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Abstract: Pansharpening algorithms are designed to enhance the spatial resolution of multispectral
images using panchromatic images with high spatial resolutions. Panchromatic and multispectral
images acquired from very high resolution (VHR) satellite sensors used as input data in the
pansharpening process are characterized by spatial dissimilarities due to differences in their
spectral/spatial characteristics and time lags between panchromatic and multispectral sensors. In
this manuscript, a new pansharpening framework is proposed to improve the spatial clarity of VHR
satellite imagery. This algorithm aims to remove the spatial dissimilarity between panchromatic and
multispectral images using guided filtering (GF) and to generate the optimal local injection gains for
pansharpening. First, we generate optimal multispectral images with spatial characteristics similar to
those of panchromatic images using GF. Then, multiresolution analysis (MRA)-based pansharpening
is applied using normalized difference vegetation index (NDVI)-based optimal injection gains
and spatial details obtained through GF. The algorithm is applied to Korea multipurpose satellite
(KOMPSAT)-3/3A satellite sensor data, and the experimental results show that the pansharpened
images obtained with the proposed algorithm exhibit a superior spatial quality and preserve spectral
information better than those based on existing algorithms.

Keywords: KOMPSAT-3A; pansharpening; guided filtering (GF); spatial clarity; optimal injection
gains; spatial dissimilarity

1. Introduction

Very high resolution (VHR) satellite sensors, such as WorldView-3, Pléiades, and the Korea
multipurpose satellite (KOMPSAT)-3/3A, provide panchromatic images with high spatial resolutions
and multispectral images with low spatial resolutions. Generally, pansharpening is a methodology
used to sharpen the spatial resolution or clarity of a multispectral image by adding spatial details
from panchromatic images with high spatial resolutions [1]. Various pansharpening techniques
have been proposed, following approximately two decades of research to extract spatial details from
panchromatic images and then add those details through global/local methods [2-5]. An additional
technique for enhancing image spatial resolution is hypersharpening, which is defined as enhancing
the spatial resolution of a hyperspectral image by using multispectral or panchromatic image with
high spatial resolution [6,7]. General pansharpening algorithms have been classified into component
substitution (CS)-based and multiresolution analysis (MRA)-based methods depending on how the
spatial details are generated [2]. CS-based algorithms generate pansharpened images by adding
spatial details based on high-frequency information from panchromatic images with a high spatial
resolution and synthetic intensity images with a low spatial resolution [8-10]. CS-based methods
have the advantage of enhancing the spatial clarity of pansharpened images as the effects of aliasing,
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artifacts, and texture blurring are minimized during the pansharpening process [4]. The generalized
intensity-hue-saturation (GIHS), Gram-Schmidt (GS), GS adaptive (GSA), and band-dependent spatial
detail (BDSD) methods are representative CS-based pansharpening techniques [2,11,12]. Additionally,
hybrid algorithms, such as partial replacement adaptive component substitution (PRACS) and
generalized BDSD algorithms, have been developed in addition to various CS algorithms using
global and local injection gains [13-16]. Alternatively, MRA-based pansharpening techniques generate
pansharpened images using the differences in spatial characteristics between a panchromatic image
with a high spatial resolution and a spatially degraded panchromatic image [2]. MRA-based algorithms,
such as wavelet-based methods, high-pass filtering (HPF), generalized Laplacian pyramids with
modulation transfer function (MTF)-matched filtering (MTF-GLP), and MTF-based algorithms using
spatial principal component analysis (SPCA), efficiently preserve the spectral information of the
original multispectral image [2,17-21]. However, some artifacts and texture blurring can occur in
pansharpened images when applying MRA-based algorithms by utilizing the spatial dissimilarity
between panchromatic and multispectral images [5,13]. Consequently, some studies have developed
pansharpening algorithms to enhance the spatial clarity of pansharpened images based on MRA-based
methods [22-25]. Nevertheless, most researchers have developed various pansharpening algorithms
based on either CS or MRA aimed at generating multispectral images with a spatial resolution similar
to that of a panchromatic image while preserving the spectral information of the former [2,18].

Various pansharpening algorithms have been proposed to solve the spectral distortion issues
common among such techniques. Xu et al. [26] performed pansharpening to reduce the spectral
distortion of pansharpened images by dividing panchromatic and multispectral images into several
classes using the K-means algorithm and multiple regression equations. Restaino et al. [27] proposed
a method for extracting synthetic panchromatic images by applying morphological operators in
MRA-based fusion techniques and improving the spatial resolution compared to using traditional
MRA-based techniques. Li et al. [28] proposed a segmentation-based pansharpening method for
minimizing spectral distortion and increasing the sharpness of pansharpened images between
vegetation and non-vegetation objects. Wang et al. [29] developed a new pansharpening model
based on global and nonlocal spatial similarity regularizers to minimize local dissimilarities. Moreover,
a pansharpening algorithm for preserving changes in vegetation cover was also proposed [30].
Furthermore, various injection gains using global, local, moving window, and segmentation methods
have been applied to various pansharpening algorithms. Accordingly, a segmentation method was
proposed by evaluating the time and accuracy associated with the calculation of injection gains [31].
Choi et al. [5] proposed a new hybrid pansharpening algorithm using local injection gains based on
the normalized differential vegetation index (NDVI) to reduce computational costs.

