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Abstract: Homogeneous image change detection research has been well developed, and many
methods have been proposed. However, change detection between heterogeneous images is
challenging since heterogeneous images are in different domains. Therefore, direct heterogeneous
image comparison in the way that we do it is difficult. In this paper, a method for heterogeneous
synthetic aperture radar (SAR) image and optical image change detection is proposed, which is based
on a pixel-level mapping method and a capsule network with a deep structure. The mapping method
proposed transforms an image from one feature space to another feature space. Then, the images
can be compared directly in a similarly transformed space. In the mapping process, some image
blocks in unchanged areas are selected, and these blocks are only a small part of the image. Then,
the weighted parameters are acquired by calculating the Euclidean distances between the pixel to
be transformed and the pixels in these blocks. The Euclidean distance calculated according to the
weighted coordinates is taken as the pixel gray value in another feature space. The other image
is transformed in a similar manner. In the transformed feature space, these images are compared,
and the fusion of the two different images is achieved. The two experimental images are input to a
capsule network, which has a deep structure. The image fusion result is taken as the training labels.
The training samples are selected according to the ratio of the center pixel label and its neighboring
pixels’ labels. The capsule network can improve the detection result and suppress noise. Experiments
on remote sensing datasets show the final detection results, and the proposed method obtains a
satisfactory performance.

Keywords: change detection; capsule network; image mapping; synthetic aperture radar image;
optical image; heterogeneous image

1. Introduction

With the development of satellite technology, the amount of remote sensing images can be
acquired in the same region at different times easily. There are different kinds of remote sensing images
obtained by different imaging sensors. Imaging sensors contain some types of remote sensing data such
as very high resolution (VHR) images [1,2], multi-spectral [3] or hyperspectral images [4], synthetic
aperture radar (SAR) images [5], polarimetric synthetic aperture radar images [6], etc. In this paper,
we mainly focus on the change detection of SAR images and general optical images. These images are
convenient to acquire and are commonly homogeneous and heterogeneous images for experiments.
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Change detection is defined as the process of identifying variations of an object or a phenomenon
by observing it at different times [7]. Change detection is applied in many fields [8–10]. According to
the two acquired images [11], where the region is changed and where the region is not changed can be
found through comparison. For these two images, many image preprocessing technologies including
denoising and coregistration technologies are applied to deal with the data, aiming at decreasing
the noise and making these images easy to compare [12]. These technologies are necessary owing
to the existence of speckle noises [13]. These speckle noises may cause false alarms. Coregistration
technology aims to place those pixels in a suitable position, namely a one-coordinate system [14].
Changed and unchanged regions are detected after comparing and analyzing the preprocessed images.

In general, the final resulting map contains two sorts of pixels, black and white, representing
unchanged and changed regions, respectively. The change detection image result can reveal where the
changed region is and whether the region is changed. We can find it by experiments instead of going
to the location, which improves the efficiency greatly. There are currently two main change detection
directions: one is homogeneous image change detection, and the other is heterogeneous image change
detection [15–17].

Homogeneous image change detection is the change detection on remote sensing images in the
same or a similar feature space. SAR images are traditional experimental data of homogeneous image
change detection. The pixels in homogeneous images possess the same or a similar property or we
can say that they are linearly related. They are easy to compare. Thus, many methods are applied in
comparing these two images directly, such as the log-ratio method [18,19], the difference method [20],
and the mean-ratio method, and other traditional ways have been put forward. They can generally
achieve a fairly good performance. Usually, homogeneous image change detection can be performed
in two ways. In short, one is to compare first and then to perform classification, while the other
one is to classify them into different types and then compare. The classification often can be done
by threshold segmentation methods like the Kittler and Illingworth (KI) [21] threshold method, the
Otsu threshold method [22], and some other auto-threshold segmentation methods or some clustering
methods such as FCM and K-means [23,24]. We can usually obtain a fairly good result, but there are
many noises polluting the image. Then, a common way is to take the difference image as the training
labels and input them into a neural network such as a convolutional neural network (CNN) [25,26],
a generative adversarial net (GAN) [27], a deep neural network (DNN) [28], a deep belief network
(DBN), a restricted Boltzmann machine (RBM) [29], etc. We can calculate the similarity level and obtain
the ratio of the center pixel label and its neighboring labels to select reliable training samples [28].

However, we may meet a more complex situation in which two images are in different feature
spaces. Some remote sensing images are less costly, and these images are not always taken from one
kind of satellite. They are in different feature spaces or, in other words, unrelated feature spaces.
Therefore, direct comparison is not feasible. The change detection based on heterogeneous images
is more promising and necessary in some situations, though more challenging. There are some
technologies for this that have been researched in recent years. In [1], a method was proposed for the
damage assessment of buildings before and after an earthquake. It mainly calculates and predicts the
parameters after an earthquake according to the parameters acquired before the earthquake. Then, the
damage level can be obtained according to the predictive image and the reference image. In [30], this
problem was solved by a method based on classification, which can be applied in both homogeneous
and heterogeneous image change detection. Post-classification comparison (PCC) classifies each
image independently [31]. After obtaining two classifications, it is easy to obtain the changed and
unchanged regions. The accuracy of this method is strongly dependent on the performance of the
classification algorithm. At the same time, it may cause error accumulation because of the wrong
classification. In [32], a symmetric convolution coupling neural network (SCCN) was proposed to
detect the image difference. SCCN has several characteristics. It has a symmetric structure [33], and
both sides are made up of the convolutional layer and the coupling layer, which are used to extract
feature-level information. Network parameter learning and updating are performed through the
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feature extractor. Then, the coupling function is minimized and calculated according to the selected
pixels in the unchanged regions.

