW), and user’s (UA) and producer’s (PA) accuracies for models based on multi-angle/temporal
QP, and the first (1), second (2), and third (3) simulations of high (H) and medium (M) resolution CP
SAR data classified in combination with the high spatial resolution DEM and DSM data. Values ≤ 80%
are bolded, and italicized to identify relatively high and low accuracies for a given class. Spring and
summer images are abbreviated SP and SM.

Inputs Type IOA OAW
W SW M S F AG

UA PA UA PA UA PA UA PA UA PA UA PA

FQ5W SP and FQ17W SP

QP 97 95 100 100 92 95 98 95 92 95 98 96

CP H1 95 94 99 99 91 93 97 95 89 90 95 95
CP H2 96 94 99 100 91 94 97 94 90 91 96 95
CP H3 95 93 99 99 91 91 97 95 89 92 96 94

CP M1 95 93 99 99 92 90 93 96 89 87 95 95
CP M2 95 94 100 99 91 94 95 95 88 89 96 95
CP M3 95 94 100 99 91 94 96 95 88 91 97 94

FQ5W SP and FQ5W SM

QP 92 92 99 98 87 87 93 90 98 95 83 75 87 94

CP H1 91 93 99 99 90 90 93 91 93 96 78 73 88 91
CP H2 91 93 99 98 88 90 93 91 93 96 77 73 88 90
CP H3 89 92 99 98 83 90 91 91 91 93 74 71 88 88

CP M1 90 92 99 99 90 90 95 91 93 96 78 75 90 91
CP M2 92 93 99 98 88 90 93 91 92 96 80 77 91 91
CP M3 91 93 99 98 85 90 93 91 91 95 78 76 91 91

FQ17W SP and FQ17W SM

QP 96 93 98 99 95 90 96 96 96 92 91 95 98 98

CP H1 94 94 99 99 90 95 94 95 93 93 85 85 96 94
CP H2 94 94 99 99 90 95 91 95 91 93 88 80 95 95
CP H3 94 92 99 99 90 92 92 95 93 91 85 85 96 95

CP M1 94 93 99 99 90 92 91 95 93 92 86 83 96 95
CP M2 94 95 99 99 92 92 91 96 93 95 90 83 96 95
CP M3 94 92 99 99 90 92 92 95 93 91 85 85 96 95

FQ5W SP and FQ17W SM

QP 93 93 99 99 90 90 96 91 97 96 81 85 92 92

CP H1 93 94 99 98 85 90 95 93 96 97 86 81 90 93
CP H2 93 93 99 98 88 90 93 93 95 95 87 81 91 94
CP H3 93 93 99 99 90 90 92 93 96 94 85 83 92 93

CP M1 94 93 99 99 90 90 94 94 97 94 85 84 92 94
CP M2 93 93 99 98 88 90 94 94 94 94 84 84 93 93
CP M3 93 94 99 98 85 90 94 94 97 95 87 84 92 94

FQ5W SM and FQ17W SP

QP 95 93 99 98 90 92 92 94 97 93 87 94 98 95

CP H1 93 92 99 98 84 92 89 90 93 93 85 87 96 93
CP H2 94 93 99 98 88 92 89 94 93 93 88 85 96 94
CP H3 94 92 99 98 88 90 89 91 94 93 88 89 96 94

CP M1 92 92 99 96 80 95 89 89 91 92 81 84 96 93
CP M2 94 94 99 98 88 92 90 95 94 94 87 88 97 93
CP M3 94 94 99 98 88 92 90 94 93 95 86 86 96 93

FQ5W SM and FQ17W SM

QP 88 89 99 99 92 92 94 89 74 87 74 60 89 90

CP H1 84 82 99 98 89 85 92 90 70 74 65 47 81 91
CP H2 86 86 99 98 88 90 93 88 75 82 75 52 83 93
CP H3 85 85 99 98 88 90 92 89 72 79 69 51 85 91

CP M1 82 82 99 98 88 90 92 90 74 81 74 53 84 92
CP M2 86 84 99 98 88 90 91 90 77 77 69 57 85 92
CP M3 86 87 99 98 88 90 92 88 75 85 73 50 84 92

All

QP 96 95 99 99 93 95 94 94 97 96 91 97 98 96

CP H1 95 94 98 98 88 90 97 91 94 97 89 90 96 95
CP H2 95 94 99 98 88 90 92 94 96 96 90 90 96 95
CP H3 95 94 99 98 88 90 93 94 95 97 90 90 97 95

CP M1 95 94 99 98 86 92 98 91 95 97 88 90 96 96
CP M2 95 95 99 98 88 90 93 95 96 97 90 90 97 95
CP M3 95 96 99 99 90 90 95 96 97 97 89 90 96 94
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