Additionally, various pansharpening techniques based on deep learning techniques have been
developed. Yang et al. [32] proposed PanNet, which is a deep learning architecture for solving the
pansharpening problem associated with spectral and spatial preservation. Masi et al. [33] used a
convolutional neural network composed of a three-layer architecture that includes several nonlinear
spectral indices for pansharpening. Moreover, a learning method was developed for an efficient
convolutional neural network by using a dilated multilevel block and deep residual network [34,35].

Recently, guided filtering (GF) was applied to generate spatial details and injection gains during the
pansharpening process. In the improved adaptive intensity-hue-saturation (IAIHS) fusion algorithm,
GF was used to compute the optimal weight of pansharpening [36]. Zheng et al. [37] utilized GF to
properly add spatial details to imagery from the GaoFen-2 high-resolution imaging satellite. Liu and
Liang [38] developed a pansharpening algorithm using GF to extract the missing spatial details of
multispectral images by minimizing the difference between a panchromatic image and filtered output
image. Additionally, GF based on three-layer decomposition was utilized for a pansharpening algorithm
to efficiently extract spatial details from high-spatial resolution image [39]. In the abovementioned
algorithms, multispectral images with a low spatial resolution are used as guidance images to optimize
panchromatic images with a low spatial resolution; however, due to the differences associated with
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the time lag between panchromatic and multispectral image sensors, spatial dissimilarity could occur
between panchromatic and multispectral images. Although these issues are important for improving
the spatial clarity of pansharpened images, most methodologies have focused on minimizing spectral
distortion rather than solving these problems.

Therefore, in this manuscript, we minimize the spatial dissimilarity between panchromatic and
multispectral images and optimize the spatial clarity. In the proposed algorithm, GF is used to generate
optimal multispectral images for pansharpening, in contrast to conventional GF-based pansharpening
algorithms that use GF to extract spatial details. Additionally, the optimal panchromatic image
possessing spatial characteristics similar to those of the multispectral image regenerated by GF is used
to maximize the spatial details for pansharpening. Finally, during pansharpening, we modify the
methodology for determining the NDVI-based optimal injection gains based on previous works [4,5].
In particular, the injection gains are optimized by a sigmoid function based on the characteristics of
the NDVI, which exhibits a spectral pattern similar to general local injection gains, for KOMPSAT-3A.
The proposed algorithm is then applied to satellite image products of KOMPSAT-3A to evaluate its
performance on pansharpened products of full scenes. The new pansharpening algorithm based on
GF and the modification of local injection gains are proposed in Section 2. In Section 3, the study area
and materials are described. Sections 4 and 5 provide an analysis and discussion of the experimental
results based on a comparison of the quantitative and qualitative qualities of the pansharpened
images obtained with our algorithm versus those obtained from existing state-of-the-art algorithms.
Conclusions are presented in Section 6.

2. Guided Filtering (GF)-Based Pansharpening Algorithm

Recently, various studies of pansharpening algorithms using GF have been conducted. In this
manuscript, we aim to generate an optimal multispectral image using GF, while most existing algorithms
use GF to extract spatial details. The details of the proposed algorithm are shown in Figure 1.
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Figure 1. Workflow of the proposed algorithm based on guided filtering (GF).
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2.1. Guided Filtering

Generally, GF algorithms are some of the most effective at removing noise from digital images
and preserving edge information within images. A GF output image is obtained by a local linear
model involving the filter output image Q and guidance image Y in a local window wy, as shown in
Equation (1) [40,41].

Qi = arYi+ by, i € wy @

where Q is modeled as the filter input image and the guidance image Y by removing unwanted texture
or noise. The linear coefficients of Equation (1) can be determined using the minimization of the
squared difference E between the filter output image Q and filter input image X with a local ridge
regularization parameter ¢ in Equation (2).

