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Abstract: The trade-off between spatial and temporal resolutions has led to the disaggregation
of remotely sensed land surface temperatures (LSTs) for better applications. The window used
for regression is one of the primary factors affecting the disaggregation accuracy. Global window
strategies (GWSs) and local window strategies (LWSs) have been widely used and discussed, while
object-based window strategies (OWSs) have rarely been considered. Therefore, this study presents
an OWS based on a segmentation algorithm and provides a basis for selecting an optimal window size
balancing both accuracy and efficiency. The OWS is tested with Landsat 8 data and simulated data
via the “aggregation-then-disaggregation” strategy, and compared with the GWS and LWS. Results
tested with the Landsat 8 data indicate that the proposed OWS can accurately and efficiently generate
high-resolution LSTs. In comparison to the GWS, the OWS improves the mean accuracy by 0.19 K at
different downscaling ratios, in particular by 0.30 K over urban areas; compared with the LWS, the
OWS performs better in most cases but performs slightly worse due to the increasing downscaling
ratio in some cases. Results tested with the simulated data indicate that the OWS is always superior
to both GWS and LWS regardless of the downscaling ratios, and the OWS improves the mean
accuracy by 0.44 K and 0.19 K in comparison to the GWS and LWS, respectively. These findings
suggest the potential ability of the OWS to generate super-high-resolution LSTs over heterogeneous
regions when the pixels within the object-based windows derived via segmentation algorithms are
more homogenous.
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1. Introduction

Land surface temperature (LST) is a key parameter for a wide range of biophysical processes. LST
plays an important role in modeling the energy balance [1–4], monitoring urban heat islands [5–7],
and detecting thermal anomalies [8,9]. Frequent satellite observations at fine resolution facilitate these
environmental models. However, the trade-off between spatial and temporal resolutions greatly limits
the applications of LSTs. To overcome this dilemma, disaggregation of LST (DLST) came into being
and has since drawn much attention [10].

DLST methods using auxiliary data from multispectral sensors to enhance the spatial resolution
of coarse-resolution LSTs [11] can be recognized as the kernel-driven methods according to the general
theoretical framework proposed by Zhan [12]. Specifically, the auxiliary datasets are used as kernels to
build a relationship with the LST in the low-resolution space, and then reconstruct the spatial details of
the high-resolution LST. Kernels used in the DLST include single-band kernels (e.g., reflectances [13])
and band-derivative kernels such as normalized difference vegetation index (NDVI) [14,15], and
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emissivity [16–18]. The relationship between the kernels and LST in a regression window is obtained
via different regression tools such as linear or nonlinear regression tools [15].

In the early time, the focus of DLST is the optimal selection of kernels and regression tools
over various study areas [10]. Specifically, different land cover types correspond to different optimal
regression kernels. For example, the NDVI, fractional vegetation cover and other vegetation index [15]
are suitable for vegetated areas. The albedo and normalized difference built-up index (NDBI) [19]
are the priority choices for urban areas [20,21], and the soil-adjusted vegetation index (SAVI) [22] is
more effective over bare soil [20]. In addition, linear and nonlinear regression tools [15] have been
widely used to obtain the relationship between kernels and LST due to their simplicity. To improve the
performance of DLST, regression tools such as the artificial neural network [20], regression tree [13],
support vector regression machines [23], and random forest (RF) regression [24–26] have been used
because of their higher efficiency and accuracy.

