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Abstract: Various state-of-the-art gridded satellite precipitation products (GPPs) have been derived
from remote sensing and reanalysis data and are widely used in hydrological studies. An assessment
of these GPPs against in-situ observations is necessary to determine their respective strengths and
uncertainties. GPPs developed from satellite observations as a primary source were compared to
in-situ observations, namely the Climate Hazard group Infrared Precipitation with Stations (CHIRPS),
Multi-Source Weighted-Ensemble Precipitation (MSWEP), Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR)
and Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA).
These products were compared to in-situ data from 51 stations, spanning 1998–2016, across Pakistan
on daily, monthly, annual and interannual time scales. Spatiotemporal climatology was well captured
by all products, with more precipitation in the north eastern parts during the monsoon months
and vice-versa. Daily precipitation with amount larger than 10 mm showed significant (95%,
Kolmogorov-Smirnov test) agreement with the in-situ data, especially TMPA, followed by CHIRPS
and MSWEP. At monthly scales, there were significant correlations (R) between the GPPs and in-situ
records, suggesting similar dynamics; however, statistical metrics suggested that the performance of
these products varies from north towards south. Temporal agreement on an interannual scale was
higher in the central and southern parts which followed precipitation seasonality. TMPA performed
the best, followed in order by CHIRPS, MSWEP and PERSIANN-CDR.

Keywords: precipitation; gridded precipitation products; in-situ observations; comparison; Pakistan

1. Introduction

Precipitation is a key factor in water and energy cycles and a significant number of studies
have attempted to produce high resolution precipitation products for use in climate studies [1–4].
The applications of precipitation products extend into hydrological and energy cycle characterization [5,6]
agricultural studies [7] and land-atmosphere interactions and feedback studies [8,9]. These applications
make use of precipitation data to improve precipitation forecasts and the related geophysical
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fluxes [10,11], long term historical trends [12] and future projections based on historical records [13,14].
In terms of natural hazards, the excess and shortage of precipitation has significant impacts on every
aspect of society, including human casualties, agriculture, livestock, displacement and damage to civil
and hydrologic structures [15,16].

The primary land-based instrument for precipitation measurement is the rain gauge. The density
of rain gauges is not uniform globally, with few rain gauges in remote regions and areas with limited
access. In such cases, studies rely upon data from nearby rain gauges that is extended through
statistical interpolation and extrapolation techniques. Although in-situ data have several limitations
and uncertainties, they have been used for decades as a key source of precipitation information in
decision making and planning and data assimilation [17].

In recent decades, remote sensing has become a promising tool for measuring precipitation.
Radiances measured in the visible, infrared or microwave bands are transformed into precipitation
with the help of statistically, quantitatively and physically based algorithms [18]. Remote sensing
has proven a reliable and cost-effective way of retrieving precipitation at various scales. Among the
most commonly used remotely sensed precipitation products include the Tropical Rainfall Measuring
Mission (TRMM), the Multi-satellite Precipitation Analysis (TMPA), [19], the Climate Hazard group
Infrared Precipitation (CHIRPS) [4], the Climate Prediction Center MORPHing product (CMORPH) [20],
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network
(PERSIANN) [21], the Multi-Source Weighted-Ensemble Precipitation (MSWEP) [22,23] and the Asian
Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) [24].
The recent development in the precipitation retrieval is the launch of Global Precipitation Measurement
(GPM) mission. GPM is a successor of TRMM, launched by NASA and JAXA with partnering agencies
and countries during 2014. GPM consists of one core and eight constellation satellites, the core satellite
is equipped with dual-frequency precipitation radar and a microwave radiometer and the constellation
satellites have micro radiometers onboard [25,26].

The precipitation products listed above have been developed for different purposes [27,28].
Their applications are complicated and the selection of one product over another is always debatable.
Therefore, it is important to evaluate such products against in-situ observations, which are considered
to be the standard [27,28]. The strengths and uncertainties of gridded satellite precipitation products
(hereinafter to be referred to as GPPs) are thoroughly reported through comparisons with in-situ data
from various locations. When in-situ data is used as reference data, GPPs perform well during warm
and wet seasons over certain regions but their performance is less effective during cold seasons and in
dry regions with less precipitation [29,30]. The major uncertainties reported are an underestimation of
precipitation and relatively high error metrics over oceans and across surfaces where the topography
and land cover varies. The sources of uncertainty also vary and depend on the quality of in-situ
data, which also contain deviations and uncertainties [27,31]. Efforts have been made to reduce the
uncertainties of existing precipitation products by developing GPPs with a higher spatial and temporal
resolution [32,33]. However, the validation and evaluation of these products is based on thresholds
and scores or is limited to certain regions with higher station densities. The conclusions from such
studies might not be realistic for representing regional and larger scale precipitation behavior.

Few studies have been conducted to compare the performance of GPPs with in-situ data that are
limited to small regions, areas with a low density of station records or over short time periods. In the
Swat river watershed in northern Pakistan TRMM products have been used in hydrological modelling
but it has been reported that TMPA did not capture the precipitation magnitude and spatial patterns at
annual and seasonal scales well enough for hydrological applications [34]. TMPA and APHRODITE
products were compared with station data for 1998–2013. It was found that TMPA products slightly
overestimated daily, monthly and annual precipitation, with variable error metrics according to the
terrain elevation and the climatic region [35]. TRMM 3B43 monthly and reanalysis products were
used in the Indus Basin alongside in-situ and river discharge data, significant uncertainties were
observed in all GPPs mainly due to the lower number of in-situ records for validation in the complex
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topography [36]. TMPA and TMPA-RT products for 2005–2008 were compared over the monsoon
regions of Pakistan and it was found that these datasets were reliable for monsoon season forecasts and
applications [37]. TMPA (3B42 V-6 &V-7) and reanalysis precipitation for 1998–2006 were compared
over India and it was found that the improved TMPA V-7 could capture monsoon and post-monsoon
precipitation [38]. Monthly TRMM products were used in the Indus Basin for calibration purposes in
runoff and water balance studies. It was reported that TRMM products underestimated precipitation
over north western and south western coastal regions and overestimated precipitation in mountainous
regions [39].

