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Abstract: The most commonly used model for analyzing satellite imagery is the Support Vector
Machine (SVM). Since there are a large number of possible variables for use in SVM, this paper will
provide a combination of parameters that fit best for extracting green urban areas from Copernicus
mission satellite images. This paper aims to provide a combination of parameters to extract green
urban areas with the highest degree of accuracy, in order to speed up urban planning and ultimately
improve town environments. Two different towns in Croatia were investigated, and the results
provide an optimal combination of parameters for green urban areas extraction with an overall kappa
index of 0.87 and 0.89, which demonstrates a very high classification accuracy.

Keywords: machine learning; support vector machine; kernels; green urban areas extraction;
satellite images

1. Introduction

The green urban areas infrastructure approach considers maximizing physical and functional
connectivity while optimizing multi-functionality in terms of social, ecological, and economic
benefits [1], as well as resilience through landscape diversity [2,3].

Green urban areas are important for urban planning and improving the urban environment [4].
For this, quick access to data is important to enable up-to-date planning and decision-making. Green
infrastructure that incorporates urban nature is important for physical and mental health benefits [5].
Several authors have provided papers on green infrastructure and spatial planning [5-7], and they all
agree that green urban infrastructure has an important role in the quality of a city’s lifestyle. Satellite
imagery is the fastest method for data collection for urban planning. Since the first development of
satellite imagery, many studies have investigated extracting various types of vegetation information.
The authors in [8] combined IKONOS and Landsat ETM+ data in order to map structural parameters
and the species composition of riparian vegetation. The authors in [9] used GeoEye-1 high spatial
resolution satellite data to map canopy mortality caused by a pine beetle outbreak. They concluded
that high-resolution imagery is a useful tool to map such natural disasters. Similar work to [8] was
conducted by the authors in [10] in order to distinguish forest species in South Africa, but their work
was based on Worldview-2 multispectral bands. The authors in [11] used WorldView-2, RapidEye,
and PlanetScope data to detect urban vegetation based on land cover classification. The authors
in [12] used Sentinel-2 data to visualize bark-beetle-damaged forests in Croatia, and the authors in [13]
tested object-based and pixel-based methods on Sentinel-2 imagery for two forest sites in Germany.
The authors in [12,13] stated that Sentinel-2 data indicate a high potential for applied forestry and
vegetation analysis. The authors in [14] used unsupervised machine learning to map landscape
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soils and vegetation components from satellite imagery. The authors in [15] used machine learning
classification in order to map vegetation and land use types. As seen from the abovementioned
literature, a lot of work has been done with machine learning to extract vegetation information.

Machine learning is a very deep and complicated field. However, many different types of machine
learning methods are intended to provide the same outcome, starting with known examples to develop
a pattern and applying the pattern to a dataset with no familiar data [16]. The basics of most machine
learning methods are as follows:

Start with known datasets;
Train the machine learning algorithm on known datasets (training sets);
Obtain the dataset for which one wants to know an answer (test sets); and

L .

Pass the test set through the trained algorithm to provide the result [16].

Recently, machine learning models have been proposed for various classification and regression
tasks using satellite imagery [17]. Different to typical statistical approaches, machine learning
techniques are usually free from data assumptions and have proven to be useful in nonlinear behavior
modeling [17].

Support vector machines were proposed in [18], following which they were studied thoroughly
due to their high-quality results in image recognition. According to [19,20], the most common
satellite image classification machine learning modules are ISODATA, the K-Means algorithm, and
Support Vector Machine (SVM). Several books have been published on SVM [21-23]. Support Vector
Machine is an abstract machine learning algorithm that learns from a training dataset and attempts to
generalize and make a correct prediction on new datasets [21]. The library for support vector machines
(LIBSWM) helps users to implement SVM into their applications. LIBSVM supports different SVM
formulations for classification, regression, and distribution estimation [24]. Kernels are commonly
used in conjunction with support vector machine modules. The most commonly used kernels for
image processing are polynomial, radial basis function, and sigmoid kernels [25].

These three kernels are used in combination with SVM modules in this paper. According to [25],
the radial basis function kernel should provide the best overall results for green urban areas extraction.

Since the usefulness of combining satellite imagery and machine learning for different types
of vegetation has been proven in the abovementioned studies, this paper will offer a particular
combination of parameters to extract green urban areas with the highest degree of accuracy.