Apart from the optimization of the kernels and regression tools, a suitable regression window
also contributes to improving the performance of the kernel-driven method since the regression
relationship between the kernels and LST is determined in the regression window. For its simplicity,
the global window has been widely utilized to obtain the regression relationship [14,27]. However,
the relationship between the kernels and LST might vary across an image because of complicated
land cover, and a moving window was accordingly proposed to build more accurate correlations for
local data [27]. The window size efficiently affects the accuracy of DLST [27]. Specifically, Zhukov [28]
indicated that a 5 × 5 window was the most appropriate for their study area, and this window made a
compromise between the acceptable spatial scale and the stability of the inversion. Jeganathan [27]
found that a 5 × 5 window yielded more accurate results than a 3 × 3 window and a 7 × 7 window.
In addition, Chen [29] applied a 5 × 5 moving window in a combination of a regression method
and spatial interpolation to improve the robustness of thermal sharpening. However, the optimal
window size for an arbitrary area was not determined since a large window might contain more
heterogeneous pixels that reduce the stability of the regression relationship, while a small window
might be time-consuming due to the large number of regressions. Hence, Gao [30] proposed an indirect
criterion based on aggregation-disaggregation (ICAD), with which we can choose between the global
window strategy (GWS) and the local window strategy (LWS) and determine the optimal moving
window size of the LWS considering both accuracy and efficiency.

The moving window used in the LWS is square, which may be less sufficient than a circular
window since a circular window defines better correlations among nearby pixels [30]. Furthermore,
the shape of land cover objects is not always regular, and even a circular window cannot always
derive stable correlations. Considering local anisotropic heterogeneity, the best regression window
should be determined by homogeneous pixels, which can be any shape beyond a square or a
circle [30]. Object-based windows derived from segmentation algorithms may generate more
stable correlations between the LST and kernels considering that the pixels within the window are
homogeneous. Segmentation algorithms such as the entropy rate superpixel (ERS) [31], extended
topology preserving [32], and simple linear iterative clustering (SLIC) [33] can be used to derive
the object-based window, since Stutz [34] recommended their superior performance compared with
other superpixel algorithms. However, few studies have applied an object-based window in DLST.
Lillo-Saavedra [35] used the superpixels generated by a segmentation algorithm to sharpen the LST,
but the regression was based on the superpixels rather than the pixels and was implemented by the
GWS rather than the LWS.

An object-based window strategy (OWS) has rarely been discussed in previous studies. Therefore,
this study introduces an OWS for thermal sharpening, provides suggestions for determining the
optimal window size for the OWS, and compares the performance of the OWS with the GWS and
LWS over different land covers. Here, we provide the implementation details in Section 2. Results and
discussion are presented in Sections 4 and 5, respectively.
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2. Method

2.1. Algorithm for DLST over Different Land Covers

Here, we utilize the statistical regression method for DLST due to its wide applications and easy
operations [10]. The statistical regression method contains two main procedures. The first procedure
is to construct a function relationship between the kernels and the LST at a low resolution, and this
relationship can be expressed as follows:

Tlow = f (ρlow) + ∆T (1)

where f (·) is the function relationship, ∆T is the residual error, Tlow represents the low-resolution LST,
ρlow indicates the kernels at a low resolution, and the subscripts “low” denote the associated resolution
scale. Then, the second procedure is to apply the function relationship on the high-resolution data to
predict the high-resolution LST. Accordingly, the predicted high-resolution LST can be derived via
Equation (2),

Thigh = f
(

ρhigh

)
+ ∆T (2)

where Thigh represents the high-resolution LST and the subscripts “high” denote the associated
resolution scale.

The function relationship utilized here is nonlinear regression, which can be expressed as follows:

f (ρ1, ρ2, . . . ρn) = a0 + a1·ρ1 + a2·ρ2 + . . . + an·ρn (3)

where ρ1, ρ2, . . . ρn are the kernels, a0, a1 a2 and an are the coefficients of function f (·), and n is the
number of the kernels.

The kernels applied in different regions are different; the NDVI is suitable for vegetation
areas [14,15], and the NDBI and albedo are more suitable for urban areas [20,21]. Here, we use the
NDVI and NDVI2 for a forest area from spring to autumn, while a winter image uses the NDVI, NDVI2,
SAVI and SAVI2 instead because the vegetation is withering in winter and the image is covered by
barren. In addition, the kernels used in cropland, which is mainly covered with bare soil and vegetation,
are the same as those used for the forest area in winter. Because the urban area is mainly covered by
vegetation and impervious surfaces, the NDVI, NDVI2, NDBI and NDBI2 are used as kernels.