In this study, four GPPs with different resolutions, namely MSWEP, CHIRPS, PERSIANN-CDR
and TMPA-3B42 V-7 were compared over a range of climatic zones in Pakistan, with varying land cover
and elevation for the time period of 1998–2016. Daily precipitation records from 51 rain gauges were
used, which enabled a more detailed analysis in terms of temporal and spatial coverage compared to
previous studies in the same study area. The remainder of the paper consists of sections covering the
study area, data and methods and results, while Sections 5 and 6 provides a discussion and conclusion.

2. Study Area

Pakistan is located in south Asia, with a latitudinal range of about 23◦N to 37◦N and longitudinal
range of about 60◦E to 78◦E (Figure 1). The elevation of the study area varies from an altitude of a few
meters in the south to more than 5000 m in the north [14]. The land cover and cropping pattern of the
study area differs with the fluctuating topography and climate [36].
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The study regions are shown in the black boxes (b), which are selected to represent differing categories
of climate, elevation and land cover (Table 1).
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Table 1. Description of the regional elevation, climate class and land cover of the four regions selected
for comparison of GPPs and in-situ observations as shown in Figure 1b.

Region Elevation (m) Climate Land Cover

1 3001–6000 Semi-arid Grassland
2 0–600 Humid Cropland
3 601–1600 Arid Shrubland
4 0–600 Extremely Arid Cropland

Precipitation in the country is largely dependent on the monsoon during summer, which accounts
for >60% of annual precipitation in the eastern parts and westerlies during the pre—monsoon season in
the western parts. There is also great variation in temperature from north to south, with the maximum
average temperature ranging from 15 to 35 ◦C, while the minimum temperature ranges from less
than zero to 14 ◦C [14,40]. Climate change has had a significant impact on Pakistan in terms of
heavy precipitation/drought and temperature extreme events, which have caused damage on a vast
scale [41,42]. An assessment of the performance of GPPs is therefore extremely important, enabling it
to be further used for different applications including hydrological and agricultural studies and in
planning and decision making.

3. Data and Methods

3.1. Data

3.1.1. In-Situ Observations

To record synoptic scale precipitation data, the Pakistan Meteorological Department (PMD)
has installed a network of meteorological observatories across the country as shown in Figure 1b.
The density of these stations differs from region to region within the country but the large-scale
dominant precipitation features can be determined. The daily observations collected from these stations
are already quality controlled and are used for PMD operational purposes. To ensure that the data is
homogenous and consistent, a suite of visual and statistical techniques, including a standard normal
homogeneity test (SNHT), are adopted here [43]. SNHT is a statistical technique most often used for
homogeneity estimation of climate data records, where the purpose of SNHT and other homogenization
tests is primarily to detect outliers or spikes in a dataset that could be attributed to non-climatic factors.
Such changes might be induced through changes in location, measurement techniques and physical
features of the surrounding environment, whereas climate signals are preserved [43–45]. Only a
small amount of data (<4.5%) was missing at a few stations. To make the comparison more accurate,
the corresponding values from GPPs were also removed. This procedure did not substantially affect
the results of the study.

3.1.2. MSWEP

MSWEP is a recently developed product, specifically designed for global scale hydrological
applications. The product is developed from a number of high quality input datasets that include
gauge-based interpolated products (WorldClim, GHCN-D, GSOD, Climate Prediction Center
(CPC) Unified and Global Precipitation Climatology Centre (GPCC)), remotely sensed products
(Climate Prediction Center Morphing method (CMORPH), Global Satellite Mapping of Precipitation
using Moving Vector with Kalman filter (GSMaP-MVK), TMPA 3B42 RT and GridSat and reanalysis
products (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim)
and Japanese 55-year Reanalysis (JRA-55). The main features of MSWEP include a bias correction
of orographic effects and gauge undercatch inferred from globally available stream flow records.
The MSWEP has been continuously updated to improve its performance at global and regional
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scales [3]. In this study we used the MSWEP version 2.01 daily product, with a grid size resolution of
0.1 degrees [22,23].

3.1.3. CHIRPS

The Climate Hazard Group Infrared Precipitation with Stations Data (CHIRPS) is a combined
product of remotely sensed and in-situ observations developed for monitoring droughts and extremes.
The main input data sources used in CHIRPS are monthly precipitation climatology from Climate
Hazard group (CHPClim), quasi global geostationary thermal infrared observations from National
Oceanic and Atmospheric Administration, Climate Prediction Center (NOAA-CPC), the National
Climatic Data Center (NCDC), TRMM 3B42, NOAA Climate Forecast System version 2 (CFSv2) and
gauge observations from various sources. The algorithm is based on the cold cloud duration (CCD)
notion, that is, the amount of time a given pixel is covered by high cold clouds infrared brightness
temperature (IR BT < 235 K). Precipitation estimates are obtained through a CCD’s calibration
procedure exploiting the TMPA 3B42 data set from 2000 to 2013. These IR-based precipitation estimates
are expressed as a percentage of the 1981–2013 mean precipitation estimates and then multiplied by
the corresponding CHPclim values, so obtaining the CHIRP product. This last step is carried out to
reduce the systematic bias in the IR based precipitation estimates. Finally, IR estimates are merged to
the rain gauge measurements using the inverse distance weighting algorithm to produce the CHIRPS
product. For the current study we used daily observations with a grid size resolution of 0.05 degrees.
Further details can be seen at [4].

3.1.4. PERSIANN-CDR

PERSIANN-CDR is a long-term gridded precipitation product developed for hydro-climatic
studies. PESIANN-CDR is developed from infrared and passive microwave observations that are
processed with PERSIANN algorithm for generating the rain rates. Rain rate information are retrieved
from low earth and geostationary satellites, however the passive microwave observations used
are only available from 1997 and prior period. To overcome the limitation of passive microwave
observations, National Centers for Environmental Prediction (NCEP) stage IV radar data is used to
train the nonlinear regression parameters of the artificial neural network model. The artificial neural
network estimates precipitation from cold cloud pixel information and nearby features, using the
gridded satellite brightness temperature information of international satellite cold climatology project.
Finally, PERSIANN-CDR is checked and corrected for bias correction against GPCP monthly product.
The final PERSIANN-CDR product provide daily scale precipitation which covers the period from
1983 to the present day, with a grid size of 0.25◦ between 60◦S and 60◦N. Further details are provided
in References [2,21].