2. Materials and Methods

The study area is located in two towns in Croatia: Varazdin and Osijek. Based on the
OpenStreetMap classification, a town is an urban settlement with local importance and a population
between 10,000 and 100,000. Both towns have a similar land cover use. Both are located on the River
Drava, and the central area is populated with an urban fabric while smaller areas are filled with green
urban areas. The wider city centre is populated with arable land, forests, and inland waters. The
dominant types of vegetation in Varazdin are forests populated with beech, oak, and chestnut and
larger parks with grass and shrubbery. The dominant types of vegetation in Osijek are also parks, but
in Osijek there are many swamp plants and linden and oak trees dominate forests. The coordinates for
the centre of the study areas of Varazdin and Osijek are shown in Table 1. Study areas with a signature
and control samples are presented in Figure 1. The workflow is presented in Figure 2. The first step
was to download satellite images from the Copernicus Open Access Hub web page [26].

Table 1. The study area coordinates (projection: EPSG 3765 | WGS84).

E(m) | @ (d° m’s") N(m) | A (d° m’ s”)
Varazdin 487,550.00 | 46°18'34,6” 5,130,000.00 | 16°20'18,1”
Osijek 671,000.00 | 45°33/03,3" 5,048,000.00 | 18°41'24,3"
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Figure 1. The study area: VaraZzdin (left); Osijek (right).

Downloading images with zero or almost zero cloud coverage was important. The imagery for
the Varazdin study area was recorded on 14 August 2016, and the imagery for the Osijek study area
was recorded on 29 August 2016. The Sentinel-2A multispectral imager covers 13 spectral bands,
from 443 to 2190 nm, with a swath width of 290 km and a spatial resolution of 10 m (four visible and
near-infrared bands), 20 m (six red edge and shortwave infrared bands), and 60 m (three atmospheric
correction bands). After the images were downloaded, atmospheric correction was performed. The
atmospheric correction was performed using the Dark Object Subtraction 1 (DOS1) correction. DOS is a
family of image-based corrections. Image-based corrections have a lower accuracy than physical-based
corrections. For this research, the DOS]1 correction was useful as it improves the estimation of land
surface reflectance on satellite images [27]. Administrative areas were downloaded from [28], and
images were clipped on the VaraZdin and Osijek administrative areas. The next step was to conduct
classification processes. The study areas were separated into five classes according to Corine Land
Cover [29]: inland water, forests, green urban areas, arable land, and urban fabric. Signature and
control samples were selected based on RGB color composition, normalized difference vegetation
index (NDVI), combining the infrared band with the green and blue bands, and also experience of
living in these two towns. For the Varazdin study area, there were 69 signature samples and 26 control
samples. For the Osijek study area, there were 41 signature samples and 26 control samples.

The classification was made by combining two support vector machine modules and using three
kernel types. The kernels used in this study were [30]:

e The polynomial kernel:
K(u',0) = (v x (u',v) + coefO)d 1)

e The radial basis function (RBF) kernel:

K(u,v) = exp_Wl”_z’|2 )
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e The sigmoid kernel:
K(u',v) = tanh(y x (u',0) + coef0) (3)

where coef 0 is a coefficient, <y is the gamma, and d is the degree.

Sentinel-2A

Atmospheric Correction

Administrative W » I\TLG)\?I
boundaries h g
NIR Bands

A

> Bands - clipped

A
A 4

Signature Samples Control Samples

Classification Accuracy assesment

Figure 2. The workflow process. NDVI, normalized difference vegetation index; NIR, near-infrared.

The parameters and combinations used in the classification are contained in Table 2. Where the
values are left out, the default value was used. In Table 2, abbreviations for kernels are used. “Pol” is
the polynomial kernel, “RBF” is the radial basis function kernel, and “Sig” is the sigmoid kernel. The
factor C parameter allows one to trade off training error versus model complexity. A small value for C
will increase the number of training errors, while a large C value will lead to behavior similar to that
of the hard-margin SVM [31]. v is the free parameter of the radial basis function. If v is large, then the
variance is small, implying that the support vector does not have a widespread influence. Basically, a
large y leads to high-bias and low-variance models, and vice-versa.