The abovementioned kernels are obtained from the visible and near-infrared (VNIR) channels
after an atmospheric correction. The retrieving equations of these kernels are as follow,

NDVI = (NIR− Red)/(NIR + Red) (4)

NDBI = (MIR−NIR)/(MIR + NIR) (5)

SAVI =
(NIR− Red)

(NIR + Red + L)
(1 + L) (6)

where NIR, Red, and MIR are the reflectances of each band and L is a constant set to 0.5 in this study.

2.2. Object-Based Window Strategy

To determine the relationship between the kernels and the LST, a regression window is required.
There are two widely used regression windows, namely the global window and the local window.
As shown in Figure 1, the GWS indicates that the function relationship is obtained in the whole image
and that all pixels correspond to one unique function relationship [14,15]. For the LWS, every moving
window has a unique function relationship, and those pixels within the same window have the same
function relationship [27]. The moving window in the LWS is square with the same size as that shown
in Figure 1.
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Figure 1. Window strategies. The background image is a 100 m-resolution LST derived from Landsat
8 data.

However, the window size and window shape in the OWS are different from each other (see
Figure 1). The window of the OWS is derived via segmentation algorithms, which group pixels
similar in color and other properties [34]. Pixels with similar properties in a neighborhood are
classified into one object-based window via segmentation algorithms. Both VNIR data and the
thermal infrared (TIR) data can be used for segmentation. Since the function relationships of each
object-based window are regressed at a low resolution, we use the low-resolution LST as the input to
the segmentation. In this paper, we apply the widely used SLIC algorithm, which generates superpixels
by applying a k-means clustering approach classifying the input pixels into multiple classes based on
their inherent distance from each other [33,36], to obtain the object-based window. The compactness
(one important segmentation parameter) of all the segmentation procedures is set to a certain value,
and the segmentation scales determine the counts of the objects.

The segmentation scale of the segmentation algorithm determines the size of the object-based
windows. For example, when the segmentation scale is set to 100, the whole image is segmented into
100 sub-objects. Accordingly, there are 100 object-based windows, and the window size is determined
by the homogeneities of the objects. Moreover, the larger the segmentation scale is, the smaller the
size of the object-based window. When the window size is too small, there are not enough training
samples for regression, and the function relationship within the window is less efficient in predicting
high-resolution LST. When the window size is too large, the heterogeneities among the pixels in the
window increase, making the relationship between the kernels and LST more complicated and thus
decreasing the accuracy of DLST. Moreover, a larger window that includes more training samples
increases the computational complexity [30]. Hence, an optimal segmentation scale that considers the
accuracy and computational cost is required for the OWS.

As the ICAD introduced, the optimal moving window size for the LWS varies with the resolution
ratio between pre- and post-disaggregated LSTs. Specifically, semivariograms of LST images with
different spatial resolutions indicate that coarser images, which are more homogeneous between pixels
than fine-resolution images, require more pixels for a stable regression [30]. Hence, we apply a similar
selection strategy to determine the optimal segmentation scale for the OWS. Here, we use the number
of pixels within the object-based window at high resolution to quantify the window size. The optimal
number of pixels in an object-based window can be obtained by the following equation,

SEGopt = k·Rlow/Rhigh + b (7)

where SEGopt indicates the optimal number of pixels in an object-based window; k and b are the
slope and constant, respectively; and Rlow and Rhigh are the spatial resolutions of the pre- and
post-disaggregated LSTs, respectively. Here, we use a linear function to represent the relationship
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between the optimal number of pixels and the downscaling ratio (Rlow/Rhigh) due to the simplicity
of the linear function and the fact that its validity is supported by the analysis in Section 4.1.
The coefficients (i.e., k and b) of Equation (7) are determined by training samples evaluated via
root mean square error (RMSE), which provide the optimal number of pixels and downscaling ratio.
Once the optimal number of pixels in an object-based window is determined, the optimal segmentation
scale is easily obtained from the whole image.