E(ag, bi) =Y ey, ((@Yi+ b — X;)? + ea?) )

Therefore, the linear coefficients a and b of Equation (2) are determined by linear ridge regression
according to Equations (3) and (4):

B ﬁ Yicw, YiXi — Xk
N ot +e
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b = Xi — axpr, Xi =
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iewk

N 1
|w]

where i and 0']% are the mean and variance of Y in wy, X is the mean of X in wy, and ¢ is a GF
regularization parameter [40]. After determining the GF coefficients using Equations (3) and (4),
the filter output image can be defined based on Equation (5) through the reformulation of Equation (1):

1 _
Q= Y, @Yi+b)=aY;+b @)
|(U‘ k:iewy
where a7; = Wl\kz ay, b = k%‘kz by, and |w| is the number of pixels in the local window.
cw; cw;j

For convenience, in this manuscript, the GF output image Q is abbreviated following Equation (6)
through the filter input image X, guidance image Y, window size w, and regularization parameter ¢ [42]:

Q = GF,:(X,Y) (6)

2.2. GF-Based Pansharpening Algorithm

In general, the MRA-based pansharpened image PS;, of the kth band can be determined using
Equation (7):
PASkzl\//ng+gk<P—Pl),k:1,...,N @)

where MS; is the resized multispectral image of the kth band, g, denotes the injection gains of the
pansharpening algorithm, and P/ is a panchromatic image with a low spatial resolution. As noted
in the previous chapter, CS-based pansharpening algorithms generate P using linear combinations
based on weight parameters and the relationship between the panchromatic and multispectral images.
Alternatively, MRA-based algorithms use panchromatic images with a low spatial resolution by using
various image degradation methods to obtain P'.
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2.2.1. Generation of an Optimal Multispectral Image with a Low Spatial Resolution Based on a
Pansharpening Framework

In Equation (7), the spatial details are determined by the difference between P and P! , which
has a low spatial resolution. In most GF-based pansharpening algorithms, the output filter image
Q. of the kth band is applied as the synthetic intensity image of the pansharpening process to inject
the optimal spatial details of the panchromatic image into each multispectral band [36-38]. These
methods are similar to the MRA method insomuch as they generate the optimal panchromatic image
with a low spatial resolution. However, some pansharpened images do not have abundant and
clear spatial details, either because these details cannot be effectively injected into each band or
because multispectral images with a lower spatial clarity than the original panchromatic image
are employed. Figure 2a,b show the spatial characteristics of the target, which is composed of
black and white tarps, acquired from panchromatic and resized KOMPSAT-3A multispectral images.
In Figure 2b, a resized multispectral image is generated by cubic interpolation. As shown in Figure 2a,b,
although the boundaries between the black and white tarps are very clear in the panchromatic image,
various aliasing and noise sources around the boundaries of the tarps are included in the resized
multispectral image. Although general pansharpening algorithms attempt to inject the spatial details
of the panchromatic image into multispectral bands, these approaches also attempt to preserve the
spectral information of the multispectral image as much as possible. Thus, the differences in the spatial
details between the panchromatic and resized multispectral images can reduce the spatial clarity of
pansharpened images. However, when GF is applied to a resized multispectral image, it is possible
to generate an optimal multispectral image by removing these spatial characteristics. To generate
filtered output images, previous studies of GF used multispectral images as guidance images and
panchromatic images as input images. The GF technique uses a guidance image to generate an output
image with noise-removed spectral characteristics similar to those of the input image. In this process,
the output image has spatial characteristics similar to those of the guidance image. Therefore, when a
multispectral image with a low spatial resolution is used as a guidance image, a panchromatic image
with a low spatial resolution is generated. However, in this study, to remedy the degradation of the
sharpness of the pansharpened image that occurs when the spatial characteristics of multispectral and
panchromatic images are dissimilar, the original panchromatic image is used as a guidance image to
generate multispectral images with spatial characteristics similar to those of the panchromatic image.
Therefore, GF is applied to each band of the resized multispectral image using a panchromatic image
as a guidance image. Then, the noise in the multispectral image regenerated by GF is removed using
an MTF-matched filter. Figure 2c shows a multispectral image obtained by GF according to a resized
multispectral image and a panchromatic image as a guidance image.

Figure 2. Cont.
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Figure 2. Examples of the spatial characteristics of each band for a target: (a) panchromatic image;
(b) blue band of the multispectral image; (c) GF-based image of the blue band.

As shown in Figure 2c, the boundaries of the tarps and the edges of each object in the
multispectral image generated by GF are clearer than those in the resized original multispectral
image. This means that the optimal resized multispectral image for pansharpening can be generated
using GF. When applying GF, the window size w and regularization parameter ¢ are set to 2 and 0.1,
respectively, in reference to the results of Zheng et al. [37] related to pansharpening. In the proposed
algorithm, pansharpening is performed by utilizing the filter output image obtained by GF as a
multispectral image. Therefore, in the proposed algorithm, the general pansharpening framework in
Equation (7) is revised to that in Equation (8):

PS = MScr, ¢ +g(P—P'), k=1,..., N @®)

where I\A/IEG Fk=GFo1 (I\A/Iék, P) , which is the optimal resized multispectral image of the kth band

obtained by GF. To generate 1\7[§GF, k- the original panchromatic image P is used as the guidance image
of GF, and the GF filter input image is set as the resized multispectral image MSy.

