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Abstract: The Harmonized Landsat/Sentinel-2 (HLS) project aims to generate a seamless
surface reflectance product by combining observations from USGS/NASA Landsat-8 and ESA
Sentinel-2 remote sensing satellites. These satellites’ sampling characteristics provide nearly constant
observation geometry and low illumination variation through the scene. However, the illumination
variation throughout the year impacts the surface reflectance by producing higher values for low
solar zenith angles and lower reflectance for large zenith angles. In this work, we present a model
to derive the bidirectional reflectance distribution function (BRDF) normalization and apply it to
the HLS product at 30 m spatial resolution. It is based on the BRDF parameters estimated from the
MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance product (M{O,Y}D09)
at 1 km spatial resolution using the VJB method (Vermote et al., 2009). Unsupervised classification
(segmentation) of HLS images is used to disaggregate the BRDF parameters to the HLS spatial
resolution and to build a BRDF parameters database at HLS scale. We first test the proposed BRDF
normalization for different solar zenith angles over two homogeneous sites, in particular one desert
and one Peruvian Amazon forest. The proposed method reduces both the correlation with the
solar zenith angle and the coefficient of variation (CV) of the reflectance time series in the red and
near infrared bands to 4% in forest and keeps a low CV of 3% to 4% for the deserts. Additionally,
we assess the impact of the view zenith angle (VZA) in an area of the Brazilian Amazon forest close
to the equator, where impact of the angular variation is stronger because it occurs in the principal
plane. The directional reflectance shows a strong dependency with the VZA. The current HLS BRDF
correction reduces this dependency but still shows an under-correction, especially in the near infrared,
while the proposed method shows no dependency with the view angles. We also evaluate the BRDF
parameters using field surface albedo measurements as a reference over seven different sites of
the US surface radiation budget observing network (SURFRAD) and five sites of the Australian
OzFlux network.

Keywords: HLS; Landsat; Sentinel 2; BRDF; albedo; SURFRAD; OzFlux

1. Introduction

The Harmonized Landsat/Sentinel-2 (HLS) project [1] provides a surface reflectance product that
combines observations from USGS/NASA’s Landsat 8 and ESA’s Sentinel-2 satellites at moderate
spatial resolution (30 m). The main goal is to provide a unique dataset based on both satellites’
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data to improve the revisit time to 3–5 days depending on the latitude [1]. Along with a common
atmospheric correction algorithm [2], geometric resampling to 30 m spatial resolution and geographic
registration [1], the product is also corrected for BRDF effects and band pass adjustment.

The purpose of the band pass adjustment is to correct discrepancies between data coming from
different sensors due differences their Relative Spectral Response (RSR) functions. In the case of
the near infrared (NIR) spectral band, the spectral difference between Sentinel-2 and Landsat-8 is
~0.03%, due to the almost identical spectral functions of the analogous bands. In the red band,
however, these differences are of ~3% [3] and need to be corrected. To correct the differences in the red
band, Villaescusa-Nadal [3] employed a Spectral Band Adjustment Factor (SBAF) exponential model
dependent on the NDVI which reduced the discrepancy between the sensors by ~55%.

Regarding the BRDF correction, Landsat and Sentinel-2 sampling characteristics provide nearly
constant observation geometry and low illumination variation within each scene. However, when
a surface reflectance time series combining measurements from both sensors is created, variations
due to differences in view geometry between them arise. In extreme cases, the differences in the view
zenith angle for a ground target can reach 20◦ from adjacent orbits only a few days apart. Additionally,
variations in the seasonal illumination also impact the surface reflectance value. Gao [4] concluded that
for Landsat-like narrow swath sensors, the major BRDF effect arises from the day of year effect, and can
cause variations of 0.04–0.06 reflectance compared to mid-summer observations. Such angular effects
can be corrected using a Bidirectional Reflectance Distribution Function (BRDF) model. However, the
narrow angular sampling of moderate resolution sensors such as Landsat and Sentinel 2 complicates
the BRDF parameters retrieval.