3. Study Area and Data

Here, we select three different study areas located in forest, urban and cropland areas. One of the
three study areas is in Hebei Province and two are in Beijing (see Figure 2a,b). The forest area is located
in the north of Beijing and is mainly covered by forest, with an altitude ranging from 60 m to 2000 m.
In addition, this area is not always covered by vegetation, especially in winter, when bare soil takes the
place of vegetation. The urban area is located in the central city of Beijing and is mainly covered by
impervious surfaces and partly by vegetation. The cropland area is located in Hebei Province and is
mainly covered by bare soil, with crops changing from spring to winter. The climate of these three
study areas is a sub-humid warm temperature continental climate. In addition, cloud-free images of all
study areas collected from spring to winter are used for prediction (see Figure 2c), and the acquisition
dates of the images are listed in Table 1.

Table 1. Description of the Landsat 8 data.

Study Area Acquisition Date (YY-MM-DD) Path/Row Altitude (m)

Forest 2017-05-07, 2017-07-10, 2017-09-12, 2017-10-30 123/32 60–2000
Urban 2017-05-07, 2017-07-10, 2017-09-12, 2017-10-30 123/32 20–2000

Cropland 2016-04-18, 2017-07-10, 2017-10-30, 2017-12-17 123/34 10–50

Landsat 8 datasets (downloaded from https://glovis.usgs.gov/) were used for this research.
The VNIR channels (spatial resolution: 30 m) were used as kernels, while the TIR channel (band 10)
with a 100 m resolution was used for retrieving LSTs by a single channel algorithm [37]. In addition,
with the “aggregation-then-disaggregation” strategy, the original 100 m-resolution LSTs retrieved
from the Landsat 8 TIR band were aggregated into 300 m, 600 m, and 900 m resolutions to serve as
low-resolution LSTs, so were the kernels.

The simulated datasets aimed to explore the strengths and limitations of the OWS compared
with the GWS and LWS. This study simulated linear, circular, and rectangular objects by assigning
each pixel a digital number of 0–255. These objects represent real-world objects such as buildings,
roads, water, bare soils and vegetation [38]. Because the NDVI was used as the kernel in this study,
we simulated the NDVI by randomly assigning different ranges of NDVI values to different objects
(Figure 3). Then, the LSTs were obtained via known function relationships between the NDVI and the
LST (Figure 3). Here, we used four function relationships obtained from the Landsat 8 data, and the
coefficients of these functions are shown in Table 2.

https://glovis.usgs.gov/
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Figure 2. Three different study areas and corresponding satellite data. (a) Land cover map of China
obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) yearly land cover product
in 2017 (the MODIS image was downloaded from https://ladsweb.modaps.eosdis.nasa.gov/); (b) Land
cover map of Hebei Province, where the black circles indicate the locations of the three study areas;
(c) Study areas of different land cover types ranging from spring to winter; the images were obtained
from the RGB true-color composite of Landsat 8.

https://ladsweb.modaps.eosdis.nasa.gov/
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Figure 3. Simulated NDVI and LST data. The 10 m, 40 m and 100 m notations indicate the spatial
resolutions of the simulated data. The 40 m and 100 m-resolution data were aggregated from the
10 m-resolution data. The image size of the 10 m-resolution data is 1000 × 1000.

Table 2. Coefficients of the function relationship used in the simulated data.

Object a0 a1 a2

Circle 38.5 −10.0 −6.0
Line 37.4 −9.7 −6.1

Rectangle 34.4 −5.7 −5.1
Background 33.4 −4.5 −5.6

1 The function relationship is provided in Equation (3), and the kernels are the NDVI and NDVI2.

4. Results

4.1. Relationship between the Optimal Window Size and the Downscaling Ratio

The segmentation scale of the segmentation algorithm determines the size of the object-based
windows. Because the optimal segmentation scale for thermal sharpening remains unknown,
we downscale the coarse-resolution LSTs via different segmentation scales. As shown in Figure 4,
at different downscaling ratios, the accuracies of the downscaled LSTs are mostly lower when the pixel
number of a window is extremely small. This result is because the small number of pixels is not able
to obtain a stable function relationship between the kernels and the LST. When the number of pixels
of a window increases, the accuracy improves accordingly. However, when the number of pixels of
a window increases to a certain value, the accuracy does not improve and decreases slightly. This
finding is because a larger number of pixels usually corresponds to a larger heterogeneity among the
pixels, which makes the unique function relationship between the kernels and the LST less efficient in
predicting complicated high-resolution LSTs.