In this paper, SAR and optical images are used to implement experiments for heterogeneous
images’ change detection. In general, the unchanged region is much larger than the changed region.
The pixels in the unchanged region can be utilized to map the image. First, some small unchanged
image blocks are picked and put into a self-organizing map (SOM) network [34]. SOM clusters those
pixels into groups or, in other words, obtains some classifications. For the selected k pixels in those
image blocks, their gray values are close to the pixel to be transformed. The weights can be obtained
through these pixels’ Euclidean distances. Then, converted pixel coordinate positions are added
together. The Euclidean distance between the pixels before and after transformation is taken as the
pixel gray value. Simple mapping images and difference images can then be acquired. Due to the
influence of noises [35], the difference value at that location will be too large. However, it will be less
affected in another feature space. By fusing the difference images, the difference value can be reduced.
Thus, the influence of noises can be reduced. The difference image after the fusion is classified to
obtain a binary image, which is used as the labels for network training. The samples selected are
connected together and input into a deep capsule neural network to obtain the classification results.

The subsequent sections in this paper are organized as follows: In the second section, the
motivation and the related background knowledge in the experiments are introduced. The methods in
this paper are described in detail in Section 3. The fourth section is the experimental part. In the final
section, we summarize the method proposed in this paper and look at making some improvements to
our proposed method.

2. Motivation and Related Background Knowledge

2.1. Motivation

The purpose of heterogeneous image change detection is to identify the changed areas from two
images obtained at different times in the same geographical area. However, due to the different feature
information of these images, direct comparison is very difficult. The pixel-level transformation method
is used to deal with this problem. Some transformation methods based on object and feature level
do not perform very well at preserving details. The pixel-level transformation method is used to
retain more details and make full use of the pixel information in the image to obtain a more reliable
change detection result. In recent years, representation learning based on neural networks has been
widely applied in many fields. Some basic models, such as DBN, sparse denoising autoencoder, and
CNN, have achieved good performance in image processing. In the task of change detection, a neural
network is used to extract key information and suppress irrelevant changes caused by the environment
or noise. The deep capsule network uses CNN to extract feature information effectively, deepened in a
certain way, and it processes the feature information based on the simple classification by the capsule
network to obtain better detection results.

2.2. Self-Organizing Maps

The self-organizing map (SOM) is an unsupervised learning algorithm proposed by Teuvo
Kohonen for clustering [36] and visualization. The SOM network consists of two layers, the input layer
and the competition layer. The nodes of the input layer are the training samples, and the number of
nodes is the number of training samples. The output layer is a topological diagram consisting of a
set of neurons. The SOM network clusters training samples into groups. It can find the neighbors of
the pixels that need to be transformed by calculating the distance between the clustering center and
the pixels. Compared with other clustering algorithms, the SOM network can update the weights of
adjacent neurons while updating the current neurons and decreasing the noises.
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2.3. Capsule Neural Network

The capsule network was first introduced by Hinton [37] in 2017. The capsule network is a
three-layer structure. The first layer is a simple convolutional layer without a pooling layer. The
low-level features are extracted by the convolutional layer, and the pixel-level local feature detection is
performed on the image pixels. The capsule’s output vector [38] is used to represent an instance of
a certain object. The more advanced the capsule is, the more advanced instances it can represent. If
features are not extracted through a convolutional layer, then the capsule will obtain the contents of the
image directly, which are not ideal low-level features. The shallow CNN is good at extracting low-level
features [39], so the convolution layer is used. However, the ability of one CNN layer is not sufficient
to extract enough appropriate features, so another CNN layer is added. The second layer is another
capsule network, called primaryCaps, which includes several simple convolutional layers. Different
convolutional kernels obtain different information. The acquired data are then joined to form a vector.
The resulting vector is input into the third layer, which is called the digitCaps layer. The third layer can
be taken as a fully-connected layer. Each input is a vector, and the output is also a vector. The length of
the output vector, the L2 norm [40], represents the probability of a classification. Its length characterizes
the probability of a certain category, and the length-independent part characterizes some graphical
properties of the object such as position, color, direction, shape, etc., and obtains more information to
help with classification. This layer contains the dynamic routing algorithm [41]. Routing [42] is only
between the primaryCaps layer and the digitCaps layer, and it has a certain layer-to-layer selective
connection function.