3.1.5. TMPA

The TRMM was launched in 1997 by JAXA and NASA for monitoring tropical and sub-tropical
precipitation conditions. TRMM operated in low earth orbit, with an inclination of 35◦ and altitude
of 400 km and orbits the Earth 16 times per day. TRMM satellite was equipped with a number
of instruments, including the Precipitation Radar (PR), Microwave Imager (TMI), Visible Infrared
Scanner (VIRS), Cloud and Earth Radiant Energy System (CERES) and Lightning Imaging Sensor.
TRMM Multi-satellite Precipitation Analysis (TMPA) uses Passive Microwave (PM) precipitation
estimates from low orbiting satellites and in case PM observations are not available, then PM
calibrated Infrared observations are used for gap filling [19]. In the next step, the monthly gauge-based
observations are used to produce TMPA from TMPA real time precipitation estimates. The input
data used for TMPA is derived from the Special Sensor Microwave Imager (SSM/I) and Sounder
(SSMI/S), Microwave Imager (TMI), the Advanced Microwave Sounding Unit (AMSU), the Microwave
Humidity Sounder (MHS) and Advanced Microwave Scanning Radiometer for Earth Observing system
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(AMSR-E). In this study, daily TMPA version 7 with a grid size resolution of 0.25 degrees was used for
comparison with station data. Further details are provided in References [1,46].

3.2. Methods

In-situ data represents point-scale observations, which are not truly representative of the area
averaged precipitation of the GPPs; thus, the interpretation of a direct comparison should consider
such a problem. To overcome this, numerous studies have limited the comparisons to the pixels where
an appropriate number of stations were present [12,47], with a minimum of one to more than five
stations in each pixel, according to the purpose of the study. In this study, we used minimum of one
station to maximum of four in-situ stations in one degree-pixel. Furthermore, for GPPs, the nearest
GPP precipitation value to the location of each station were retrieved for comparison (Figure 1b).
The density of in-situ stations is not uniform and thus remapping the GPPs to a common grid size or
area averaged precipitation for both in-situ and GPPs might introduce more noise into the analysis.
Moreover, the in-situ data in the study region and usually in most of the developing countries is mostly
recorded through traditional rain gauges, which does not accurately measure trace precipitation events
(<0.25 mm/day) which were thoroughly checked for and treated.

Four locations were selected for a regional scale comparison as shown in Figure 1b. These regions
were selected based on variations in climate, elevation and land cover (Table 1), following the
classification of [48] for the study region. The climate descriptions in Table 1 correspond to
the climate zones ’Wet Semi-Arid,’ ’Sub Humid,’ ’Arid’ and ’Extremely Arid’ as described in
Reference [48].The dominant features of the selected regions such as, the land cover, climate and
precipitation pattern typically remain the same. The main seasons in the study region were classified as
winter (December, January, February and March), pre—monsoon (April, May and June), monsoon (July,
August and September) and autumn (October and November) following [35,37]. For regional
comparison, the precipitation products are compared at daily, monthly, annual and different seasons at
interannual time scales. For a daily scale comparison, frequency versus intensity plots and Empirical
Cumulative Distribution Function (ECDF) are used for comparison of in-situ and GPPs. Both in-situ
and GPPs estimate precipitation with different procedures thus variability at daily scale is high and
the information needed are obtained with using the above mentioned methods at daily scale thus
scatterplot is not used for daily scale comparison. For frequency versus intensity plots, the regional
precipitation observations were arranged in ascending order and grouped into bins of 1.85 mm per
day following [49,50]. The grouped precipitation observations were then normalized and plotted
against station observations, where the frequency count (precipitating days) was placed on the y-axis
and magnitude is shown on the x-axis. For daily scale ECDF, the cumulative probability derived for
regional precipitation from in-situ and GPPs were compared using extreme precipitation thresholds of
2.5, 5 and 10 mm/day following [47]. To compare the similarity of precipitation between in-situ data
and GPPs, a nonparametric Kolmogorov-Smirnov (K-S) significance test with 95% confidence level
was applied, assuming that both in-situ data and GPPs have similar distributions.

For monthly, annual, seasonal and interannual scale comparison at regional scales, the scatterplots
were constructed against in-situ precipitation as independent and GPPs as dependent variables.
The scatterplots express linear relationship between two or more than two variables. A best fit
line (regression line) can easily infer the linear relationship between independent and dependent
variable, whereas 1:1 fitting line can further simplify the nature of relationship as over- or
underestimation of dependent variables to aid in the interpretation of results. The station scale
comparison further elaborated the seasonal variation of correlation (Equation (1)) and RMSD (Equation
(3)) at interannual scales.

For station-scale comparison, the GPPs were compared with in-situ precipitation data at
the locations of each station, for this purpose the nearest pixel to the station was derived and
compared. For descriptive statistics, commonly used error metrics were applied: correlation (R),
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bias, root mean-square difference (RMSD) and the ratio of standard deviation (STD). These statistical
metrics were determined as follows:

R =
∑n

i=1(Station(i) − Station(i)) (Gridded(i) − Gridded(i))√
∑n

i=1(Station(i) − Station(i))
2

∑n
i=1(Gridded(i) − Gridded(i))

2
(1)

Bias = (Station(l) − Gridded(l)) (2)

RMSD =

√√√√ 1
N

N

∑
i=1

(
Gridded(i) − Station(i)

)2
(3)

Ratio o f Standard Deviation (STD) =
σgridded

σStation
(4)

In the above equations, ‘gridded’ and ‘station’ represent the precipitation products from the
different GPPs and in-situ data, respectively, while ‘n’ is the number of observations. The correlation
(R) (Equation (1)) was used to quantify the scale of linear relationship between station and GPPs.
Bias (Equation (2)) was used to show the average direction of the centered deviation of GPPs
from in-situ observations; thus, a positive value implied that the GPPs underestimated the in-situ
precipitation and a negative value implies an overestimation of precipitation. RMSD (Equation (3))
was used to estimate the mean magnitude of the differences between the GPPs and in-situ precipitation
products, while STD (Equation (4)) was used to assess the relative variation and differences in the
amplitude of GPPs and in-situ observed precipitation distribution.