In addition, the difference between the lowest accuracy and the optimal accuracy is different at
different downscaling ratios. In detail, the difference is approximately 0.05 K when the downscaling
ratio is three, approximately 0.2 K for the downscaling ratio of six and approximately 0.6 K for the
downscaling ratio of nine. The more evident improvement at the downscaling ratio of nine indicates
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the importance for the OWS to determine the optimal segmentation scale when the downscaling ratio
is large. Moreover, the optimal number of pixels of the object-based window corresponding to the
lowest RMSE value is located in a specific range. For example, the optimal numbers of pixels are
mainly less than 2000 in all three different areas when the downscaling ratio is three, the optimal
numbers of pixels are between 2000 and 8000 when the downscaling ratio is six, and those at the
downscaling ratio of nine are between 4000 and 16,000. These results indicate the positive correlation
between the optimal number of pixels and the downscaling ratio. In other words, a coarser image
requires a larger number of pixels in the regression window [30].
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object-based window and represents the segmentation scales. The black point indicates the minimum
RMSE value.

The results for different seasons and study areas have similar regular patterns, including the
overall trend of the accuracies varying with different numbers of pixels and the ranges of the optimal
numbers of pixels for different downscaling ratios. Although the curve of the accuracy for the forest
area in spring at the downscaling ratio of three is not totally similar to that in other seasons (Figure 4),
the optimal number of pixels is smaller than that in other seasons, and the lowest accuracies occur in
regions with a larger number of pixels. These results may be due to the lower efficiency of the function
relationship between the kernels and the LST in spring since the land cover contains a portion of bare
soil. When the window size increases, the pixels within the window become more heterogeneous,
which decreases the reliability of the function relationship. However, the overall trend of this curve is
still similar to that of the other curves; specifically, the RMSE value of the curve increases when the
number of pixels increases above the optimal number of pixels.

Figure 4 shows that the optimal number of pixels within an object-based window is positively
correlated with the downscaling ratio since the optimal number of pixels increases from approximately
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1000 to 10,000 with increasing downscaling ratio. We regress the downscaling ratios and the optimal
numbers of pixels from the above samples using Equation (7) and obtain the results shown in Figure 5.
The coefficients k and b of the fitted line are 1136.63 and −2338.73, respectively. In addition, the R2

value is 0.55 and the P value is less than 0.01 for the regression, and these results prove the reliability of
the assumption that the optimal number of pixels and the downscaling ratio have a linear correlation
relationship. To simplify the use of the selection strategy for the optimal segmentation scale, we use
a simplified fitted line to replace the fitted line (Figure 5). The coefficients k and b for the simplified
fitted line are 1000 and −2000 respectively. The accuracies determined by the simplified fitted line only
decrease by approximately 0.01 K compared with those determined by the fitted line (Figure 6).
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4.2. Comparisons with the LWS and GWS (Test with the Landsat 8 Data)

We compare the results of the OWS with those of the GWS and LWS for different land covers in
four seasons. As shown in Figure 7, when the downscaling ratio is three, the OWS performs better
than both the GWS and LWS for the different land covers in all seasons. Compared with the GWS, the
OWS improves the accuracy by approximately 0.21 K when the downscaling ratio is three. Compared
with the LWS, the improvement by the OWS is slight (by 0.04 K). When the downscaling ratio is six,
the OWS still performs better than both the GWS and LWS in most instances. The improvement by
the OWS compared with the GWS is 0.19 K, while that compared with the LWS is 0.02 K. Although
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the accuracies of the OWS for the urban area are slightly lower than those of the LWS in summer and
autumn, the differences are only 0.01 K and 0.006 K for summer and autumn, respectively. When the
downscaling ratio is nine, the OWS still performs better than the GWS, with an improvement of 0.16 K.
However, compared with the LWS, the OWS only slightly improves by 0.001 K. Moreover, the OWS
even performs more poorly than the LWS for the urban area, with a slightly higher RMSE value by
0.02 K in all seasons. This result is because the pixels with a resolution of 900 m contain more land
cover types than those with a resolution of 600 m or 300 m over the urban area, and this effect makes
the segmented objects less homogeneous between pixels. Hence, the regression relationship within the
object-based window is less efficient in predicting high-resolution LSTs.