Table 2. The classification parameters.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SVM CSvVC CSVC C-SVC CSvC CSVC CSVC CSvC C-SVC C-SVC CSVC C-SVC CSVC v-SVR - v-SVR
Kernel  Pol Pol Pol Pol RBF RBF RBF RBF Sig Sig Sig Sig RBF RBF

Y 1 2 4 8 0 0.5 1 2 0 0.5 1.5 2 1 1

C 1 50 98 150 1 10 28 50 1 10 13 50 1 1
v-SVR / / / / / / / / / / / / 0.1 0.1
SVR-¢ / / / / / / / / / / / / 0.1 0.5

SVC, support vector classification, SVR, support vector regression, Pol, polynomial kernel; RBF, radial basis function
kernel, Sig, sigmoid kernel. SVM, support vector machine.
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According to [32], the error or confusion matrix is the most commonly used accuracy assessment.
It shows class types determined from the classified map in rows and class types determined from
the reference source in columns. Correctly classified polygons are represented in diagonals, while
misclassified polygons are represented in the off-diagonal error matrix [11]. An example of an error
matrix is taken from the results of the classification (parameter 7 in Table 2), as shown in Table 3.

Table 3. An example of an error matrix.

cat# 1 2 3 4 5 Row Sum
1 452 0 2 0 1 455
2 0 1788 32 0 3 2733
3 0 3 426 0 12 5452
4 0 0 0 815 109 9095
5 0 0 42 271 856 13,907

Col Sum 452 1791 502 1086 981

Omission and commission errors within the confusion matrix are also considered [11].
A commission error occurs when polygons from other classes are allocated to the reference data [11].
An omission error appears when the polygons of the reference data are allocated to other classes [11].
According to [33], kappa analysis is a powerful method for comparing the differences between diverse
error matrices. The accuracy rank for each kappa coefficient is shown in Table 4. The kappa statistic is
a measure of the similarity between signature samples and control samples [34]. It indicates that a
moderate classification accuracy has a similarity between 41 and 60%. In the same manner, high and
very high classification accuracy are presented in Table 4. In Table 5, the commission error is labeled as
C and the omission error is labeled as O.

Table 4. Classification accuracy based on the kappa coefficient (K value).

K value Classification Accuracy
0.41-0.60 moderate
0.61-0.80 high

0.80 -> very high

3. Results

After obtaining the signature and control samples (Figure 1), the classification was performed.
The parameters for the classification are shown in Table 2. Out of 14 tested combinations, only a
few produced satisfying results. Classification using the polynomial kernel produced results only
for the parameters in Column 1 of Table 2. The parameters in Columns 2, 3, and 4 of Table 2 did
not produce any outputs because the maximum number of iterations was exceeded. Classification
using the parameters in Columns 5 and 6 produced similar results to those from classification using
the parameters in Columns 7 and 8. Classification using the sigmoid kernel was low of quality, with
a kappa range of 0.19-0.41. Classification using the v-SVR produced similar results to those from
classification using the C-SVR. The results of classification using the parameters in Columns 1, 7,
8,9, and 13 from Table 2 are presented in Table 5, Table 6, and Figures 3-6. As shown in Table 5,
the estimated kappa for class number 3, which represents vegetation, is marked in green. The best
estimated kappa for vegetation extraction was determined using the polynomial kernel. However, the
overall classification accuracy was rather low compared to that of other parameters.



Remote Sens. 2019, 11, 655

Table 5. The accuracy assessment for the Varazdin study area.

1 7 8 9 13
Class no. C (0] est. K C (@] est. K C (@) est. K C (@) est. K C (@) est. K
1 1.62 5.75 0.98 0.66 0.00 0.99 0.66 0.00 0.99 100 100 -0.1 3.00 0.00 0.97
2 1.16 022 0.98 192 0.17 0.97 192 0.17 0.97 741 1273 0.88 0.61 0.39 0.99
3 311 1315 097 340 1514 096 342 1554 096 5336 1992 040 759 299 0.92
4 100 100 -0.3 11.80 2495 0.85 11.09 2541 086 3622 9254 0.53 9.76 27.62 0.87
5 5448 1.63 0.32 26.78 12.74 0.66 2711 12.03 0.66 67.85 3547 0.14 26.19 1325 0.67
K 0.668972 0.867978 0.867981 0.415319 0.874915
C, commission error; O, omission error.
Table 6. The accuracy assessment for the Osijek study area.
1 7 8 9 13
Class no. C (0] est. K C (0] est. K C (@) est. K C O est. K C O est. K
1 0.00 0.36 1.00 0.00 0.19 1.00 0.00 0.17 1.00 100 100 -0.2 0.00 0.00 1.00
2 0.27 9.62 0.99 0.14 9.92 0.99 0.12 9.94 0.99 66.89 66.76 0.10 76.58 87.76 -0.1
3 787 0.05 0.89 8.09 0.00 0.89 8.11  0.00 0.87 79.78 86.06 -0.1 5471 35,51 0.23
4 9.62 0.00 0.87 620 1738 0.92 521 31.14 093 9.14 0.48 0.88 524 31.84 093
5 NA NA NA 77.19 5153 0.21 82.07 35.76 0.15 45.76 9458 0.53 82.36 35,59 0.15
K 0.928948 0.887217 0.847053 0.195597 0.874915

NA, not applicable.