The official HLS product (version 1.4) provides a BRDF normalized product based on the BRDF
normalization proposed by Roy [5]. In this product, the view angle is set to nadir and the solar zenith
angle is fixed through time but varies for each tile based on the latitude. However, this correction is
not optimal because the considered coefficients are constant and do not depend on the surface type
or condition. Previous studies have worked towards BRDF estimation at moderate resolution for
correcting the BRDF effects or for generating an albedo product of medium spatial resolution sensors.
Shuai [6] used the MODIS Bidirectional Reflectance Distribution Function (BRDF) MDC43 product at
500 m [7] to generate a Landsat surface albedo product that later was implemented back to the 80s to
the “pre-MODIS era” [8]. Their method achieves a Root Mean Square Error (RMSE) generally lower
than 0.03 (12%) when compared with in situ data. However, this method does not provide a BRDF
product at Landsat scale. Flood [9] used constant BRDF parameters to adjust surface reflectance from
Landsat (TM and ETM+) and SPOT 5 images to a standard angular configuration. Gao [4] proposed a
method to correct BRDF effects on Landsat and the advanced wide field sensor (AWiFS) based on
detecting homogeneous areas with USDA cropland data layer (CDL) map to build a BRDF Look-Up
Map (LUM) based on MODIS BRDF data. Van Doninck [10] assessed the directional effects on Landsat
TM/ETM+ imagery over Amazonian forests and evaluated five different normalization techniques,
including MODIS-based and Landsat-based BRDF. They concluded that the two MODIS-based
methods analyzed only removed half of the angular effect in the infrared bands while the best results
were obtained parametrizing the BRDF model using pairs of Landsat images. Franch [11] presented an
alternative algorithm to calculate the Landsat (TM and ETM+) surface albedo based on the BRDF
parameters estimated from the MODerate Resolution Imaging Spectroradiometer (MODIS) Climate
Modeling Grid (CMG) surface reflectance product (M{O,Y}D09) using the VJB method [12,13]. The
validation of the results against field measurements showed an RMSE of 0.015 (7%). Franch [14] tested
this method to correct the BRDF effects of the HLS data over the Amazon forest in Peru. Their results
show a good performance of the model when applied to HLS data with an error of 0.01 in the surface
albedo retrieval.
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In this paper, we describe the adaptation of the method of Franch [11,14] for HLS BRDF
normalization, apply the proposed method to the HLS product from 2013 to 2017 and validate
its applicability to Landsat 8 and Sentinel 2 data, test it on three homogeneous sites to assess its
capability to remove BRDF artifacts, and finally evaluate it through the comparison to ground albedo
measurements over SURFRAD and OzFlux networks.

2. Materials and Methods

2.1. Materials

2.1.1. HLS Data

The harmonization process of the HLS product is based on a set of algorithms for atmospheric
correction, cloud and cloud-shadow screening, and co-registration of data from the Operational
Land Imager (OLI) onboard Landsat-8 and the Multi-Spectral Instrument (MSI) onboard Sentinel-2.
The HLS product is also corrected for bandpass difference and BRDF effects. However, in this
work, we considered uncorrected data to explore the feasibility of the proposed algorithm for BRDF
normalization. We used all HLS data (version 1.4) available from January 2013 to December 2017.

2.1.2. MODIS Data

We processed MODIS surface reflectance Collection 6 data at 1 km spatial resolution
(M{OY}D09GA, Vermote, 2015) over the same areas and period, to derive the BRDF parameters
using the VJB method [12,13].