4. Results

4.1. Climatology

Figure 2 shows the seasonal mean precipitation climatology of different seasons for the GPPs
employed over the 1998–2016 study period. We see that across all GPPS, the northwestern part of
the country exhibited more precipitation than the southeast, with mean values being observed at
>50 mm in the winter. From this maximum, all GPPs displayed a pattern of precipitation gradually
decreasing towards the east and south. Likewise, during the pre-monsoon season, precipitation was
also relatively consistent in all GPPs with relatively higher precipitation in the northern parts of the
country (80 mm), while the central and southern regions received approximately 40 mm and <20 mm,
respectively. A similar decrease in precipitation from north (maxima) to south (minima) was observed.

In all GPPs, a similar monsoonal precipitation pattern was obvious with relatively large amounts
of precipitation in the northeast and southeast of the study region. A precipitation maximum of
>120 mm was recorded in the north, while a minimum of ≥ 80 mm occurred in southern coastal
regions. During autumn, the precipitation distribution across the whole country ranged from <10 mm
in the south, to >40 mm in the north. The GPPs showed a consistent precipitation pattern, with minor
deviations in the mean observed in the northwest.

Two precipitation patterns are observed in Pakistan, the first is due to disturbances of westerlies
in the winter and pre—monsoon season and the South Asian monsoon, which is the primary driver
of the hydrological cycle in the region [37,48]. The GPPs clearly showed these two precipitation
patterns, with a slight deviation from the mean; however, during the winter and autumn seasons,
MSWEP and CHIRPS captured higher precipitation values in the northwest which could be associated
with relatively higher grid size resolution of these two GPPs.
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Figure 2. Climatological mean precipitation amounts for winter, pre—monsoon, monsoon and autumn
seasons calculated from GPPs.

Figure 3a–d shows the mean annual precipitation cycle for the four selected regions as shown
in Table 1. From Figure 3a it can be seen that precipitation maxima occurred in April (≥50 mm)
and the minima occurred in October (<20 mm). With in-situ as reference, all GPPs were able to
show the seasonality but overestimated the [monthly average] precipitation (Figure 3a). MSWEP,
PERSIANN-CDR and CHIRPS captured larger values than in-situ throughout the seasonal cycle;
however, TMPA performed relatively well.
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Figure 3. Climatological mean annual precipitation cycle at four selected locations. (a–d) are equivalent
to regions 1, 2, 3 and 4 in Table 1.

In Figure 3b, we see that the hydrological cycle of region 2 is dependent on westerlies during
the winter (>30 mm) and the monsoon (>180 mm) during the warm summer. GPPs closely followed
in-situ precipitation pattern, with similar maxima and minima captured for the monsoon and winter
seasons. For the winter, the precipitation observed was around 60 mm, GPPs exhibited similar variation
in precipitation to that of in-situ data. However, for monsoonal precipitation, there were obvious
deviations in magnitude, which are more obvious for PERSIANN-CDR.

In Figure 3c, peak precipitation occurred during winter (February >45 mm) followed by the
monsoon season. MSWEP, CHIRPS and TMPA displayed similar seasonal precipitation dynamics to
in-situ data, with the peak precipitation occurring in February, with estimated precipitation values of
38, 40 and 50 mm, respectively. PERSIANN-CDR performed well during the winter but during the
summer, it overestimated the observed precipitation.

In region 4 (Figure 3d), most of the precipitation occurred during the monsoon season
(with August values reaching >70 mm), GPPs captured precipitation dynamics quite well but there
were slight deviations in magnitude. MSWEP, CHIRPS and TMPA displayed peak precipitation during
the monsoon season, with an abrupt decrease in autumn. PERSIANN-CDR also captured this seasonal
cycle but overestimated precipitation.

Finally, from the mean annual precipitation cycle (Figure 3), it can be seen that precipitation
seasonality was captured quite well by GPPs, which agreed with in-situ in terms of identifying the
maximum and minimum precipitation months. Regional scale deviations and differences, especially in
relatively higher precipitation seasons were more prominent in PERSIANN-CDR, followed by MSWEP.

4.2. Comparison on a Daily Scale

For a daily scale comparison, frequency versus intensity histograms were plotted in Figure 4 for
the precipitation in each region. In-situ stations (traditional rain gauges) might not capture precipitation
events with magnitudes of less than 0.25 mm/day very well, which is generally treated as traces,
thus precipitating days considered were ≥0.25 mm per day [49]. Figure 4a–d shows the frequency
and relative intensity of in-situ and GPPs at each region, while the arrows indicate 95th percentiles.
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Figure 4a indicates that in-situ data had a lower frequency of days with relatively low precipitation
amounts than the GPPs. Both in-situ and GPPs had a similar frequency of precipitation events of
<25 mm and excluding MSWEP, rest of the GPPs showed good agreement at the 95th percentile
moreover PERSIANN-CDR does not identify days with precipitation amount > 25 mm/day. Figure 4b
shows that both in-situ and the GPPs had an alike frequency and intensity for events with precipitation
of <45 mm, although relatively lower magnitude events had a higher frequency in CHIRPS and
PERSIANN-CDR than in TMPA and MSWEP.
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The arrows mark the 95th percentile, the bin size used is 1.85 mm/day. (a–d) are equivalent to regions
1, 2, 3 and 4 in Table 1.