The capsule network combines the advantages of CNN in image processing and feature extraction.
At the same time, the capsule can obtain more information. Important feature information is
encapsulated in a vector form instead of a scalar form. These vectors are processed by a dynamic
routing algorithm and a newly-proposed activation function for classification. More applications and
modifications of the capsule network [43] can also enhance the network’s capabilities and expand the
applicable scenarios.

3. Methodology

3.1. The Whole Process Structure

The entire flowchart of the proposed method is shown in Figure 1. After clustering by SOM,
these two images are compared. Then, some rough unchanged regions are obtained. In these regions,
some image blocks are selected randomly. The first step is to transform each pixel in the image
according to the mapping method with these image blocks. Then, the SAR image is converted into
the optical feature space pixel by pixel by the mapping method, and similarly, the optical image is
converted into the SAR feature space. After that, these images are compared directly in two different
feature spaces, respectively. Finally, the classification images, obtained by fusing these two difference
maps, are used as the labels for training. Samples of the network are selected from the fused image,
which is the black and white training labels. The selected samples are connected and input into the
network. Finally a binary classification map is obtained.

3.2. SOM Clustering and Block Selection

In this paper, each pixel is considered to be the basic element in the image, and the proposed
change detection method is performed at the pixel level. By clustering pixels, they can be divided
into several heaps, and the pixels in the same heap have similar characteristics. SOM clustering is
used mainly for selecting image blocks from the unchanged regions we detected. The input node is
connected to the competing layer neurons by weights, and the neurons are connected to the adjacent
neurons. The nodes of the input layer depend on the training samples, the input data. The number of
nodes is equal to the number of the dimensions of the input data. The output layer is a topological
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structure composed of a group of neurons, the number of which is set to 100 (10× 10). SOM adjusts
the weights of the network adaptively through the training samples, and the formula is as follows:

wi(t + 1) = wi(t) + α(t, N)[x− wi(t)] (1)

Here, i is the neuron index. The learning rate α is a function of the training time t and the topological
distance N, and the x is the training sample. wi(t + 1) is calculated according to the previous value
wi(t). These parameters can be obtained by the method in [44]. The output layer in the trained network
can not only determine the category of an input mode, but also reflect the approximate distribution of
the input data. Thus, the input data can be clustered based on certain characteristics.

Direct comparison in 
their feature spaces

Samples' selection

Training with labels

Samples' 

connection

Primary images and mapping 

blocks' selection

digitCapsprimaryCaps

Conv

Image 
mapping

Reshape

Image blocks

Result

Classification

Loop

Figure 1. Flowchart of the proposed method for remote sensing image change detection.

3.3. Image Mapping Method

We can transform the images according to the obtained image blocks. There is a pair of
heterogeneous images, the images before and after the event, representing Experimental Images
1 and 2, respectively. In heterogeneous images, some pixels have very close values in pre-event
images, while their corresponding pixel gray values are more or less different in post-event images,
even though they are not affected by the event. This is mainly caused by noise effects and differences
in image mode. It is hard to compare them directly to detect changes. An image transformation from
the original feature space to another is performed [45]. The image will be converted to a similar feature
space as the post-event image for direct comparison.

The mapping method is shown in Figure 2. In this mapping method, the first step is that the
k pixels are selected from the unchanged regions. These k pixels to be used for transformation are
considered as potential values of the mapping pixel. The pixels that have the nearest gray value to
the mapping pixel are used to estimate the missing attribute values, such as the pixel gray value in
the optical feature space, according to the known attributes, such as the Euclidean distance and the
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pixel gray value in the SAR feature space. If a known attribute value is very close in one space, its
missing portion should be close to the corresponding part of the mode also. Therefore, the nearest
neighbors are found according to the known attribute, and the missing attribute will be filled by the
weighted average of the k neighbor pixels. The strategy uses the weighted average of the k nearest
similar pixel positions as the mapping expectation coordinates. Images 1 and 2 are represented in each
other’s feature space respectively, such that their pixel gray values can be compared.

p1 p2

0

Y

X

Image blocks 
selection

Compute the Euclidean distance and the weights 
according to the image blocks selected.

unselected

unselected

Take the Euclidean distance between the pixels before and 
after transformation as pixel transformed gray value. 

Compute the coordinates, and add them 
together respectively based on the weights 
and the selected pixels.

Figure 2. The process of image mapping.

According to the Euclidean distance difference of the pixel position, k nearest pixel points [46,47] in
the space are found, then the reliable neighbors are selected according to the pixel gray value difference.
The pixel gray difference values are sorted for selection. The difference is obtained according to the
corresponding position of Image 2. The weight value is obtained through the difference value. The
following is the pixel mapping equation:

ŷi =
k
Σ

j=1
wjẏj (2)

where k is the number of selected pixels used for transformation. The parameter ẏj is the k pixels’
value, and ŷi is the transformed value, which is viewed as the pixel gray value in another feature space.
The weight wj is obtained by the equations below:

wk = e−d̃k

d̃k =
||yi − ẏk||

maxk||yi − ẏk||
(3)

where d̃k is the ratio of two Euclidean distances. The numerator is the Euclidean distance between
the pixel to be transformed and the selected pixel. The denominator is the max Euclidean distances
between the k pixels and the pixel to be transformed.