2.1.3. Homogeneous Sites

Three homogeneous sites were selected for this study. First, we studied the impact of the solar
zenith angle (SZA) variation through the year over two homogeneous sites. The first site is located
on a homogeneous area of dense tropical forest in the Tambopata region of the Peruvian Amazon
(12.818S, 69.281W, HLS tile 19LDI) where an albedometer is retrieving continuous measurements [15].
In this work, we have not included the albedo validation of this site, where Franch [14] reported an
error of 0.01. This area is located in the southwest Amazon moist forest ecoregion of dense forests
with a canopy height between 30 to 50 m high (https://www.worldwildlife.org/ecoregions/nt0173).
The second site is located on a homogeneous desert area in Yuma, Arizona (32.499N, 114.498W,
HLS tile 11SQS). This area is a lower-elevation section of the Sonoran desert in the southwestern
United States and northwest of Mexico. We also analyzed the impact of the view zenith angle (VZA)
variation. Because in the tropics the Landsat scan direction is closely aligned with the solar principal
plane and the angular effects can be as strong as 20% in reflectance [16], we selected a site located
close to the equator on the Brazilian Amazon basin (2.144S, 58.999W, HLS tile 21MTT). This area is
located in the Uatuma-Trombetas moist forests ecoregion (Figure 1). The forests are characterized by
a dense vegetation with a high number of small-diameter (less than 200 mm) to medium-diameter
(200 to 600 mm) stems and a canopy height varying from 20 to 30 m, with emergent trees to 40 m
(https://www.worldwildlife.org/ecoregions/nt0173).

https://www.worldwildlife.org/ecoregions/nt0173
https://www.worldwildlife.org/ecoregions/nt0173
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Figure 1. Harmonized Landsat/Sentinel-2 (HLS) image RGB composite on August 21th of 2016 in the 
Brazilian Amazon area. The seven dots next to the river show the location and size of the averaged 
area to analyze the transect covering different VZA (see Section 2.2.3). 

2.1.4. SURFRAD Data 

The global downwelling and upwelling solar radiations are continuously recorded by skyward 
facing and downward facing Eppley model 8–48 pyranometers mounted on a meteorological tower. 
Table 1 specifies the height of each tower above the target.  

Table 1. Geolocation and brief description of the US surface radiation budget observing network 
(SURFRAD) sites considered in this study. 
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Sioux Falls SURFRAD 43.7340N, 96.62328W Prairie grasses 14TPP 10 m 

  

Figure 1. Harmonized Landsat/Sentinel-2 (HLS) image RGB composite on August 21th of 2016 in the
Brazilian Amazon area. The seven dots next to the river show the location and size of the averaged
area to analyze the transect covering different VZA (see Section 2.2.3).

2.1.4. SURFRAD Data

The global downwelling and upwelling solar radiations are continuously recorded by skyward
facing and downward facing Eppley model 8–48 pyranometers mounted on a meteorological tower.
Table 1 specifies the height of each tower above the target.

Table 1. Geolocation and brief description of the US surface radiation budget observing network
(SURFRAD) sites considered in this study.

Station Name Network Location Latitude,
Longitude Land cover Type HLS Tile Tower Height

above Target

Desert Rock Station SURFRAD 36.6232N, 116.0196W Sparse vegetation 11SNA 10 m

Table Mountain SURFRAD 40.1256N, 105.2378W Sandy with exposed rocks,
sparse grasses and shrubs 13TDE 10 m

Bondville SURFRAD 40.0516N, 88.3733W Agriculture 16TCK 10 m

Goodwin creek SURFRAD 34.2547N, 89.8729W Pasture grass and sparsely
distributed deciduous trees 16SBD 10 m

Penn state
university SURFRAD 40.7203N, 77.9310W Agriculture Research field 18TTL 10 m

Fort Peck SURFRAD 48.3078N, 105.1017W Sparse vegetation 13UDP 10 m

Sioux Falls SURFRAD 43.7340N, 96.62328W Prairie grasses 14TPP 10 m

2.1.5. OzFlux Data

TERN OzFlux is a national ecosystem research network set up to provide the Australian and
global ecosystem modelling communities with nationally consistent observations of energy, carbon,
and water exchange between the atmosphere and key Australian ecosystems. TERN OzFlux is part of
an international network (FluxNet) of over 500 flux stations that is designed to provide continuous,
long-term micrometeorological measurements to monitor the state of ecosystems globally [17].
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From the 40 sites in this network, we selected 5 sites for validation purposes according to data
availability during the period analyzed (2013 to 2017). In these sites, a pair of pyranometers from
Kipp & Zonen CNR4 measure energy balance between incoming and reflected short-wave radiation at
different heights (Table 2). The surface albedo is estimated in the spectral range 300–2800 nm.