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 16 

 

0.001 K. Moreover, the OWS even performs more poorly than the LWS for the urban area, with a 

slightly higher RMSE value by 0.02 K in all seasons. This result is because the pixels with a resolution 

of 900 m contain more land cover types than those with a resolution of 600 m or 300 m over the urban 

area, and this effect makes the segmented objects less homogeneous between pixels. Hence, the 

regression relationship within the object-based window is less efficient in predicting high-resolution 

LSTs. 

As shown in Figure 7, the improvements by the OWS compared with the GWS are higher for the 

urban area than those for the forest and cropland areas; the RMSE value decreases by 0.3 K at different 

downscaling ratios, while those for the forest and cropland areas only decrease the RMSE value by 

0.12 K and 0.14 K, respectively. These results are because the forest and cropland areas are more 

homogenous than the urban area; in the forest and cropland areas, even with the GWS, the regression 

relationship between the kernels and LST is efficient in predicting the LSTs of the whole image. 

However, the urban area is much more complicated, and the correlations between the kernels and 

LST vary with the land cover type. The unique relationship obtained via the GWS is less efficient over 

different land cover types. Hence, the OWS provides training samples with more similarities between 

pixels, and these training samples are used for regression and improving the accuracies of DLST over 

the urban area. 

Using the comparisons with the GWS and LWS for different land covers in all seasons, we find 

that the improvement by the OWS is larger when the resolution of the pre-disaggregated LST is finer. 

This finding is because the segmented objects based on finer-resolution LST are more homogeneous 

both between and within pixels than those based on coarser-resolution LST. Accordingly, the more 

homogenous the training samples are within the regression window, the more stable the function 

relationship established between the kernels and LST [13]. 

 

Figure 7. RMSEs of the results of the GWS and LWS with the optimal accuracy and those of the OWS 

with the optimal accuracy. The black point indicates the minimum RMSE value among the GWS, LWS 

and OWS. 

Figure 7. RMSEs of the results of the GWS and LWS with the optimal accuracy and those of the OWS
with the optimal accuracy. The black point indicates the minimum RMSE value among the GWS, LWS
and OWS.

As shown in Figure 7, the improvements by the OWS compared with the GWS are higher for
the urban area than those for the forest and cropland areas; the RMSE value decreases by 0.3 K at
different downscaling ratios, while those for the forest and cropland areas only decrease the RMSE
value by 0.12 K and 0.14 K, respectively. These results are because the forest and cropland areas are
more homogenous than the urban area; in the forest and cropland areas, even with the GWS, the
regression relationship between the kernels and LST is efficient in predicting the LSTs of the whole
image. However, the urban area is much more complicated, and the correlations between the kernels
and LST vary with the land cover type. The unique relationship obtained via the GWS is less efficient
over different land cover types. Hence, the OWS provides training samples with more similarities
between pixels, and these training samples are used for regression and improving the accuracies of
DLST over the urban area.

Using the comparisons with the GWS and LWS for different land covers in all seasons, we find
that the improvement by the OWS is larger when the resolution of the pre-disaggregated LST is finer.
This finding is because the segmented objects based on finer-resolution LST are more homogeneous
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both between and within pixels than those based on coarser-resolution LST. Accordingly, the more
homogenous the training samples are within the regression window, the more stable the function
relationship established between the kernels and LST [13].