In Figure 4c, we see that in region 3, GPPs reported a relatively similar pattern to in-situ data in
terms of the frequencies of precipitation events of ≤15 mm, while above 15 mm, GPPs appeared to
show deviations in magnitude. For precipitation events with an intensity of ≥20 mm, CHIRPS and
TMPA captured relatively similar frequencies. In Figure 4d, both in-situ and GPPs captured the
highest frequency of the days with low precipitation amount, while PERSIANN-CDR captured more
precipitation events with smaller intensities as compared to in-situ and the GPPs. The 95th percentile
shows closer agreements with that of in-situ data, while the frequency of high precipitation events was
also well captured by TMPA and MSWEP.
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From Figure 4 it can be deduced that GPPs generally captured the frequency and intensities
of precipitation events quite well. GPPs produced closer distribution of higher percentile with
those of in-situ as a reference, however deviations and differences were obvious for MSWEP and
PERSIANN-CDR. The capability of GPPs to locate higher percentile precipitation estimates closely
resemble in-situ data, especially TMPA and CHIRPS [28,47].

The performance of GPPs and in-situ precipitation products was further assessed based on
the ECDFs of daily scale precipitation at three thresholds (2.5, 5 and 10 mm/day). Based on
results of a K-S test, the GPPs that significantly (K-S test) matched the in-situ data distribution
were identified inside their respective threshold boxes in Figure 5. In region 1, Figure 5a–c,
for precipitation events characterized by ≥2.5 mm/day, only TMPA had a significant similarity with
in-situ, although observed precipitation was nonetheless overestimated. For precipitation events of
≥5 mm/day, PERSIANN-CDR underestimated the observed precipitation, while CHIRPS significantly
represented a similar pattern to that of in-situ. For precipitation events of ≥10 mm/day, all precipitation
products except PERSIANN-CDR overestimated in-situ but MSWEP and TMPA were significantly
closer to in-situ precipitation.

In Figure 5d–f, we see that in region 2 GPPs underestimated precipitation events of ≥2.5 mm/day.
For precipitation events of ≥5 mm/day, all GPPs consistently underestimated in-situ precipitation,
while CHIRPS and TMPA had a significant resemblance to in-situ precipitation. For precipitation
events of ≥10 mm/day, MSWEP, CHIRPS and TMPA had a significant similarity to the in-situ.
In region 3, Figure 5g–i, MSWEP produced a significant ECDF for precipitation events of ≥2.5 mm/day,
however, precipitation was overestimated. For precipitation events of ≥5 mm/day CHIRPS and TMPA
had a significant similarity to in-situ data. PERSIANN-CDR underestimated in-situ precipitation.
The performance of gridded data improved when capturing precipitation events of ≥10 mm/day,
for which the ECDFs of CHIRPS, PERSIANN-CDR and TMPA were significant, although they
underestimated the in-situ precipitation at daily scale.

From Figure 5j–l, in region 4, MSWEP and TMPA produced significant ECDFs for all precipitation
events ranging from ≥2.5 to ≥10 mm/day. For precipitation events of ≥10 mm/day, PERSIANN-CDR
showed significant distribution with respect to in-situ. The GPPs consistently underestimated these
precipitation events, except MSWEP and TMPA, which followed the precipitation distribution of
in-situ very closely.

From Figure 5, we see that on daily scales, the ECDF of GPPs and in-situ precipitation estimates
for different thresholds over different regions are subjected to deviations and differences. The similarity
of GPPs and in-situ precipitation increases with increase in the magnitude of precipitation, except
PERSIANN-CDR. Excluding region 2, we observe that precipitation events (≥2.5 and ≥5 mm/day) of
MSWEP, TMPA showed relatively significant similarity with those of in-situ precipitation. The varying
degree of similarity can possibly be attributed to different factors which may include the climate,
land cover and altitude. A detailed assessment is however required to identify the source of variability.
We note that these results are in agreement with [47,51], who also reported similar performances for
TMPA, CHIRPS and PERSIANN-CDR products.
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Figure 5. Comparisons of the Empirical Cumulative Distribution Functions (ECDFs) of daily
precipitation (with different thresholds: 2.5, 5 and 10 mm/day) for in-situ and GPPs in selected
regions. The products with a significantly (95%) similar distribution to the in-situ data based on a
Kolmogorov-Smirnov test are given in the respective boxes. (a–c), (d–f), (g–i) and (j–l) are equivalent
to regions 1, 2, 3 and 4 in Table 1.

4.3. Comparison on a Monthly Scale

The scatter plots (Figure 6) and descriptive statistics of Table 2 display the comparison of
GPPs on monthly scale for each selected regions. In region 1 (Figure 6a), MSWEP substantially
overestimated precipitation, with a linear regression coefficient of >1. CHIRPS, PERSIANN-CDR and
TMPA overestimated monthly precipitation lower than 50 mm/month but underestimated larger
precipitation events of >50 mm/month. TMPA was relatively the best performing product followed by
CHIRPS and PERSIANN-CDR. In region 2 (Figure 6b), GPPs had a good linear relationship with in-situ,
of which TMPA had the closest relationship followed by PERSIANN-CDR, CHIRPS and MSWEP.
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In region 3 (Figure 6c), TMPA results were consistent with in-situ, with a regression coefficient of
0.93, MSWEP, CHIRPS and PERSIANN-CDR overestimated precipitation events of <40 mm, while
precipitation events of >70 mm were underestimated by all GPPs. At region 4 (Figure 6d), TMPA and
PERSIANN-CDR overestimated and CHIRPS underestimated in-situ precipitation.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 28 
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The descriptive statistics in Table 2, suggest that at monthly time scale TMPA had relatively
improved linear regression coefficients among all GPPs. The RMSD values varied from region to
region, with a relatively larger range of values at region 1 and more prominent large values for
PERSIANN-CDR and MSWEP. STD suggests that the standard deviation of GPPs is relatively smaller
at region 1, however a slight increase can be seen at region 2 and PERSIANN-CDR systematically
overestimated monthly precipitation. The performance of GPPs is relatively improved on monthly
time scale, though deviations in precipitation magnitude do exist which could possibly be attributed
to regional scale precipitation variability, climate and land surface features.
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Table 2. Descriptive statistics of GPPs versus in-situ precipitation at monthly time scale.