Table 2. Geolocation and brief description of the OzFlux sites considered in this study.

Station Name Network Location Latitude,
Longitude Land cover Type HLS Tile Tower Height

above Target

Calperum OzFlux 34.0027S, 140.5877E Sand dunes with trees
and shrubs 54HVH 20 m

Cumberland Plain OzFlux 33.6152S, 150.7236E Dry sclerophyll forest 56HKH 29 m (~6 m
above canopy)

Whroo OzFlux 36.6732S, 145.0294E Eucalyptus forest 55HCV 36 m (~10 m
above canopy)

Wombat OzFlux 37.4222S, 144.0944E Eucalyptus forest 55HBU 30 m (~5 m
above canopy)

Yanco OzFlux 34.9893S, 146.2907E Grassland 55HDB 2 m

2.2. Methods

2.2.1. Current HLS BRDF Normalization

The HLS product (version 1.4) is normalized for BRDF effects using the method proposed by
Roy [5]. This method uses fixed BRDF coefficients for each spectral band (i.e., a constant BRDF shape),
derived from a large number of pixels in the MODIS 500 m BRDF product (MCD43) that are globally
and temporally distributed.

ρN(
θout

s , 0, 0; λ
)
= ρ(θs, θv, φ; λ) ∗ c(λ) (1)

c(λ) =
k0(λ) + k1(λ)F1

(
θout

s , 0, 0
)
+ k2(λ)F2

(
θout

s , 0, 0
)

k0(λ) + k1(λ)F1(θs, θv, φ) + k2(λ)F2(θs, θv, φ)
(2)

where θs is the sun zenith angle, θv is the view zenith angle, φ is the relative azimuth angle, F1 is
the volume scattering kernel, based on the Rossthick function derived by Roujean [18], and F2 is the
geometric kernel, based on the Li-sparse model [19] but considering the reciprocal form given by
Lucht [20] and corrected for the Hot-Spot process proposed by Maignan [21]. θout

s is the sun zenith
angle of the normalized data, which is set to constant value depending on the tile central latitude [1].
The BRDF coefficients of the model (k0, k1, and k2) are provided in [1,5].

2.2.2. Proposed BRDF Normalization Method

For our proposed method, we first subset a 9 × 9 km area centered over the albedometer tower
locations. All images are then masked for clouds and cloud shadow effects using the product’s
cloud mask. Next, we run an unsupervised classification over every scene using the Iterative
Self-Organizing Data Analysis Technique Algorithm (ISODATA) developed by Ball, G.H. and Hall,
D.J. (1965). This classification is used to unmix the BRDF parameters retrieved from MODIS (at 1 km
spatial resolution) to HLS spatial resolution (30 m). We run the ISODATA algorithm for maximum
three iterations with the maximum number of clusters setup at 15.

Following the Vermote et al. (2009) notations, the surface reflectance (ρ) is written as:

ρ(θs, θv, φ) = k0

[
1 +

k1

k0
F1(θs, θv, φ) +

k2

k0
F2(θs, θv, φ)

]
(3)

where F1 and F2 are fixed functions of the observation geometry, and k0, k1, and k2 are free parameters.
From this notation, we define V as k1/k0 and R for k2/k0. In order to invert the MODIS BRDF
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parameters (V and R) we use the VJB method [12,13]. This method assumes that the difference between
the successive observations in time is mainly attributed to directional effects while the variation of
k0 is supposed small. Additionally, it assumes that R and V are represented by a linear function of
the NDVI.

V = V0 + V1 NDVI (4)

R = R0 + R1 NDVI (5)

We unmix the BRDF parameters to the HLS 30 m spatial resolution, by assuming that the surface
reflectance of a MODIS pixel can be written as a weighted sum of n Landsat classes:

k1kmx
0 + k1kmx

1 F1 (θs, θv,∅) + k1kmx
2 F2(θs, θv,∅)

= Ax

(
kC1

0 + kC1
1 F1(θs, θv,∅) + kC1

2 F2(θs, θv,∅)
)

= Bx

(
kC2

0 + kC2
1 F1(θs, θv,∅) + kC2

2 F2(θs, θv,∅)
)
+ · · ·

= Nx

(
kCn

0 + kCn
1 F1(θs, θv,∅) + kCn

2 F2(θs, θv,∅)
) (6)

where Ax, Bx . . . , Nx represent proportions of each the n classes within the x MODIS pixel. BRDF
parameters for each class, which are unknowns in Equation (6), can be derived through matrix
inversion. We only invert the k1 and k2 parameters since they describe the directional shape, while k0

describes the reflectance magnitude. Considering the HLS surface reflectance and the classification
image, we derive kHLS