Figure 8 shows the DLST for the urban area. The OWS has more similar spatial details than the
LWS when the downscaling ratio is three (see Figure 8e,f). However, when we downscale the 600 m
and 900 m-resolution LSTs into a 100 m resolution, a grid effect appears in all downscaled LSTs via the
GWS, LWS and OWS (see Figure 8g–l). This grid effect is due to the nonlinear statistical regression
tool used here since the function relationship is often ill-defined over heterogeneous regions [24].
Regression tools that are based on machine learning techniques, e.g., the RF regression tool, which
is flexible over different land cover types, could reduce this shortcoming of the nonlinear statistical
regression tool [24].
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Figure 8. Results of DLST for the urban area on May 7, 2017. (a) RGB true-color composite of Landsat 8;
(b) subsets of (a); (c) reference LST; (d) GWS (300 m→100 m); (e) LWS (300 m→100 m); (f) OWS:
(300 m→100 m); (g) GWS (600 m→100 m); (h) LWS (600 m→100 m); (i) OWS (600 m→100 m); (j) GWS
(900 m→100 m); (k) LWS (900 m→100 m); (l) OWS (900 m→100 m).
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4.3. Comparisons with the LWS and GWS (Test with the Simulated Data)

To further explore the performance of the OWS compared with the GWS and LWS, we applied
the DLST with the simulated data. As shown in Figure 9, the OWS performs better than both the GWS
and LWS at all downscaling ratios. When the downscaling ratio is four, the OWS decreases the RMSE
by 0.42 K and 0.16 K compared with the GWS and LWS, respectively. When the downscaling ratio is
ten, the OWS improves the accuracy by 0.46 K and 0.22 K compared with that of the GWS and LWS,
respectively. These improvements are greater than those tested with the Landsat 8 data (Section 4.2),
and these results are because the pixels within the simulated objects are more homogeneous than those
in the derived object-based windows via the segmentation algorithm.
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Figure 9. Results of DLST based on the simulated data. (a) GWS (40 m→10 m); (b) LWS (40 m→10 m);
(c) OWS (40 m→10 m); (d) simulated LST; (e) GWS (100 m→10 m); (f) LWS (100 m→10 m); (g) OWS
(100 m→10 m).

In addition, the adaptability of the OWS to different object shapes is stronger than that of the GWS
and LWS. As shown in Figure 9e,f, the edges of the circle and line are less clear than those in Figure 9g.
Moreover, the edges of objects in the GWS and LWS are blurrier when the downscaling ratio is larger.
However, the edges of objects in the OWS are always clear regardless of the size of the downscaling
ratio (see Figure 9c,g). These results indicate the superiority of the OWS compared with the GWS
and LWS when the pixels within the object-based windows are sufficiently homogeneous. Moreover,
the segmentation algorithm generates more homogeneous objects when the spatial resolution of the
pre-disaggregated image is higher since the pixels at a higher resolution are more homogeneous.

5. Discussion

5.1. Advantages of the OWS

The proposed OWS uses a segmentation algorithm to derive object-based windows for regression
according to the heterogeneities among pixels within the window. Tests with the Landsat 8 data and
the simulated data show the outperformance of the OWS compared with the GWS and LWS in most
cases, and this outperformance is mainly induced by the following properties.

First, the regression window of the OWS is obtained from the segmentation algorithm, and the
pixels within this window have similar spectral properties since the segmentation algorithm tends
to classify neighboring pixels with similar properties into one object [34]. With similar pixels, the
regressed function relationship in a window is more robust with small residuals [13]. Moreover,
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the window shapes of the GWS and LWS are square, which may contain various land cover types,
increasing the difficulty in establishing a stable function relationship between the kernels and LST [30].
The window shape of the OWS is not limited to specific shapes, such as a square or circle, and only
considers the local anisotropic heterogeneity.

Second, compared with the GWS, the OWS has adjustable window size derived by setting different
segmentation scales. The fixed window size of the GWS makes the accuracy of DLST depend only
on the regression tool and predictors. However, for the OWS, we can select the optimal window size
to implement DLST with both high accuracy and efficiency. Compared with the LWS, both the OWS
and LWS have adjustable window sizes. However, the window shape of the LWS is square, which is
less effective for objects with different shapes. The OWS has a stronger adaptability to different object
shapes than the LWS because the windows of the OWS are based on the objects so that the edges of the
objects are not blurred (Section 4.3).