The expected pixel gray value is obtained through the distance, and the Euclidean distance
between them is the transformed pixel gray value.

dc
i =

√(
Xŷi − Xxi

)2
+
(
Yŷi −Yxi

)2, 1 ≤ i ≤ n (4)

where ŷi and xi both represent space locations. X and Y represent the abscissa and ordinate,
respectively, in the coordinate system. n is the total number of pixels in the image. Parameter ŷi
is the expected space location, and xi represents the position in the other image. Where c = 1 or c = 2,
the difference values are calculated as follows:
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d1
i = ||ŷi − xi||

d2
i = ||x̂i − yi||

(5)

where d1
i is the difference value between the transformed Image 1 and Image 2. The acquirement of d2

i
is the contrary process. They are both the pixel difference values between the other feature space and
the transformed feature space.

Finally, we will integrate the difference images [48]. This is given by the equation below:

di = d1
i + d2

i (6)

If based on one pixel only, it is likely to cause the wrong detection. However, if we make the
opposite transformation, the pixels in Image 2 are associated with the feature space of Image 1. Some
pixels in Image 2 that have close values may be closer to the pixels in Image 1. Thus, if the difference
value d2

i is too large, the difference value d1
i will be more or less a little smaller. In this case, the sum

of d1
i and d2

i will not be too large. This fusion process can utilize the information of the two feature
spaces to suppress noise [49].

3.4. Sample Selection

This section introduces how to select training samples to acquire reliable samples and a good
trained network. The label map we obtained before contained correct labels and many false labels,
namely unreliable ones. The higher the reliability of the selected training label is, the more correct the
final result of the training will be. Suppose that the value of a training label in the label map is 1 and
that this pixel has a neighborhood of n× n, as shown in Figure 3.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1

1

1

1 1 1 1 1
All labels are equal  to

central pixel label

(a)

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0 0

0

0

0

0 0 0 0 0
All labels are different from 

central pixel label

(b)

1 0 1 1

1 1 1 1

0 1 1 1

0 0 1 1 0

0

0

0

1 1 0 0 1
The number of labels equal  to 

central pixel label is more than half

(c)

0 1 0 0

1 1 0 0

0 0 1 0

1 1 0 1 0

1

0

0

0 0 1 0 0
The number of labels different 

from central pixel label is more than half

(d)

Figure 3. Different label neighbor information and sample selection according to the threshold. (a) All
the labels are the same as the central pixel label. (b) All the labels are different from the central pixel
label. (c) More than half of the labels are the same as the central pixel. (d) More than half of the labels
are different from the central pixel.

Obviously, if the pixel gray values in this neighborhood are all 1, then the value of this label is
reliable. Conversely, if other pixel gray values in this neighborhood are all 0, then the central pixel
is considered a noise point. Therefore, the number of pixel labels in this neighborhood the same as
central pixel can be used as a parameter for us to judge whether the sample is trustworthy or not.
It can be judged according to the following formula:

Q(pξη ∈ Nij ∧Ωξη = Ωij)

n× n
> α (7)

where Nij is the neighborhood and pξη is the pixel in it. Ω represents the pixel label. Ωξη is the
neighbor pixel label, and Ωij is the central pixel label. Q(pξη ∈ Nij ∧Ωξη = Ωij) means the number of
the pixel labels equal to the central pixel. n is the neighborhood size. Therefore, α means the ratio of
neighborhood pixels the same as the central label. Parameter α should be set appropriately. If it is too
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large, the selected samples may be too few, which will have less diversity for training the network.
However, if it is set too small, too many samples will be chosen. Many false labels will be selected,
resulting in more wrong training results.

3.5. Deep Capsule Network and Parameter Settings

The deep capsule network is used to process the fused difference image obtained by the mapping
method. Based on the reliable samples, we can finally obtain a well-trained network. The method
of deepening the capsule network and the related parameter settings are shown in Figure 4. The
deep capsule network for change detection can be accomplished by the following steps: (a) Select
two n× n samples and connect them directly into an n× 2n size and use this as a network input. (b)
Put the input into the Conv layer, using many convolution kernels to extract different simple feature
information. The primarycaps layer further selects the extracted feature information and combines the
feature information into vectors. The digitcaps layer normalizes these vectors and classifies them into
a set of vectors. (c) Reshape these vectors into a one-dimensional vector, and reshape it as some image
blocks of a certain size. Then, input them into the network as before. (d) Compute the L2 norm of the
vectors for classification and obtain the final classification results. Then, the parameters involved in
the network are as marked in Figure 4.