0 as shown in Equation (7).

kHLS
0 = ρHLS(θs, θv, φ)− kHLS

1 F1(θs, θv, φ)− kHLS
2 F2(θs, θv, φ) (7)

Figure 2 shows the red band BRDF parameters inverted using this method on an HLS image on
June 20th of 2017 over the Yuma desert in Arizona (US).
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Figure 2. Red band (a) R and (b) V parameters applying inverting Equation (6) over an HLS image (tile
11SQS) on June 20th of 2017 in Yuma, Arizona (US).
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The BRDF inversion is applied to each image. However, this may generate noise in the BRDF
inversion caused mainly by clouds. The presence of clouds reduces the number of cloud-free pixels
considered in the BRDF inversion, limiting the number of observations available for inversion (note
that just images with a minimum of 30% cloud free pixels can be processed to have enough information
to invert the model). Additionally, the inaccuracy of the cloud mask [22] may introduce noise in the
BRDF unmixing of a given class.

Based on the individual BRDF unmixing of each image in the HLS database (starting from 2013 for
Landsat 8, 2015 for Sentinel 2A and 2017 for Sentinel 2B), our goal is to reproduce the BRDF parameters
V0, V1, R0, and R1 in Equations (4) and (5) at HLS spatial resolution. Next, we apply a linear regression
for the V and R parameters versus the NDVI to derive the V0, V1, R0, and R1 parameters at HLS
pixel level.

Finally, with the BRDF parameters at HLS resolution, we apply Equation (8) to derive the
normalized surface reflectance (ρN) at 45 degrees of solar zenith angle and nadir observation
(Vermote et al., 2009):

ρN(45, 0, 0) = ρ(θs, θv, φ) ∗ 1 + VF1(45, 0, 0) + RF2(45, 0, 0)
1 + VF1(θs, θv, φ) + RF2(θs, θv, φ)

(8)

2.2.3. Temporal Evaluation of Homogeneous Sites

We test the performance of the BRDF normalization by applying the proposed method to two
homogeneous sites: forest and desert. To evaluate the correction and assuming that these surfaces
remain stationary, we estimate the coefficient of variation (CV), for the reflectance time series. The CV
is defined as the ratio of the standard deviation to the mean (Equation (9)).

CV =
stddev(ρ0, ρ1, . . . ρn)

average(ρ0, ρ1, . . . ρn)
(9)

where ρi is the surface reflectance of day i.

2.2.4. Spatial Evaluation of an Equatorial Region

We evaluate the spatial impact of the view zenith angle variation in a dense Amazonian forest
close to the equator. To do this, we extract a transect consisting of seven circular homogeneous regions
of 800 pixels next to the Urubu river, which cover different values of the VZA. The condition for
homogeneity is that the standard deviation is lower than 5% in any band. From these we can estimate
the average and standard deviation for each band. The results from using the directional reflectance,
the HLS BRDF normalized, and the proposed BRDF normalization are then compared. A p-value
for each case was calculated which provides a test of the null hypothesis that a coefficient for each
regression is equal to zero, i.e., the regressor has no effect on the dependent variable (VZA in our case).
A small p-value indicates that the null hypothesis can be rejected, meaning that there is a statistically
significant relationship between the regressor and dependent variable. We used this statistic index to
assess how significant the reflectance dependency with the VZA was.