6 of 13
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Figure 3. Classification results for the Varazdin study area.
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Figure 4. Classification results for the Osijek study area.
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Figure 6. The estimated kappa for the Osijek study area.
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Figures 3 and 4 show the results of classification using different parameters. As mentioned above,
only a few of the classification parameters produced the desired results, and only five sets of results
are shown in Figure 3. In Figure 3, it can be seen that the vegetation has been correctly classified and
that, in some areas, the classification process had issues separating water from vegetation as well as
soil from buildings. This is an expected issue, since these classes have a similar spectral signature.

Figures 5 and 6 show the estimated kappa for every parameter in graphical form. Since the kappa
is an indicator of the quality of classification, it is obvious that the classification using the radial basis
function kernel produces the best results. However, there is a small difference between C-SVM and

v-SVM.
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Figures 7 and 8 show how the choice of parameters affects the classification and pixel distribution
for each class. If one compares parameters 7 and 8, it is obvious that the only difference is in the
classification of Class 3 (green urban areas) and Class 5 (urban fabric). The results determined that
the highest kappa is in parameter 1 and the highest estimated kappa for Class 3 is in parameter 1.
However, parameter 1 has only four classes and, therefore, could not be evaluated. From this, we
determined that the best overall combination of parameters is the parameters in Column 7 in Table 2
for both study areas.

1 7 8
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Figure 7. The pixel distribution per class for the Varazdin study area.
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Figure 8. The pixel distribution per class for the Osijek study area.
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4. Discussion

According to [25], the best kernel for classification in general is the radial basis function kernel
because it produces the highest overall accuracy and highest overall kappa. We have confirmed this
finding, adding that the radial basis function is also the best kernel for green urban areas extraction.
The authors in [35] found that the best overall accuracy is attained using the radial basis function
where y equals 1 and C equals 28, with an overall accuracy of 92.67. However, the authors in [25]
used synthetic aperture radar (SAR) data for their study, and the authors in [35] used hyperspectral
data for their study. Since the spectral characteristics of SAR and hyperspectral data are both different
from Sentinel-2A data, these two studies cannot be directly compared to our study, but can show
tendencies and guidelines for similar research. The authors in [36] found that SVM produces the
highest accuracy during classification on Sentinel 2 imagery. The authors in [37] showed that the
polynomial kernel produced the best overall accuracy for the classification of RapidEye multispectral
imagery. In accordance with [36], we used a support vector machine learning module to classify
Sentinel 2 imagery. However, in contrast to [37], we found that the highest accuracy was obtained
with the radial basis function kernel for Sentinel 2 imagery classification. We also found that Sentinel
2 imagery is useful for green urban areas extraction and, with the right combination of parameters,
can provide a classification with a high level of accuracy. The usefulness of Sentinel 2 imagery has
already been confirmed in different analyses for different purposes [12,13,38], and it could also be used
for decision-making in urban planning. Further research is proposed using high-resolution imagery
produced by an unmanned aerial vehicle combined with Sentinel 2 data in order to improve the model
for green urban areas extraction. The improved model should provide a better overall kappa for green
urban areas extraction.

5. Conclusions

Urban planning for and increasing the amount of green urban infrastructure are crucial for
healthier living. To achieve this effectively, experts have combined machine learning modules with
satellite imagery. The development of the Copernicus satellite missions represents a huge advance
in land observation due to the increment in spatial resolution. Many analyses have been conducted
to determine which of the parameters is most suitable for green urban areas extraction in satellite
images. SVM is one of the most commonly used machine learning modules in image classification, and,
according to different authors, the most common kernel is the radial basis function. The radial basis
function is one of the kernels that produces classifications of the highest quality. In this paper, various
combinations of parameters were examined. The results show that, for green urban areas extraction,
the highest estimated kappa was obtained using the polynomial kernel and C-SVM; however, the
polynomial kernel has a rather poor overall accuracy and should not be used for such classification.
The overall highest quality is produced using the radial basis function in combination with C-SVM.
However, a satisfying quality is also produced using the v-S5VM in combination with the radial basis
function kernel. Further research is proposed to develop a novel model to extract vegetation that
combines high-resolution aerial imagery and satellite imagery.
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