2.2.2. Local Injection Gains Based on a Sigmoid Function

The injection gain g can also be an important factor in determining the pansharpening quality.
Therefore, in this manuscript, the local injection gains are determined by modifying the NDVI-based
local injection gains [5]. Xu et al. [26] indicated that the local injection gains of vegetated areas are
different to those of non-vegetated areas. Additionally, Choi et al. [5] demonstrated that the spectral
NDVI pattern reflects a high or moderate correlation to local injection gains based on moving windows.
The local injection gain g based on the NDVI is determined by Equations (9) and (10) [5]:

U(ﬁgk)
o(IL)

gk = (—1)" x NDVI + NDVI + J x (Cr)® )

1, if corr(MS;, NDVI) < 0
a= _ (10)
0, if corr( MS;, NDVI ) > 0

where 0(A) is the standard deviation of A and C is the high-frequency correlation value obtained
by Laplacian filtering between MSy and Iy . In Equation (9), gx is determined by the assumption that
the NDVI and local injection gains are moderately or highly correlated. Therefore, the mean value of



Remote Sens. 2019, 11, 633 7 of 20

the NDVI is substituted as the global injection gain. However, in Equation (9), Ci, which is obtained
by spatial correlation, might be underestimated due to spatial dissimilarity or misalignment between
MSg r and Ip. If Cy is underestimated during pansharpening, the spatial details of the pansharpened
image might be similar to those of the original multispectral image. Therefore, in this manuscript,
we modify Ci, the maximum correlation value associated with spatial or spectral information, through
Equations (11)—(13):

Cmux,k = max{cspectral,k/ Csputial,k} (11)
cov (1\A/I§GF,k, I )
Copectralk = e (12)
cov (HPF(lT/[EGRk),HPF(IL) )
Cspatialk = (13)

U‘HPF(N}igGF,k)UHPF(IL)

where cov(A, B) is the covariance between A and B, HPF(A) is the high-pass-filtered image of A using
the Laplacian filter, and I} is the synthetic image generated by linear multiple regression between
l\f/j[gc )3 and P.

Moreover, gi from Equation (9) might be underestimated if the NDVI values of the image have a
large dynamic range. In such cases, some areas of g, have values that are negative or close to zero,
and the spatial details may not be injected correctly based on Equation (8). Hence, overestimation
could occur due to NDVI outliers or noise, causing the excessive injection of spatial details and the
production of spectral distortions. Therefore, we reformulate Equation (6) using a sigmoid function,
as described by Equations (14)—(16):

1
8k = (1 1 ¢-3{(-1)"xNDVI+NDVI} T 0'5> *8G (14
U'(I\/TSGF, k) 3
86 = O X (Cyax, k) (15)

1, if corr(MSgE, ;, NDVI) < 0
a= ) __ (16)
0, if corr(MSgr, r, NDVI) >0

By using the sigmoid function in Equation (14), the spatial clarity in non-vegetated areas can be
increased by setting a high g; value. In vegetated areas, we attempt to minimize spectral distortion
by adjusting the value of g;. Additionally, we minimize the underestimation of g in some regions by
adjusting the parameters of the sigmoid function.

2.2.3. Extracting Spatial Details for Pansharpening

In this manuscript, we use a multispectral image based on GF. Therefore, the effect of GF
is reflected when extracting spatial details from the original panchromatic image. Furthermore,
by adjusting the panchromatic image, the problem of producing a pansharpened image that does not
effectively increase the spatial clarity is avoided. First, P with an increased spatial clarity is generated
using g and the MTF-matched filter. Equations (17) and (18) are used to generate P". In Equations (17)
and (18), a constant value (0.5) is determined as the optimal value by experiments based on trial and
error through 25 full scene products of KOMPSAT-3A:

1
Ph =P+ Eg/k(P_PMTF) (17)
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1
8k = <1 + ¢—3{(~1)" x NDVI + NDVI} + 0.5) (18)

where P is the original panchromatic image and Pyrr is the MTF-filtered image of P. In Equation (17),
P — Py7r can be interpreted as the initial spatial details and g is used to adjust the initial spatial
details to ensure that excessive sharpening, which would result in spectral distortion during the
pansharpening process, does not occur in vegetated areas. However, as Py rr from Equation (17) is
only a filtered image and has not been subjected to the image upsampling process, we generated a
synthetic panchromatic image, which can be used as P! in Equation (8), to extract the spatial details in
the pansharpening process. Specifically, in this manuscript, since multispectral images were generated
using GF, we performed pansharpening by generating synthetic panchromatic images PIGP with
characteristics similar to those of MSy. For this purpose, a low-resolution panchromatic image P! was
generated through image downscaling and upsampling processes involving the MTF-filtered image
Pyirr. Then, PZGF was generated as a result of applying GF using P as an input image and P as a
guidance image. As P is an image generated using the original panchromatic image, the proposed
pansharpening algorithm can be classified as an MRA-based algorithm. However, through the
extraction of spatial details by P" and PlG r, the spatial clarity of pansharpened images can be efficiently
increased compared to that based on traditional CS- and MRA-based algorithms. In the case of
non-vegetated areas, the spatial details obtained by the proposed method are clearer than those
produced by traditional MRA-based algorithms, while the spatial details in vegetated areas produced
by the existing and proposed algorithms are similar. Therefore, the spatial details extracted by the
proposed algorithm can minimize spectral distortion in vegetated areas and effectively improve the
spatial clarity. Finally, the proposed pansharpening algorithm in this paper can be defined as shown in
Equation (19) by modifying Equation (8):