2.2.5. Albedo Validation

Using the BRDF parameters at HLS resolution, we derive the surface albedo which is validated
against field measurements. The surface albedo is estimated following the same methodology as the
official MCD43 MODIS product [7] by integrals of the BRDF model through the black-sky albedo and
the white-sky albedo [7]. Surface albedo is typically estimated in the spectral range 280–2800 nm and
is therefore comparable with the broadband MODIS albedo (300–5000 nm). Therefore, we estimate the
broadband albedo using the narrow to broadband equation proposed by Liang [23].

For validation purposes, assuming that every pyranometer has an effective field of view of 81◦,
the downward pyranometer covers an area equal to tan(81◦)*height. According to this equation and
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considering that the tower height in every SURFRAD is 10 m, the area covered by the pyranometer is
63 m in radius (3 by 3 HLS pixels). Then, the weighted average of the nine HLS pixels is estimated
considering the angle of the instrument and the center of each pixel. The same approach is applied to
OzFlux sites to account for the field of view as function of the height of the instrument.

SURFRAD instruments provide radiation measurements every minute, and we just consider the
observations that match the time of Landsat 8 and Sentinel 2 overpass time. On the other hand, since
OzFlux instruments provide radiation measurements every 30 min, a linear interpolation is done to
estimate the value at the Landsat 8 and Sentinel 2 overpass time. A careful analysis of cloud-free
conditions around the tower was performed to discard observations that may include residual effects.

3. Results

3.1. Temporal Evaluation of Homogeneous Sites

First, focusing on the Peruvian Amazon forest, Figure 3 shows the directional (red),
BRDF-normalized using Roy [5] (green), and BRDF-normalized using the proposed BRDF
normalization (black) surface reflectance versus solar zenith angle for each day of the year (DOY)
considered in the time series (2013–2017). Note that we have represented differently Landsat 8 (dots)
and Sentinel 2 (triangle) data. Results are shown for (a) the red band, (b) the near infrared (NIR) band,
(c) the Normalized Difference Vegetation Index (NDVI), and (d) the SZA for each observation. Given
the high frequency of cloud cover in this area, a total of 23 scenes were used in this analysis through
the entire period 2013–2017.

All parameters show good consistency for both satellites’ products. The directional surface
reflectance (red) shows a clear dependency with the SZA in the RED (r2 = 0.56) but mostly in the
NIR band (r2 = 0.82), showing higher values for low solar angles and lower values for higher angles.
This effect is not fully corrected with the current BRDF-normalization of the HLS product (green),
which after the correction still shows a dependency on the SZA in both bands. However, it is corrected
on the BRDF-normalized RED reflectance and minimized in the NIR reflectance by decreasing the
correlation coefficient and providing a slope closer to zero when using the proposed algorithm (black),
which normalize all observations to SZA = 45◦ and nadir observation. The NDVI barely shows any
dependency on the SZA for any product. Figure 4 shows a subset of the NIR band directional (left)
and BRDF-normalized using the proposed algorithm (right) surface reflectance of the HLS image that
is mostly affected by the SZA effect according to Figure 3. The directional reflectance image shows
higher values than the BRDF-normalized one over the scene.
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and BRDF-normalized using the proposed BRDF normalization (black) surface reflectance versus the 
SZA in the desert site in Yuma (Arizona, US). The SZA of this site shows a greater variation during 
the year (from 20 to 60 degrees) compared to the previous site (from 20 to 45 degrees). Despite this, 
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Figure 3. Peruvian Amazon pixel Landsat 8 (dots) and Sentinel 2 (triangles) surface reflectance
in the (a) RED, (b) Near infrared (NIR) and (c) Normalized Difference Vegetation Index (NDVI),
with no normalization (red color), HLS BRDF normalization (green color) and the proposed
BRDF-normalization (black color) from 2013 to 2017 versus the Solar Zenith Angle (SZA). The error
bars displayed represent the uncertainty of the Landsat 8 surface reflectance product [2], assuming the
same error for Sentinel 2. Adapted from Franch [14].
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Figure 4. NIR band (a) directional and (b) BRDF-normalized surface reflectance of an HLS subset
centered on the Peruvian Amazon tower on December 12th of 2015.