Region Name Regression Coefficient RMSD (mm) R STD Bias (mm)

1

MSWEP 1.81 34.56 0.72 0.40 –36.0
CHIRPS 0.73 21.12 0.56 0.78 –23.0

PERSIANN-CDR 0.83 24.82 0.55 0.67 –32.0
TMPA 0.86 20.43 0.65 0.75 −9.0

2

MSWEP 0.73 19.63 0.92 1.27 12.0
CHIRPS 0.74 15.11 0.95 1.28 9.2

PERSIANN-CDR 1.18 28.57 0.93 0.79 –31.0
TMPA 0.96 12.43 0.98 1.01 −3.0

3

MSWEP 0.75 13.01 0.80 1.05 1.8
CHIRPS 0.58 12.03 0.75 1.28 1.0

PERSIANN-CDR 0.65 17.63 0.65 0.99 –10.0
TMPA 0.93 13.91 0.84 0.89 −2.4

4

MSWEP 0.98 11.18 0.96 0.92 −1.0
CHIRPS 0.76 15.37 0.90 1.17 3.0

PERSIANN-CDR 1.29 21.66 0.93 0.71 –20.0
TMPA 1.14 12 0.97 0.85 –3.0

4.4. Comparison on an Annual Scale

For annual scale comparison, regional scatter plots and statistics are shown in Figure 7a–d and
Table 3, respectively. At region 1 (Figure 7a), GPPs had shown overall positive linear relationship
with regression coefficient >0.65; deviations are obvious and mostly the in-situ precipitation is
overestimated. Figure 7b shows that at region 2, TMPA outperformed the other GPPs in terms of
linear relationship with in-situ, having a regression coefficient of 1.01. PERSIANN-CDR overestimated
observed precipitation, while CHIPRS and MSWEP underestimated in-situ precipitation.

In region 3, GPPs consistently overestimated in-situ precipitation products, as can be seen from
Figure 7c, where TMPA outperformed rest of the GPPs. Figure 7d shows that in region 4, MSWEP and
TMPA performed relatively well, while CHIRPS underestimated and PERSIANN-CDR overestimated
in-situ precipitation.

Table 3 suggest that at annual scale the performance of all GPPs is relatively weaker in
region 1, with lower regression values except PERSIANN-CDR, differences and biases in mean
precipitation are also obvious for PERSIANN-CDR (RMSD = 9.41 mm, Bias = –32.5 mm) and MSWEP
(RMSD = 17.38 mm, Bias = –36.48) respectively. Overall, TMPA relatively outperformed all the other
GPPs, followed by CHIRPS and MSWEP. The performance of GPPs on an annual scale suggests an
improvement towards semi-arid regions with decrease in mean differences, biases and improved
correlation for all GPPS; but a larger number of regions require study before such a trend can be
accepted as definitive.
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Figure 7. Scatterplots of annual mean precipitation for in-situ and GPPs at selected locations. (a–d) are
equivalent to regions 1, 2, 3 and 4 in Table 1.

Table 3. Descriptive statistics of GPPs versus in-situ precipitation at annual time scale.

Region Name Regression Coefficient RMSD (mm) R STD Bias (mm)

1

MSWEP 1.45 17.38 0.42 0.29 –36.48
CHIRPS 0.65 5.51 0.55 0.85 –24

PERSIANN-CDR 0.83 9.41 0.44 0.53 –32.5
TMPA 0.62 6.73 0.46 0.75 −9.0

2

MSWEP 1.32 10.06 0.83 0.62 12.0
CHIRPS 0.67 9.34 0.77 1.15 9.0

PERSIANN-CDR 0.97 6.21 0.87 0.89 –30.0
TMPA 1.01 3.22 0.96 0.95 −3.0

3

MSWEP 0.68 4.42 0.75 1.11 2.0
CHIRPS 0.44 2.39 0.81 1.83 1.0

PERSIANN-CDR 0.59 6.28 0.57 0.97 –10.0
TMPA 0.78 4.03 0.82 1.04 –2.0

4

MSWEP 0.88 3.2 0.95 1.07 −1.0
CHIRPS 0.67 2.72 0.94 1.45 3.0

PERSIANN-CDR 1.24 5.18 0.94 0.75 –21.0
TMPA 1.05 3.71 0.96 0.96 –3.2
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4.5. Comparison on an Interannual Scale for Different Seasons

To assess long term variation, GPPs and in-situ precipitation datasets were further compared on
an interannual scale for different seasons. In Figure 8, during winter, MSWEP produced R values of
≤0.20 in the northern parts of the study area, while in the central and southern parts of the study area
relatively higher R values of ≥0.40 and ≥0.80 can be seen, respectively. CHIRPS, PERSIANN-CDR and
TMPA have shown relatively similar precipitation variations as those of in-situ precipitation. The R
values for CHIRPS, PERSIANN-CDR and TMPA were in the range of ≥0.80 in the north and ≥0.60 in
central and southern regions, suggesting that these three products had similar dynamics for producing
winter precipitation over the different parts of the study area.
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During the pre—monsoon season, MSWEP performance in depicting precipitation was similar to
its winter performance, with low R values in the north (≤0.60) and high values in central (≥0.60) and
southern (≤0.80) regions. CHIRPS and PERSIANN-CDR were less effective at capturing precipitation
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variability. For TMPA there were also low R values in the north, while in the central and southern
regions R values were observed to be ≥0.80 for most stations.

In the monsoon season, MSWEP reached a higher level of agreement ≥ 0.80 in the southern and
eastern parts of the study region. The CHIRPS precipitation product clearly indicated a monsoonal
precipitation pattern, with large R values of ≥0.60 to 0.80 in the monsoon regions. The interannual
monsoon precipitation variability was well captured by PERSIANN-CDR, with high R (0.80) values.
For monsoonal precipitation, TMPA outperformed all GPPs with R values of ≥ 0.80 in all parts of the
study region under monsoon influence.