Primarycap
s

Conv
Digitcaps

Digitcaps

Reshape

Result

7 × 7

7 × 7

7 × 14 Kernel 
3 × 3

256 8

32

10

36

Image blocks 
6 × 6

10

2

10

Kernel 
2 × 2

Kernel 
3 × 3

Primaryc
aps

8

32

Samples 
connection

Reshape

Image blocks 
5 × 5

Digitcaps

Kernel 
2 × 2

Primaryc
aps

8

32

25

10

10

Reshape

1 × 360

1 × 250

Reshape

Vector reshape

Vector reshape

Figure 4. The flowchart of the capsule network deepened in a certain way.

The neurons in each layer are divided into groups, i.e., capsules. The output of the traditional
neurons is increased and reshaped as a vector. It is rich in representing the features and the direction of
the entity. The route consistency algorithm preserves the location information and other information
of the entity. Network training is evaluated by using variance functions traditionally, while using the
function below:

Lc = Tcmax(0, m+ − ||vc||)2 + λ(1− Tc)max(0, ||vc|| −m−)2 (8)

where c represents a type of classification and Tc is a parameter. When c exists, Tc is 1, else 0. m+ = 0.9,
m− = 0.1 are the cases of missing the existing classification situations. Lc is called the margin loss.
There being a reconstruction process in the capsule network, we combine the margin loss and the
reconstruction loss so as to make the training result more precise.
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4. Experiment Study

The experiments mainly were performed based on two kinds of datasets. The first part in the
experiments on performed on the homogeneous datasets and based on the deepened capsule network.
The second part was performed on the heterogeneous datasets, and it was based on the proposed
method.

4.1. Homogeneous Datasets

The first dataset consisted of two SAR images of the same size, 306 × 291, as shown in
Figure 5a,b. These two images were obtained with Radarsat-2 in June 2008 and June 2009, respectively.
They covered the same location of farmland along the Yellow River in Shandong Province, eastern
China. The changed regions corresponded to the corrupted farmland, as shown in Figure 5c. The
reference image served as the ground truth to indicate the actual changed regions. The reference image
was acquired by integrating some prior information with image interpretation based on the original
images and the actual situation.

(a) (b) (c)

Figure 5. Farmland dataset. (a) SAR image acquired in 2008. (b) Optical image acquired in 2009.
(c) Reference image.

The Ottawa dataset was a group of two SAR images over the city of Ottawa acquired with
Radarsat SAR sensors, and the size was 290× 350 pixels. The ground truth (reference image), which is
shown in Figure 6c, was acquired by integrating some prior information of Figure 6a,b. The experiment
on the Ottawa dataset was to evaluate water disaster. The white areas represent the changed areas,
namely those areas affected.

(a) (b) (c)

Figure 6. Ottawa dataset. (a) SAR image acquired in 2008. (b) Optical image acquired in 2010.
(c) Reference image.

4.2. Heterogeneous Datasets

The third dataset consisted of a SAR image and an optical image with the same size of 291× 343
pixels, as shown in Figure 7a,b, respectively. The SAR image was also acquired with Radarsat-2
sensors from the Yellow River Estuary in June 2008. The optical image obtained in September 2010
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was captured from Google Earth, covering the same region. These data provided by Google Earth
integrated the imagery from both satellite and aerial photography. These satellite images were obtained
from the Landsat-7 and QuickBird sensors. This dataset was used to study the change of the Yellow
River affected by flood. Figure 7c is the reference image that reveals the actual changed regions.

(a) (b) (c)

Figure 7. Yellow River dataset. (a) SAR image acquired in May 1997. (b) Optical image acquired in
August 1997. (c) Reference image.

The last dataset contained a SAR image and an optical image, as shown in Figure 8a,b, respectively.
This dataset covered a piece of the farmland area in Shuguang Village in Dongying City, China. The
new buildings corresponding to the changed regions were built on the farmland, as shown in Figure 8c.
The SAR and optical images were the same size, 921× 593 pixels. They were obtained in June 2008
and in September 2012, respectively.

(a) (b) (c)

Figure 8. Shuguang Village dataset. (a) SAR image acquired in 2008. (b) Optical image acquired in
2012. (c) Reference image.

4.3. Evaluation Criteria

The final classification results not only show the final change detection binary map, but also
provide some evaluation criterion values to help with analyzing and observing the performance of the
change detection results.

The parameters of the evaluation criteria are shown as follows: (1) the number of all pixels in the
image N; (2) the actual number of changed pixels in the reference image NC and (3) the actual number
of unchanged pixels in the reference image NU; they both can be calculated with the reference image;
(4) the number of changed pixels taken as unchanged pixels FN (false negative); and (5) the number of
unchanged pixels taken as changed pixels FP (false positive). These two parameters can be calculated
by comparing the reference image with the resulting image we obtained. We can calculate the overall
error (OE) as follows:

OE = FP + FN (9)

Another two parameters TP and TN, which have the opposite meaning of FP and FN, respectively,
are calculated as follows:
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TP = NC− FN
TN = NU − FP

(10)

where TP (true positive) means the amount of changed pixels correctly detected in both the reference
image and the final experiment resulting image. TN (true negative) represents the number of
unchanged pixels correctly detected in both the reference image and the resulting image.