Similar to Figure 3, Figure 5 shows the directional (red), BRDF-normalized using Roy [5] (green),
and BRDF-normalized using the proposed BRDF normalization (black) surface reflectance versus
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the SZA in the desert site in Yuma (Arizona, US). The SZA of this site shows a greater variation
during the year (from 20 to 60 degrees) compared to the previous site (from 20 to 45 degrees).
Despite this, the directional reflectance barely shows any dependency with the SZA. However, the
HLS BRDF-normalized data shows a high dependency (green) with higher values for high SZA and
lower values for low SZA. This is not the case when applying the proposed algorithm (black), that
shows more stable surface reflectance values.
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Figure 5. Arizona desert pixel Landsat 8 (dots) and Sentinel 2 (triangles) surface reflectance in the
(a) RED, (b) NIR, and (c) NDVI with no normalization (red), HLS BRDF normalization (green), and
the proposed BRDF-normalization (black) from 2013 to 2017 versus the SZA. The error bars displayed
represent the uncertainty of the Landsat 8 surface reflectance product [2], assuming the same error for
Sentinel 2.

Tables 3 and 4 show the coefficient of variation of the two homogeneous sites considered.
The forest shows a high CV in the red (11%) and the NIR (8%) directional surface reflectance. The CV
reduction in both red and NIR bands is around 2% when applying the current HLS correction and
4% when applying the proposed algorithm. However, the NDVI CV remains low and constant for
all surface reflectances. The desert’s CV, on the other hand, is much lower and does not show any
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significant change for any band or the NDVI when applying the proposed algorithm, but it does show
an increase when applying the current BRDF correction of about 2% to 3%.

Table 3. Coefficient of variation (CV) of the Peruvian Amazon pixel.

CV (%) RED NIR NDVI

Directional reflectance 11.4 8.3 1.6
Current HLS BRDF

normalization 9.3 6.0 1.6

Proposed BRDF normalization 7.6 4.5 1.6

Table 4. Coefficient of variation (CV) of a desert site in Arizona (USA).

CV (%) RED NIR NDVI

Directional reflectance 2.8 2.3 6.8
Current HLS BRDF

normalization 5.4 4.2 10.1

Proposed BRDF normalization 3.3 2.5 8.2

3.2. Spatial Evaluation of an Equatorial Region

Figure 6 shows the HLS NIR surface reflectance image. The directional reflectance (Figure 6a)
shows higher values along the western part (compared to the eastern) where the VZA is larger
(Figure 6c). Note that the solar azimuth angle image shows nearly constant values of 63 degrees.
This means that the western part is observed in the backscattering direction, which explains the higher
values observed. The current HLS correction (Figure 6b) reduces this angular effect. However, the
west area still shows higher values. Finally, when applying the proposed normalization (Figure 6c)
this illumination effect is minimized.
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Figure 6. HLS NIR surface reflectance: (a) directional, (b) using the current BRDF normalization and
(c) using the proposed normalization. (d) The view zenith angle of each pixel. Image on August 21th of
2016 in the Brazilian Amazon area.

Figure 7 shows the transect surface reflectance versus the view zenith angle. Though there is
variability through the different samples, we have added a trendline to show the angular dependency
of each dataset. The directional reflectance shows the highest values and the largest slope with a
p-value of 0.02, and it is followed by the current HLS BRDF normalization with a p-value of 0.08.
The proposed method shows the lowest and more stable values with a slope closer to zero and a
p-value of 0.31, meaning that there is no significant relationship between the corrected reflectance and
the VZA. Additionally, the similar intercepts of the linear regressions show that the three datasets
converge to a similar value at zero degrees observation. The analysis of the red band and NDVI
(Appendix A) show similar conclusions but the directional effect is lower.
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Figure 7. HLS NIR surface reflectance transect values versus the view zenith angle (VZA).