In autumn, there was an obvious pattern in the R values, with higher values in the north and
south, while central regions had relatively low R values. Both MSWEP and TMPA had similar R
values of ≥0.80 in these regions, while CHIRPS and PERSIANN-CDR also produced a similar pattern;
however, their R value of ≥0.60 were lower than that of MSWEP and TMPA.

The precipitation seasons of the study regions are determined by the westerly disturbances that
are mostly active during the winter/cold season and the pre—monsoon and monsoonal precipitation
during warm summer season [14]. There were stronger correlations between the GPPs and in-situ
in the cold season, while in the monsoon season MSWEP and TMPA produced higher R values than
CHIRPS and PERSIANN-CDR. The strength of the correlation varied with magnitude in precipitation
during different seasons, however orographic influence is also obvious in the boundary regions of low
lands and high terrain and thus need to be further investigated.

The RMSD values (Figure 9) shows a decreasing tendency from the north of the country towards
the south. In winter, MSWEP had the highest RMSD values of >16 to <32 mm in the northwest, which
persisted at all stations located in the northern region of the study area. In the central and southern
parts of the country, the RMSD was less than 10 mm. CHIRPS and PERSIANN-CDR had slightly
higher RMSD values in the northern parts of the region, ranging from 10 mm to < 30 mm among the
different stations. In central and southern areas, RMSD values were consistent with those of MSWEP,
with a magnitude of around 10 mm. TMPA followed the same pattern of RMSD values as observed for
MSWEP, with higher values in northern parts but these values were smaller than those of MSWEP,
CHIRPS and PERSIANN-CDR. In the pre—monsoon season, MSWEP had a high RMSD of >20 mm
for stations located in northern regions, CHIRPS and PERSIANN—CDR produced the same pattern
as MSWEP, with relatively low values in southern parts of the study region, while TMPA produced
smaller RMSD values than rest of the GPPs.

In the monsoon season, with peak precipitation, the differences were also higher for all GPPs.
MSWEP, CHIRPS and PERSIANN-CDR produced higher differences (>28 mm) in the upper parts,
with a decrease toward the southern plain regions. TMPA produced low RMSD values for stations
located in both northern (<32 mm) and southern (<16 mm) regions. In autumn, the performance of
GPPs improved, MSWEP still had higher RMSD values (>24 mm) for stations located in northern parts
of the country.

From Figure 9 it can be seen that the RMSD was higher during peak precipitation seasons,
as indicated in the winter, pre—monsoon season and especially the monsoon season. Stations located
in different climate regions and at different elevations reported dissimilar results. The higher RMSD
values in the north and lower values in central and southwestern regions could be possibly due to
differences in land cover, precipitation magnitude, station geography towards precipitation bearing
winds and altitude that influence the rain rates [35,37].

Figure 10 shows the linear relationship of westerlies (Figure 10a,b) and the monsoonal
(Figure 10c,d) precipitation system, which together are the key drivers of the local hydrological
cycle in the country. In the northern region (Figure 10a), MSWEP and PERSIANN-CDR substantially
overestimated in-situ precipitation. In the southwest (Figure 10b), gridded products tended to produce
a positive linear relationship with respect to in-situ precipitation. MSWEP slightly underestimated
precipitation events, while, except for TMPA, the other products overestimated precipitation events.
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different seasons.

Figure 10c shows that during the monsoon season, MSWEP underestimated in-situ precipitation,
CHIRPS produced a very similar pattern to in-situ, while PERSIANN-CDR overestimated in-situ
records. TMPA produced the best results among all GPPs, with a very close linear relationship and
thus exhibited similar dynamics as of in-situ.

In terms of a close positive relationship with in-situ data, the performance of all GPPs was best in the
southern parts of the study region (Figure 10d). MSWEP was closely related to in-situ precipitation and
thus produced a similar pattern, whereas PERSIANN-CDR overestimated precipitation. The descriptive
statistics (Table 4) further demonstrate the performance of GPPs in both the westerly and monsoon
seasons in the study region. For westerlies (regions 1 and 3), variations among the GPPs in depicting
the in-situ precipitation pattern are obvious, however, in region 3 the correlation between GPPs and
in-situ was improved. The regression coefficients for TMPA in both regions (0.92 and 1.13 in regions 1
and 4 respectively) indicated a close linear relationship with in-situ. Compared to MSWEP, CHIRPS and
PERSIANN-CDR, TMPA had lower RMSD values for mean precipitation, a higher temporal agreement,
relative amplitude agreement and a lower bias for monsoonal precipitation.
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Figure 10. Interannual variability of pre—monsoon (a–b) and monsoonal precipitation (c–d) in selected
regions for in-situ and GPPs. (a–d) are equivalent to regions 1, 2, 3 and 4 in Table 1.

Table 4. Descriptive statistics of the interannual precipitation variability in selected regions.
Regions 1 and 3 experience pre—monsoon precipitation, while regions 2 and 4 experience
monsoonal precipitation.

Region Name Regression Coefficient RMSD (mm) R STD Bias (mm)

1

MSWEP 1.14 26.22 0.46 0.40 –55.0
CHIRPS 0.44 10.74 0.45 1.06 –18.0

PERSIANN-CDR 0.73 16.87 0.47 0.63 –35.0
TMPA 0.42 10.8 0.43 1.01 −8.0

2

MSWEP 0.87 25.47 0.76 0.80 38.0
CHIRPS 0.66 17.68 0.78 1.18 23.0

PERSIANN-CDR 0.77 16.91 0.84 1.08 –63.0
TMPA 0.92 11.53 0.93 1.01 2.1

3

MSWEP 0.67 10.04 0.74 1.10 2.0
CHIRPS 0.49 6.55 0.78 1.58 –3.0

PERSIANN-CDR 0.57 10.35 0.67 1.18 –5.0
TMPA 0.82 9.9 0.81 0.97 –7.0

4

MSWEP 0.95 10.71 0.97 1.01 −3.2
CHIRPS 0.69 11.56 0.94 1.30 3.2

PERSIANN-CDR 1.245 14.95 0.97 0.77 –47.0
TMPA 1.13 10.46 0.98 0.87 –12.0

Figure 10 shows that for westerlies and monsoonal precipitation at interannual scale,
TMPA produced better results than the other GPPs for both westerlies and monsoonal precipitation,
followed by CHIRPS and MSWEP. These findings concur with those of [36–38,52] for TMPA, [47,53] for
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PERSIANN-CDR, [51,54,55] for CHIRPS and [56,57] for MSWEP. MWSEP is a relatively new product;
thus, very few studies have reported similar findings in such a diverse range of climate.