For a further evaluation of the resulting image, we can calculate the percentage of correct
classification (CA) [50] as follows:

CA =
TP + TN

TP + TN + FP + FN
(11)

where CA shows the correct rate of the results. However, since the value N is usually large, the
values CA obtained by different methods may be very similar in some situations. It is not enough to
distinguish the quality of detection with CA only. Thus, we introduced the Kappa coefficient (KC) [51]
as another overall evaluation criterion. KC was used to evaluate the results. The higher the KC value
is, the better the detection result is. The calculation method of KC is as follows:

KC =
CA− PRE
1− PRE

(12)

where

PRE =
(TP + FP) · NC + (FN + TN) · NU

N2 (13)

CA depends on the sum of TP and TN. KC relies more on parameters containing more detailed
classification information, so KC can further explain the quality of the change detection map.

4.4. Parameter Settings and Experiments on Homogeneous Datasets

4.4.1. Parameter Settings

The relevant parameters should be set appropriately before evaluating the effectiveness of the
proposed method. In the deep learning method, the structure of the whole network is very important.
It is generally believed that more available features can be learned with more layers of the network.
However, the complex structure of the network can also lead to extra calculation time. Therefore, the
proper settings are very important. For change detection, the image scale is relatively small, and the
structure does not need to be large. In such a process, 3 layers are sufficient for all parameter settings
in the network. In fact, too few units in the hidden layer will affect the results, and too many units
will bring many computational costs also. In the network, the window size n selected by the user
and the sample selection parameter α have important effects on the result. The value of n determines
the amount of information we extract from the two original images. The value of the parameter α

determines the appropriate number of training samples. When n is too large, the classification of the
central pixel is too affected by its neighbor pixels, and the calculation costs much more. In general,
n is chosen to be in the vicinity of 5. It can be chosen from n = 3, 5, 7, 9, 11. Figure 9 shows the
criteria of the parameters α and the n size of neighbors, respectively. Lines of different colors represent
different criteria on different datasets. The results show that n = 7 was the best choice. When n < 7,
the extracted information was not enough. On the contrary, when n > 7, the accuracy of the result
was no better than n = 7. The reason may be that the local information extracts too much, so that the
characteristics of the local pixels are covered. Figure 10 is the resulting map based on these parameters.

Overall, when n = 7, the performance was better than the others. In the following experiments,
all datasets selected n as 7. Figure 11 depicts the effect of the parameters α and n on the resulting
image, respectively. Lines of different colors represent performance on different datasets. The results
show that α near 0.5 was a good choice, so the following experiments were implemented according
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to 0.5. When n was too small, the sample reliability was not strong enough, and it was impossible
to get good results through training. Conversely, when n was too large, the accuracy of the result
was no better than n = 0.5. The reason is that the samples obtained contained only reliable ones, but
the samples were not abundant enough and the sample size insufficient. n = 0.5 is much better than
others. In the following experiments, α as 0.5 was selected for all datasets. Figure 12 is the resulting
map based on these parameters.
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Figure 9. (a) Relationship between the size of the neighbor and FP, FN, and OE on the farmland
dataset. (b) Relationship between the parameter α and the criteria on the farmland dataset.

(a) (b)

Figure 10. (a) Difference map of the farmland dataset. (b) Resulting map by the deep capsule network.
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Figure 11. (a) Relationship between the size of the neighbor and FP, FN, and OE on the Ottawa dataset.
(b) Relationship between the parameter α and the criteria on the Ottawa dataset.

(a) (b)

Figure 12. (a) Difference map of the Ottawa dataset. (b) Resulting map by the deep capsule network.

4.4.2. Experiments on Homogeneous Datasets

In the homogeneous image experiments, we compared the log-ratio (LR) method [52], the mean-
ratio (MR) method [53], the SCCN method, and these methods based on the deep capsule network,
D_LR, D_MR, and D_SCCN. The methods LR and MR are the most commonly-used homologous
remote sensing image change detection methods and are simple and effective. The SCCN method is a
heterogeneous change detection method, which is also suitable for change detection in homogeneous
datasets.

In the experiment of the farmland dataset, the results obtained by the methods mentioned before
are shown in Figure 13. The difference maps obtained by different methods were different. Based on
the comparison between the resulting map and the reference image (ground truth), different evaluation
criteria were obtained. They are listed in Table 1. It can be seen that the deep capsule network has
improved results. In the experiment of the Ottawa dataset, several different difference maps and
binary resulting images were obtained, which are shown in Figure 14. Comparing the resulting image
with the reference map, we list the evaluation criteria of the results by the different methods in Table 2.
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Similarly, the deep capsule network had improved results. Both experiments showed the capacity of
processing and improving the difference image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 13. Difference maps and resulting maps of the farmland dataset obtained by different methods.
(a) Difference map by the log-ratio (LR). (b) Difference map by the mean-ratio (MR). (c) Difference map
by SCCN. (d) Resulting map by LR. (e) Resulting map by MR. (f) Resulting map by SCCN. (g) Resulting
map by DCAPSbased on LR (D_LR). (h) Resulting map by DCAPS based on MR (D_MR). (i) Resulting
map by DCAPS based on SCCN (D_SCCN) (j) Reference map.