However, in some cases, the performance of the OWS remains less satisfying compared with the
LWS when the downscaling ratio is larger than six (Section 4.2). This is because the coarse-resolution
pixels contain more land cover types and make the segmented objects less homogeneous, resulting
in less similarity of the pixels within the object-based window. However, when we implement the
DLST with the simulated data (the object-based windows are simulated rather than derived via the
segmentation algorithm), the performance of the OWS is always better than that of both the GWS and
LWS regardless of the downscaling ratio (Section 4.3). Therefore, we can infer that the OWS will be
more effective than both the GWS and LWS when the resolution of pre-disaggregated LSTs is finer
since segmentation algorithms can produce more homogeneous object-based windows for regression
at a finer resolution.

5.2. Other Issues

(1) Segmentation algorithms: Segmentation algorithms applied in the extraction of object-based
windows have crucial effects on the DLST. The more homogeneous the pixels in the windows are,
the more stable the function relationship between the kernels and LST and the higher the accuracy of
the DLST [13]. Hence, it will be better to evaluate the performance of the segmentation algorithms to
determine the best one.

(2) Possible dependence on the regression tool and kernels for DLST: In this study, we used a
nonlinear regression tool rather than a linear tool to implement DLST because the study areas are
complicated and contain various land cover types, and a linear regression tool might not be efficient in
some cases. Moreover, we did not use machine learning tools such as RF, support vector regression and
neural networks, which can decrease the grid effects when the downscaling ratios are larger [24]. It is
because these machine learning tools are more time consuming than linear and nonlinear regression
tools when used for regression.

We used various kernels for the various study areas considering the land cover types within
these regions. Specifically, each region corresponds to unique kernels for the whole image; unlike the
classification-based method [20], kernels vary with the classification. Because the classification-based
method differs in the implementation details, the training samples are spatially discrete and are less
efficient in the LWS and OWS [30]. Moreover, the LWS is reported to be better than the GWS for the
classification-based method, because the discrete samples of the classification-based method weaken
the spatial difference resulting in a flat surface and then make the DLST unacceptable [30].

6. Conclusions

In this paper, we introduce an OWS for thermal sharpening. The implementation of the
OWS includes deriving the object-based windows via segmentation algorithms and regressing the
relationship within the windows. Moreover, the optimal segmentation scale is determined by an
empirical formula obtained from prior samples.
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We implement the OWS in a thermal sharpening procedure over three different regions with
Landsat 8 data. The object-based windows of the OWS are obtained via the widely used SLIC
algorithm. DLST is implemented via the “aggregation-then-disaggregation” strategy. By setting
different segmentation scales, we analyze the trends of the DLST accuracies varying with the window
size. In addition, the selection strategy for the optimal number of pixels in a window provided in this
paper is also suggested to be reasonable. We also compare the OWS with the GWS and LWS with both
Landsat 8 data and simulated data. In the test with the Landsat 8 data, the OWS performs better than
the GWS and the LWS when the downscaling ratio is small. When the downscaling ratio increases,
the OWS still performs better than the GWS but performs slightly worse than the LWS in some cases.
Moreover, the OWS is more effective than the GWS for the urban area compared with the other study
areas, which indicates the promising abilities of the OWS over heterogenous areas. In the test with
the simulated data, the OWS is always superior to both the GWS and LWS regardless of the size of
the downscaling ratios, which is because the simulated data eliminates the heterogeneity within the
regression window brought by the segmentation algorithm.

The proposed OWS is less limited by the size and shape of the regression window compared
with the GWS and the LWS. By applying segmentation algorithms with higher accuracy to derive
object-based windows, the OWS has the potential to sharpen LSTs to very high resolutions for urban
thermal environment applications. Moreover, the efficient regression tools and optimal kernels will
also benefit the performance of the OWS. Future improvements might include the considerations
of the geometry effect over urban areas and the dynamic change of LSTs to generate diurnal
super-high-resolution LSTs.
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