5. Discussion

The application of remotely sensed precipitation data is important in assimilation, estimation and
forecast and for improving model simulation skill to better understand land-atmosphere interactions
in regions where in-situ data is sparse. Comparisons of GPPs with available precipitation records
are crucial to determine their strengths and limitations in such regions. The current study used
in-situ records to validate GPPs across a range of climate, land cover types and terrain in Pakistan.
The in-situ records may also be subject to physical and non-physical differences and efforts were made
to reduce their effects. The precipitation patterns for both westerlies and monsoonal precipitation were
consistent among all GPPs and agreed with previous results [14,36,37]. The seasonal scale magnitudes
of precipitation reported by the GPPs were mostly larger than in-situ in the northern region, while they
performed relatively well in the other regions. PERSIANN-CDR consistently overestimated in-situ
precipitation, while TMPA, CHIRPS and MSWEP performed adequately. These findings concurred
with those of [35,47,54,58], with a possible reason being that infrared based retrievals have limitations
in estimating precipitation over complex terrains [35,59,60]. The daily scale performance suggests that
GPPs were consistent for daily scale thresholds, with PERSIANN-CDR and MSWEP overestimating
in some regions. Daily scale performance is improved for precipitation events of ≥10 mm/day in all
regions, which concurred with the results of [47,61].

At monthly time scale, GPPs usually overestimated precipitation events, with lower R values,
high RMSD values and differences in mean for different regions. At southern parts of the region
relatively good performance was observed in terms of the linear regression with in-situ and improved
descriptive statistics. The differences in performance on monthly scale could possibly be due to the
complex terrain induced deviations, precipitation magnitude, in-situ stations uncertainties and their
low density, which did not accurately represent the precipitation pattern in such regions [18,62]. GPCC
precipitation products may also be subjected to uncertainties, which are derived from in-situ stations,
thus climatologies developed from limited number of in-situ stations in such regions might not be
accurate estimation of the regional precipitation behaviors [53,63]. Calibration and validations of
GPPs with GPCC products in such data scarce region might be subjected to noise and deviations.
Infrared and microwave based algorithms also have limitations due to terrain and wet and dry regional
climates [64–67]. At monthly time scale, the performance of GPPs is relatively improved from daily
time scale, however the deviations in error metrics were also obvious and consistent at regions with
more precipitation.

At interannual time scale, the results indicated that the temporal agreement of GPPs varied at
both regional and seasonal scale. In the northern regions, the performance of GPPs was unsatisfactory
both in terms of temporal agreements and RMSD values, with similar findings also reported by [28,53].
In the southwestern parts of the country, the overall temporal agreement of the GPPs agreed with that
of in-situ. The statistical metrics had consistent values in terms of interannual variations and positive
linear relationship with in-situ during the high precipitation seasons. The differences in precipitation
magnitudes were higher in regions and during seasons with higher precipitation amounts. The RMSD
values of stations located in the northern parts of the study area were usually higher than those
stations located in central and southern regions [34–36,66]. TMPA produced the highest R values and
lowest RMSD values, followed by MSWEP and CHIRPS. PERSIANN-CDR displayed similar dynamics
regarding interannual scale precipitation variation, although the RMSD values during the peak
precipitation season were much higher than for the other GPPs in all regions [47,53]. The differences in
PERSIANN-CDR could be linked with GPCP precipitation product with a pixel scale resolution of
2.5 degrees [47,53], which is very coarse as compared to the resolution of PERSIANN-CDR. However,
PERSIANN-CDR provides long term precipitation information which results have shown promising
results in station rich regions [2,61].
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The point source precipitation may not be able to capture exact complex behavior of
precipitation variability with simple error metrics. The regional precipitation variation is subjected to
latitudinal increase and after certain degrees of elevation it started decreasing while longitudinal
increase/decrease is subjected to summer and winter seasons. The two precipitation patterns
produce more precipitation in the southeast and southwest during monsoon and winter seasons
respectively [14,36]. The differences reported in statistical metrics could possibly be associated with
rain shadow regions, seasonal wind patterns and location of in-situ stations in the lee sides of the
mountains and valleys. Thus, when making any comparison at regional scale about the performance of
GPPs, it might be prudent to keep in mind the regional distribution of precipitation pattern, wind and
topography of the region.

6. Conclusions

Gridded satellite precipitation products (GPPs), each with individual strengths and differences,
were compared on daily, monthly, seasonal and interannual scales. The main conclusions of the study
are listed as follows.

The GPPs captured a consistent climatological precipitation distribution over the diverse
topography of Pakistan. The multiyear monthly mean precipitation had the same pattern as in-situ
precipitation although differences are obvious at regional scale. With in-situ precipitation as a
reference, we see that GPPs are able to capture extreme precipitation events (95th percentile) quite
consistently, where TMPA and MSWEP were found to be most similar to in-situ, followed by CHIRPS.
The performance of GPPs improves with increased (>5 mm/day) thresholds. The Correlation/RMSD
values were higher during peak precipitation seasons.

Based on the performance of the GPPS, they can be used (with proper adjustments) to fill in the
gaps between gauges for application to flood forecasting, droughts, land atmosphere interactions
studies, extreme events, agricultural planning and many others [34,35,37]. The source of the deviations
need to be further explored, with detailed studies of the possible reasons for these differences in both
GPPs and in-situ data.
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