PASk = mcp, r+ 8k P-— Pl)

= MScr,  + gk (P" — PIGF) (19)
— 2
:MSGF,k+gk(P_Ple) +2§7kc(P_PMTF)r k=1,..., N

3. Materials

The proposed pansharpening algorithm was applied to satellite imagery acquired by
KOMPSAT-3A, which was launched by the Korea Aerospace Research Institute (KARI) on 26 May
2015. The specifications and characteristics of KOMPSAT-3A are described in Table 1.

Table 1. The specifications of the Korea multipurpose satellite (KOMPSAT)-3A satellite sensor.

Sensor KOMPSAT-3A
Multispectral resolution/size 22m
Panchromatic resolution/size 0.55m

Panchromatic 450-900 nm

Blue 450-520 nm
Wavelength Green 520-600 nm
Red 630-690 nm
NIR 760-900 nm

In the experiment, two study areas, including targets based on tarps, were selected. The first site
was located in the Salon region of France, and the second site was located in the Baotou region of
China. The Salon region of France is complex, as it includes both urban and vegetated areas, whereas
the Baotou region is composed primarily of cropland and natural terrain. In particular, all the satellite
images used in the experiment were L1R products that were radiometrically corrected and covered
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full scenes. Table 2 describes the characteristics of the satellite images over the two sites, and Figure 3
illustrates the two study areas.

Table 2. Descriptions of the experimental datasets.

Site 1 (Salon) Site 2 (Baotou)
Image size (panchromatic image) 24,060 x 23,800 (pixels) 24,060 x 23,120 (pixels)
Image size (multispectral image) 6015 x 5950 (pixels) 6015 x 5780 (pixels)
Acquisition date 16 July 2017 15 October 2017

(b)

Figure 3. Study areas: (a) Salon region, France; (b) Baotou region, China.

4. Experimental Results

4.1. Quality Assessment of Pansharpened Images

Various quality assessment methods and quality indices have been proposed to estimate the
spectral and spatial quality of pansharpened images. In such cases, a multispectral image with a
high spatial resolution that can be used as a reference should exist; however, such images are often
unavailable. Therefore, many studies have proposed various quality assessment protocols to solve
this problem. Such methods can be roughly divided into synthesis property, consistency property,
and quality no reference (QNR) protocols [17,43]. To utilize the original multispectral image as a
reference, the synthesis property method is used to generate a pansharpened image after downgrading
the original multispectral and panchromatic images. Since the generated pansharpened image has
the same spatial resolution as the original multispectral image, the pansharpened image and original
multispectral image can be quantitatively compared based on the synthesis property. In the case of a
consistency property protocol, the pansharpened image is generated using the original multispectral
and panchromatic images, which are then spatially downgraded for comparison with the original
multispectral image. The QNR protocol can be applied to a pansharpened image generated by the
synthesis and consistency property methods, and the results are evaluated based on the relative
similarity between the pansharpened and original multispectral images. Palsson et al. [17] showed
that the consistency approach is the most reasonable evaluation method, although it has a similar
tendency to the synthesis property. The QNR protocols could not efficiently reflect the spatial and
spectral quality of pansharpened image. Therefore, this manuscript also performed evaluations using
consistency and synthesis property.
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4.2. Quality Indices for Estimating the Quality of a Pansharpened Image

To evaluate the spectral and spatial quality of pansharpened images using the consistency
property approach, several spectral and spatial quality indices—namely, the Erreur Relative Globale
Adimensionnelle de Synthese (ERGAS), the spectral angle mapper (SAM), the universal image quality
index (UIQI), and the correlation coefficient (CC) [2,17,44,45]—were employed to estimate the spectral
quality. ERGAS estimates the global spectral/spatial error of pansharpened images using Equation (20) [2]:

N 2
RGAS 100J 1§ (RMSE) 20

R N k=1 H(Ik)

where I is the reference multispectral image, Ji is the pansharpened image, and R is the spatial
resolution ratio between the multispectral and panchromatic images. The closer the ERGAS value is to
zero, the less spectrally distorted the pansharpened image is. In the case of SAM, the average spectral
difference in the angle between each pixel in the reference and pansharpened images is calculated
using Equation (21) [2,17]:
Ly,
SAM = arccos M (21)
1Ly T iy 1

where I (K} indicates a pixel vector of image I in the k-th band. Similar to ERGAS, the closer the SAM
value is to zero, the less distorted the pansharpened image is. UIQI, which was developed by Wang

and Bovik [44], reflects the loss of correlation, the luminance distortion and the contrast distortion and
is calculated using Equation (22):

1J 2
UIQI = % i 2211 2‘71‘71 .
1
] (I) + () (“1 —i—aJ)

where 07} is the covariance of I and J. The closer the UIQI value is to one, the less distorted the
pansharpened image is. Additionally, CC is a representative spectral quality index for pansharpened
images. Specifically, CC calculates the spectral similarity between the reference multispectral and
pansharpened images using Pearson’s CC. The closer the CC value is to one, the greater the spectral
similarity between the pansharpened image and the reference dataset [45].