3.3. Surface Albedo Validation

We also evaluate the BRDF normalization by using the BRDF parameters to derive the surface
albedo, which can be validated with field measurements. Figure 8 shows the validation of the surface
albedo over (a) the SURFRAD network, (b) the OzFlux network, and (c) both networks. Each marker
in the plot represents an individual Landsat 8 or Sentinel 2 overpass. OzFlux validation shows lower
errors (0.015–0.016) than SURFRAD (0.020). Sentinel 2 albedo validation in SURFRAD shows an
overestimation for albedos higher than 0.2. However, this is observed in a total of 5 dates in Desert
Rock and may be caused by an inaccurate atmospheric correction during those dates. Nevertheless,
the overestimation is included within the RMSE of the sites. Combining both networks, the surface
albedo validation shows a RMSE of 0.019 for Landsat 8 and 0.018 for Sentinel 2. Figure 8d shows
the result of applying the narrow to broadband equation to the directional reflectance. In this case,
the errors increase to 0.028 for Landsat 8 and 0.030 for Sentinel 2. Note that an equivalent evaluation
cannot be included for the current HLS BRDF normalization method because in Roy [5] it is explicitly
stated that “this approach is not applicable for generation of Landsat surface albedo, which requires a
full characterization of the surface BRDF”.
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4. Discussion and Conclusions

Quality of atmospheric and BRDF correction is essential for any application of the HLS dataset.
In this work, we present a new method to improve the BRDF normalization of the HLS data. It is based
on the Franch [11] method, which was originally designed and evaluated to derive the surface albedo
of Landsat TM and ETM+ data. In this manuscript we improve it, apply it to HLS data, explore its
feasibility to correct the BRDF effects of the dataset, and validate it over two homogeneous sites and
several land cover types of the SURFRAD and OzFlux networks.

The proposed improvement is based on reproducing the BRDF parameters’ NDVI dependency [12,13]
at moderate spatial resolution (HLS). In the operational context, this means that we create an HLS
pixel-based database of the BRDF parameters (V0, V1, R0, and R1) that is regularly updated to account
for any land cover change. In this way, the effect of outliers and poor-quality pixels on the BRDF
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inversion is minimized, resulting in a more stable and robust BRDF model. We acknowledge that
the assumption of a BRDF model being a function of the NDVI has limitations. For example, on
sparse forests where the NDVI is not a good descriptor of canopy structure [24]. However, this simple
model might be used for a rough correction of BRDF effects in reflectance time series. Although a full
inversion of the BRDF model will give better results, some applications, such as real time processing,
may want to trade accuracy for simplicity [25].

When applying the proposed method, the results show a decrease in the surface reflectance
timeseries CV of 4% and a decrease of the correlation coefficient with the SZA for the forest site, and
little to no dependency on the desert site (which is barely affected by angular effects). In contrast, the
current HLS BRDF normalization algorithm under-corrects the BRDF effects on the forests site, and
increases the CV on the desert site. It is known that vegetation in the Amazon has a phenological cycle
as a result of small variations in temperature and precipitation throughout the year [26]. However,
directional effects on surface reflectance can be larger than the differences in reflectance between
floristically different vegetation types [27,28].

The evaluation of the spatial variability of the view zenith angle showed a clear dependency in
the backscatter direction, leading to higher directional reflectance for larger view angles. The current
BRDF method reduces this dependency, but still shows an under-correction of the signal in the dense
forest area analyzed. This under correction was already reported by Roy [5]. Finally, the proposed
method shows no dependency with the view zenith angle.

The evaluation against surface albedo field measurements show an RMSE error of 0.019 for
Landsat 8 and 0.018 for Sentinel-2. The OzFlux network error is similar to Franch [11] (RMSE of 0.016),
while SURFRAD sites show slightly larger errors. Note that Franch [11] evaluated the method over five
SURFRAD sites from 2003 to 2006. The higher error in the SURFRAD network compared to OzFlux
might be caused by higher errors in the atmospheric correction algorithm since the atmosphere over
Australia exhibit lower aerosol content than over the US. Compared to previous studies that provide
albedo validation, the proposed method shows lower errors than Shuai [6] (RMSE 0.024). These results
are further evidence of the good performance of the surface reflectance product of Landsat 8 and
Sentinel 2.
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Appendix A

In this appendix, we include the transect estimations of the red band and the NDVI and
compare their view zenith angle dependency of the directional data compared to each BRDF
normalization method.
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Figure A1. HLS red surface reflectance transect values versus the view zenith angle (VZA).
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