Table 1. Values of the evaluation criteria on the farmland dataset by different methods and these
methods based on the deep capsule network.

Method FN FP OE CA KC

LR 1989 2743 0.0531 0.9469 0.5528
MR 1160 1214 0.0267 0.9733 0.7559

SCCN 953 884 0.0206 0.9794 0.7936
D_LR 1207 1015 0.0250 0.9750 0.7679
D_MR 940 864 0.0202 0.9798 0.8160

D_SCCN 786 765 0.0174 0.9826 0.8436
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 14. Difference maps and resulting maps of the Ottawa dataset obtained by different methods.
(a) Difference map by LR. (b) Difference map by MR. (c) Difference map by SCCN. (d) Resulting map
by LR. (e) Resulting map by MR. (f) Resulting map by SCCN. (g) Resulting map by DCAPS based on
LR (D_LR). (h) Resulting map by DCAPS based on MR (D_MR). (i) Resulting map by DCAPS based on
SCCN (D_SCCN) (j) Reference map.

Table 2. Values of the evaluation criteria on the Ottawa dataset by different methods and these methods
based on the deep capsule network.

Method FN FP OE CA KC

LR 3309 1563 0.0480 0.9520 0.8171
MR 5055 9418 0.1426 0.8574 0.5908

SCCN 2686 1217 0.0424 0.9576 0.8369
D_LR 1790 688 0.0244 0.9756 0.8957
D_MR 654 2523 0.0313 0.9687 0.8061

D_SCCN 710 1634 0.0231 0.9769 0.9148

4.5. Experiment Performance on Heterogeneous Datasets

In the next experiments, we will compare our methods (PROPOSED) with the change vector
analysis (CVA) [54,55], ASDNN [56], SCCN, and PCCmethods. The CVA method is a very effective
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method for multi-spectrum change detection. The ASDNN method is a heterogeneous image change
detection method based on the idea of SCCN. It is an improved method of SCCN and has a strong
capability in heterogeneous image processing.

4.5.1. Experiment on the Yellow River Dataset

In the experiment of the Yellow River dataset, the image blocks were chosen randomly. When
selected, they should be distributed as reasonably as possible. If just a certain block or part in the
image is selected, the blocks cannot contain sufficient information, and it will not make the results
more general, but accidental. In this experiment, k was selected as 1300, namely 13 small image
blocks contained 100 pixels each. In Figure 15, six images are shown. These six images were the
difference maps obtained by selecting different numbers of pixels from these image blocks. They were
acquired based on these pixels. In Figure 16, OE in the results was obtained by the simple threshold
segmentation method. It was suitable to select the number of pixels to be small in this dataset. When
the number of selected pixels was k/20 = 65, OE was the least. Other good results were based on this
number being around 65.

In this experiment, the PCC method was used to generate classifications, and the results are
shown in Figure 17a,b. Each of these two images included two identifiable categories that represent
land and rivers. The final binary resulting map can be obtained by direct comparison pixel by pixel,
and it is shown in Figure 17c. Pixels with the same category of labels remained unchanged, and a
different category of labels would be considered as changed. The difference images generated by the
CVA, ASDNN, and SCCN methods and the corresponding resulting images are shown in Figure 18.
Figure 18d,h shows the difference image and resulting map generated by our proposed method. The
reference image is shown in Figure 18j.

(a) (b) (c)

(d) (e) (f)

Figure 15. The difference images for the Yellow River dataset obtained according to different numbers
of selected pixels. (a) Difference image when the number is k/2. (b) Difference image when the number
is k/4. (c) Difference image when the number is k/6. (d) Difference image when the number is k/10.
(e) Difference image when the number is k/13. (f) Difference image when the number is k/20.
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Figure 16. The overall error (OE) on the Yellow River dataset according to different numbers of
pixels selected.

(a) (b) (c)

Figure 17. Classification and change detection maps for the Yellow River dataset by PCC. (a) Classification
image for the SAR image. (b) Classification image for the optical image. (c) Resulting image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 18. Difference images and resulting images for the Yellow River dataset obtained by different
methods. (a) Difference image by change vector analysis (CVA). (b) Difference image by ASDNN.
(c) Difference image by SCCN. (d) Difference image by our proposed method. (e) Resulting image
by CVA. (f) Resulting image by ASDNN. (g) Resulting image by SCCN. (h) Resulting image by our
proposed method. (i) Resulting image by PCC. (j) Reference image.