(22)

4.3. Experimental Results and Analysis

To evaluate the performance of the proposed algorithm, we selected two pansharpening algorithms,
namely, the GSA and MTF-GLP algorithms, for a comparison of the spectral and spatial quality of the
pansharpened images [2,15]. In this manuscript, GFNDVI denotes the proposed GF-based pansharpening
algorithm using local injection gains based on the NDVI. Figures 4 and 5 show the pansharpening results
according to each algorithm and detailed images of each pansharpened image. In the vegetated area
(upper left area of Figure 4), the spectral distortion of the pansharpened images generated by the
MTEF-GLP is greater (Figure 4c) than that of the pansharpened images generated by the GSA and
GFNDVI. Additionally, as shown in Figure 5, the colors of some cultivated areas in the GSA and
MTEF-GLP results are very bright; this brightness is caused by the excessive injection of spatial details
into the vegetated area. Meanwhile, the images pansharpened by the GFNDVI have spectral and spatial
characteristics similar to those of the original panchromatic and multispectral images. Furthermore,
the pansharpened images by the GFNDVI have the best spatial clarity among the three techniques,
as shown in Figures 4e and 5e. This means that a multispectral image generated by GF can be utilized
for pansharpening and that our methodology for extracting local injection gains is effective.
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Figure 4. The details of pansharpened images according to each algorithm in the Salon region, France:
(a) panchromatic image; (b) resized multispectral image; (c) image pansharpened by the generalized
Laplacian pyramids with modulation transfer function-matched filtering (MTE-GLP) method; (d) image
pansharpened by the Gram-Schmidt adaptive (GSA) method; (e) image pansharpened by the GF-based

pansharpening algorithm using local injection gains based on the normalized difference vegetation
index (GFNDVI) method.

() (@

Figure 5. The details of pansharpened images according to each algorithm in the Baotou region:
(a) panchromatic image; (b) resized multispectral image; (c) image pansharpened by the MTF-GLP
method; (d) image pansharpened by the GSA method; (e) image pansharpened by the GFNDVL
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Table 3 presents the results of the quality indices for the pansharpened images generated
by each algorithm. For the calculation of the quality indices, in case of the consistency property,
the downgraded pansharpening images were compared with the original multispectral images.
In the case of the synthesis property, the pansharpened images were generated using downgraded
panchromatic and multispectral images, and the evaluation index was calculated by comparing
them with the original multispectral image. Therefore, the pansharpened image generated to apply
the synthesis property should have the same spatial and spectral characteristics as the original
multispectral and degraded panchromatic image. The pansharpened image used for the consistency
property should be the same spatial characteristics as the original panchromatic image, while the
degraded pansharpened image should be similar to original multispectral image. As shown in Table 3,
the proposed method shows the best CC and ERGAS values, except for the results by synthesis
property in the Salon region. However, in the case of SAM and UIQI, the MTF-GLP and GSA show
the best results, respectively. The reason for this discrepancy is that the consistency property is used
to quantify the difference between the pixel value from the original multispectral image. However,
the proposed method applies GF to the original multispectral image to generate a spatially optimized
multispectral image converted into characteristics similar to those of the original panchromatic image.
As the original multispectral image is used as the reference for both the evaluation method by synthesis
and consistency properties, pansharpened images generated by the GFNDVI algorithm can appear
as if the evaluation indices for quantitative estimation might be decreased. This is due to the fact
that GFNDVI aims to generate a pansharpened image which has similar spatial characteristics to
the original panchromatic image. Additionally, since spectral and spatial quality are generally in a
tradeoff relationship, spectral distortion may occur in a pansharpened image having better spatial
clarity. Therefore, the evaluation indices of the pansharpened images generated for the Salon region
become low, since the spatial clarity is greatly improved, as shown in Figure 4e, and the spectral
characteristics of spatially enhanced area are emphasized even more. Nevertheless, considering the
best ERGAS and CC values for both the Salon and Baotou regions, the proposed method effectively
preserves the spectral information of the original multispectral image.

Table 3. Comparative pansharpening results corresponding to each region. ERGAS: erreur relative
globale adimensionnelle de synthese; SAM: the spectral angle mapper; CC: spatial correlation coefficient;
UIQI: universal image quality index.

Synthesis Property Consistency Property
ERGAS SAM CC UIQI ERGAS SAM CC UIQI
MTF-GLP  2.838 3.417 0948  0.749 1.473 1.327 0987 0910

Region Algorithm

(slf‘alr‘:?e) GSA 2630 3352 0955 0.777 1453 1315 0987  0.945

GFENDVI 2728 3850 0951  0.742 1290 1644 0991 0936
Baot MTE-GLP  0.826  0.884 0966  0.867 0434 0493 0993 0952
( él?lr?:) GSA 0980 0998 0958  0.880 0862 0740 0973  0.949

GFNDVI 0.744 0995 0970 0.876 0.417 0.617  0.994 0945

Additionally, to quantitatively analyze the spatial clarity of the pansharpened images, we analyzed
the spatial characteristics of edge targets existing within the image. The results of enlarging the
edge target area existing in the pansharpened image are shown in Figures 6 and 7; evidently,
the pansharpened images generated by the existing techniques do not show an edge target with
definite linearity. In particular, the MTF-GLP, which is an MRA-based pansharpening algorithm,
greatly distorts the edge characteristics of the target. Aliasing and blurring are observed in the edges
around the target, even in the case of the images fused by the GSA. However, the pansharpened image
generated by the GFNDVI effectively represents the edge information of the target, as shown in Figures
6e and 7e. In particular, as shown in the specific area of the red rectangle in Figures 6a and 7a, the edge
lines between the black and white areas in the pansharpened images generated by the MTF-GLP



Remote Sens. 2019, 11, 633 13 of 20

and GSA include the effects of aliasing and artifacts. However, the edge target in the pansharpened
image produced by the proposed algorithm does not exhibit artifacts. Figure 8 presents magnified
views of the area encompassed by the red rectangle in Figure 7a. As shown in Figure 8b,c, the images
pansharpened by the MTF-GLP and GSA exhibit aliasing around the edges between the black and
white areas of the edge target. Furthermore, the image pansharpened by the MTF-GLP displays
spectral distortion around the cross line of the edge target, as shown in Figure 8b. However, the image
pansharpened by the proposed algorithm has similar spatial characteristics to those of the original
panchromatic image, as shown in Figure 8a,d. Therefore, our proposed algorithm preserves the spatial
information of the original panchromatic image during the pansharpening process, while minimizing
spectral distortion.

(d) (e)
Figure 6. The details of the edge target according to each algorithm in the Salon region: (a) panchromatic
image; (b) resized multispectral image; (c) image pansharpened by the MTF-GLP; (d) image pansharpened
by the GSA; (e) image pansharpened by the GENDVI.

To quantitatively verify the spatial quality results of Figures 6 and 7, the edge of each target
was extracted; furthermore, the signal-to-noise ratio (SNR) and the Nyquist value of the MTF based
on both an edge spread function (ESF) and a line spread function (LSF) were calculated [46,47].
The reference dataset for the SNR and Nyquist values was based on the original panchromatic image.
Since the center of the target is composed of four edges, four edges are extracted from the image,
after which the SNR and Nyquist values for the edges are calculated. If the edges in the image are clear,
the SNR and MTF-Nyquist values calculated through those edges are high. Table 4 shows the average
SNR and Nyquist values for each edge. As shown in Table 4, the SNR and Nyquist values for the
edges in the pansharpened images generated by the GENDVI are higher than those generated by the
MTE-GLP and GSA. Table 4 also shows that the SNR and MTF-Nyquist values are similar to those of
the original panchromatic image. Therefore, the existing pansharpening algorithms generate aliasing
and blurring effects along edge boundaries; however, the proposed algorithm effectively reflects the
spatial characteristics of the original panchromatic image.
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(d)
Figure 7. The details of the edge target according to each algorithm in the Baotou region: (a) panchromatic

image; (b) resized multispectral image; (c) image pansharpened by the MTF-GLP; (d) image pansharpened
by the GSA; (e) image pansharpened by the GENDVI.

(© (d)

Figure 8. The magnified views of the red rectangle in Figure 7a according to each algorithm in

the Baotou region: (a) panchromatic image; (b) image pansharpened by the MTF-GLP; (c) image
pansharpened by the GSA; (d) image pansharpened by the GFNDVI.
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Table 4. Comparative spatial clarity results corresponding to each region. SNR: signal-to-noise ratio;
MTF-Nyquist: Nyquist value based on the MTF.