It is shown that the quality of the difference image produced by our proposed method was
significantly higher. It can be seen that the proposed method had the fewest false alarms. Table 3 shows
the values of the evaluation criteria obtained by the five methods. The CVA method can utilize different
spectrum information. However, it obtained the wrong change detection result because the spectra
in this dataset had more gray information, but less color information. The accuracy of the proposed
method achieved the best performance overall. PCC is a simple change detection approach, and its
performance was affected by the classification algorithm while ignoring much detailed information.
SCCN is an innovative method based on symmetric coupled deep convolutional neural networks.
It exhibited a fairly high degree of accuracy in detecting changes in heterogeneous images, and its
training samples were selected from regions that were unchanged. It blurred some locations belonging
to the changed class. ASDNN performed better on this dataset. The performance of ASDNN was
better in the main detection regions, and it can decrease many of the noises. However, our proposed
method balanced these two problems. It can decrease as many of the noises as possible and detect the
main regions in detail.
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Table 3. Values of the evaluation criteria on the Yellow River dataset by different methods.

Method FN FP OE CA KC

CVA 2795 20545 0.2338 0.7662 0.0057
ASDNN 1068 1782 0.0284 0.9716 0.6086

PCC 1017 2863 0.0389 0.9611 0.5064
SCCN 620 2903 0.0353 0.9647 0.5513

PROPOSED 1029 1446 0.0248 0.9752 0.6220

4.5.2. Experiment on Shuguang Village Dataset

In the Shuguang dataset experiment, image blocks were selected randomly. The same as above,
they should be distributed as reasonably as possible when selected. In this experiment, k was selected
as 4500, namely 15 small image blocks, each of which contained 300 pixels. There are six images shown
in Figure 19. These pictures were based on different numbers of pixels selected from image blocks.
Then simple difference maps were obtained. In Figure 20, the OE of the different results was obtained.
When the number of selected pixels was k/25 = 180, OE was the least. However, if the number was
too small, such as 80, the result would be a little worse. A good choice for the number of pixels was
about 200, as selected in this dataset. Fairly good mapping images could be obtained when the number
was set around 200.

In this experiment, PCC method was used to generate classifications and resulting maps, as
shown in Figure 21a,b. There were two identifiable types in the SAR image, namely farmland region
and water region. In fact, there were also some buildings, but it was hard to identify these buildings
using unsupervised classifiers. There were three identifiable categories in the optical image, namely
farmland, water, and building regions. However, some farmland areas were not correctly classified.
Therefore, such an error caused a change detection result, which was not good enough. The resulting
map was obtained by direct comparison. The difference images generated by the proposed method,
other methods, and the corresponding resulting images are shown in Figure 22.

(a) (b) (c)

(d) (e) (f)

Figure 19. The difference images for the Shuguang Village dataset obtained according to different
numbers of selected pixels. (a) Difference image when the number is k/3. (b) Difference image when
the number is k/4. (c) Difference image when the number is k/11. (d) Difference image when the
number is k/23. (e) Difference image when the number is k/25. (f) Difference image when the number
is k/65.
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Figure 20. The overall error (OE) on the Shuguang Village dataset according to different numbers of
pixels selected.

(a) (b) (c)

Figure 21. Classification and change detection images for the Shuguang Village dataset by
PCC. (a) Classification image for the SAR image. (b) Classification image for the optical image.
(c) Resulting image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 22. Cont.
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(i) (j)

Figure 22. Difference images and resulting images for the Shuguang Village dataset obtained by
different methods. (a) Difference image by CVA. (b) Difference image by ASDNN. (c) Difference image
by SCCN. (d) Difference image by our proposed method. (e) Resulting image by CVA. (f) Resulting
image by ASDNN. (g) Resulting image by SCCN. (h) Resulting image by our proposed method.
(i) Resulting image by PCC. (j) Reference image.

According to Table 4, the proposed method obtained the best result among these methods.
ASDNN and SCCN performed better than PCC. The evaluation criteria of proposed method were
better than these two network methods. ASDNN was the best in the main region we wanted to detect.
CVA also achieved a fairly good result. CVA can make full use of the color information in this kind of
image, though it cannot detect the region of interest well. The same as the performance before, PCC
detected nearly all of the regions that were to be detected, while containing too many unnecessary
regions. The difference image obtained by the proposed method was better. In the SCCN method,
most of the changed regions were detected, but some small detailed regions that were considered to be
changed belonged to the unchanged regions in the reference map. The proposed method was superior
to the other methods in terms of accuracy and detail.

Table 4. Values of the evaluation criteria on the Shuguang Village dataset by different methods.

Method FN FP OE CA KC

CVA 8522 6106 0.0268 0.9732 0.6405
ASDNN 1211 12,115 0.0244 0.9756 0.7469

PCC 489 97,258 0.1790 0.8210 0.2569
SCCN 15,751 20,300 0.0477 0.9523 0.5563

PROPOSED 2027 10,135 0.0218 0.9782 0.7214

5. Conclusions

In this paper, two heterogeneous images were transformed in the feature space at the pixel level
and then compared in their respective feature spaces. Finally, the resulting classified images were
sampled and input into the improved neural network to obtain the final classification result. The results
obtained were better than those obtained by some current methods, but the drawback of the proposed
method is that it was limited to SAR and certain optical images, rather than multi-spectral images, like
high spectral images, natural images, etc. The future work is to explore the feasibility of this method
on multi-spectral images, natural images, or other kinds of images.
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