Region Algorithm SNR (dB) MTEF-Nyquist (%)
Panchromatic 67.55 17.11
Sal MTE-GLP 52.17 14.74
alon GSA 51.67 16.37
GFNDVI 63.11 17.90
Panchromatic 47.65 26.63
B MTE-GLP 42.21 17.79
aotou GSA 42.29 20.76
GFNDVI 47.37 23.91

5. Discussion

The experimental results confirmed that the proposed GFNDVI technique produces similar
or superior pansharpened images in terms of the spectral and spatial quality in comparison with
existing pansharpening techniques. However, the aim of this study is to generate spatially optimal
pansharpened images by removing spatial dissimilarity from multispectral and panchromatic images.
Therefore, in this section, the efficiency of the revised algorithm in extracting the local injection gains
is discussed. The proposed approach for extracting the local injection gains derives the optimal
variables that are neither overestimated nor underestimated. To evaluate these claims, we compared
the extracted results of the local injection gains using Equation (9) with the results using the proposed
method. The average, maximum, and minimum values of the local injection gains for each band
extracted through each technique are shown in Table 5, which demonstrates that the averages of both
methods are similar but that the local injection gains of the blue and NIR bands generated by Equation
(9) are close to zero. Additionally, the maximum value is excessively large. However, we can confirm
that this tendency is eliminated in the case of the proposed scheme using a sigmoid function.

Table 5. Statistical characteristics of local injection gains according to algorithms used to extract the
local injection gains.

Algorithm Band Average Max. Value  Min. Value
Blue 0.6931 2.1160 0.1158
Method by Green 1.1217 2.5444 0.5444
Equation (9) [5] Red 1.2281 2.6077 0.6508
NIR 1.4841 2.0614 0.0614
Blue 0.6929 1.0301 0.4508
Proposed method  Green 1.1213 1.6671 0.7295
by Equation (14) Red 1.2276 1.8252 0.7987
NIR 1.4847 2.0030 0.7625

Figure 9 presents a histogram plot of the local injection gains for the blue band for the Salon
region of France shown in Figure 3a. As shown in Figure 9b, the histogram plot generated by the
proposed method shows a decreased dynamic range due to the minimization of overestimated and
underestimated values in comparison with Figure 9a. Therefore, the technique for extracting local
injection gains proposed in this manuscript is slightly more stable than the existing technique.

Moreover, the spatial quality of images pansharpened using an ESF and LSF is further analyzed.
Figures 10 and 11 show the ESF and LSF along and across the panchromatic image in the blue band
according to each algorithm in the Salon and Baotou regions, respectively. As shown in Figures 10
and 11, the ESF curves of the pansharpened image generated by the GFNDVI present a pattern similar
to that of the original panchromatic image compared with those of the pansharpened images generated
by the GSA and MTF-GLP. Additionally, the LSF curves of the pansharpened images obtained by the
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GSA and MTF-GLP have a relatively wide full width at half maximum (FWHM), and the distortion of
the LSF curve is large compared to that of the original panchromatic image. These results confirm that
the linearity of the edge target generated through the proposed algorithm is associated with a small
error and high SNR and MTF values. This trend was common at both experimental sites, as shown in
Figures 10 and 11. Therefore, the proposed GFNDVI algorithm effectively preserves the spatial clarity
of original panchromatic images in the pansharpening process. Notably, the proposed method yields
similar and ideal ESF and LSF curve shapes compared with the existing techniques. Furthermore,
the proposed technique retrieves high SNR and MTF-Nyquist values.
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Figure 9. Histogram plot of local injection gains according to blue band of the Salon region of France:
(a) result by Equation (9) [5]; (b) result by the proposed algorithm (Equation (14)).
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Figure 10. The edge spread function (ESF) and line spread function (LSF) curves in the cross direction
according to the pansharpened image generated by each algorithm (Salon region). DN: digital number;
RER: relative edge response; SNR: signal-to-noise ratio.
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Figure 11. The ESF and LSF curves along the pansharpened image generated by each algorithm
(Baotou region).

6. Conclusions

In this manuscript, a new GF-based pansharpening algorithm is proposed to minimize spectral
and spatial distortion in pansharpened images caused by spatial dissimilarities due to the differences
between panchromatic and multispectral images related to the time lag between the sensors. Specifically,
the proposed algorithm is focused on maintaining the spatial clarity of the original panchromatic image
and minimizing spectral distortion within the pansharpened image. The main cause of a decrease in
spatial clarity is that a resized multispectral image does not have the same spatial characteristics as a
panchromatic image. Therefore, GF is used to generate an optimal multispectral image with the same
spectral characteristics as the resized multispectral image and spatial characteristics similar to those of the
panchromatic image. Additionally, to extract the local injection gains specific to the resized multispectral
image based on GF, the existing injection gains were optimized using a sigmoid function. The quality of
the pansharpened image generated through the proposed technique was analyzed based on the spectral
and spatial characteristics of existing pansharpening image evaluation techniques and targets within
images. The experimental results show that the proposed method yields less spectral distortion and
better spatial clarity than conventional pansharpening algorithms. The computational costs of extracting
local injection gains and the pansharpening model are similar to those of the general GSA and MTE-GLP
algorithms; however, further works using parallel processing or graphics processing units will be needed
since GF requires a relatively high computational cost.
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