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Abstract: The ghost phenomenon in synthetic aperture radar (SAR) imaging is primarily caused by
azimuth or range ambiguities, which cause difficulties in SAR target detection application. To mitigate
this influence, we propose a ship target detection method in spaceborne SAR imagery, using a
hierarchical convolutional neural network (H-CNN). Based on the nature of ghost replicas and
typical target classes, a two-stage CNN model is built to detect ship targets against sea clutter and
the ghost. First, regions of interest (ROIs) were extracted from a large imaged scene during the
coarse-detection stage. Unwanted ghost replicas represented major residual interference sources
in ROIs, therefore, the other CNN process was executed during the fine-detection stage. Finally,
comparative experiments and analyses, using Sentinel-1 SAR data and various assessment criteria,
were conducted to validate H-CNN. Our results showed that the proposed method can outperform
the conventional constant false-alarm rate technique and CNN-based models.

Keywords: spaceborne synthetic aperture radar; ship target detection; ghost; convolutional neural
network

1. Introduction

Synthetic aperture radar (SAR) is an active microwave sensor, whose resolution—both in range
and azimuth—can be improved via the pulse compression technique and synthetic aperture principle,
to obtain high resolution remote sensing images. Moreover, another advantage of SAR imaging is its
ability to operate on an all-weather/all-day-and-night basis [1]. Its application has been of interest
in a variety of fields [2,3], e.g., SAR-based ocean remote sensing is widely used for environmental
monitoring, search and rescue, target recognition, etc. [4]. Spaceborne SAR can also be operated over
long periods in wide-area and real-time observations. In this context, it became a fundamental system
for ship target recognition [5–8].

Typical ship target recognition using SAR imagery involves land and sea segmentation, target
detection, target recognition, etc. In a large SAR image, target detection can be based on the feature
difference between targets and backgrounds. In this process, a minimum region in one target chip
containing the whole target can be confirmed [9], and the other part is considered background.
Obvious feature differences normally exist between target and background regions, i.e., grayscale,
multi-resolution, polarization, phase, etc., which form the basis for the design of many target detection
methods. Hu et al. analyzed multidimensional SAR information using a linear time-frequency
(TF) decomposition approach [10]. Yuan et al. extracted the gradient ratio pattern for each pixel
based on Weber’s law, and used the local gradient ratio pattern histogram (LGRPH) for SAR target
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recognition [11]. In addition, the conventional constant false alarm rate (CFAR) technique is a typical
detection method based on the grayscale feature. However, complicated and cluttered backgrounds
severely affect CFAR detection performance [12].

In recent years, ship target detection based on deep learning (DL) has been widely studied [13,14],
using the typical model of convolutional neural network (CNN) [15]. Liu et al. [16] presented a ship
detection method, namely sea-land segmentation-based convolutional neural network (SLS-CNN),
which combines a SLS-CNN detector, saliency computation, and corner features. Furthermore, Zhao
et al. [17] proposed a spaceborne SAR ship detection algorithm based on low complexity CNN.
Some other well-known CNN-based target detection methods include faster region-CNN (Faster
R-CNN), you only look once (YOLO) list model, etc. For example, Li et al. [18,19] improved detection
performance using Faster R-CNN, to successfully provide a densely connected multi-scale neural
network [19]. This method is used to solve multi-scale and multi-scene problems in SAR ship detection.
Feature maps are fused by densely connecting different feature map layers, rather than information
from single feature maps, which represent top-to-down feature map connections. The R-CNN method
is used for target recognition in large scene SAR images [20]. Furthermore, Hamza and Cai used
YOLOv2 for ship detection [21], which introduced a multitude of enhancements into the original
YOLO model.

However, these methods may be no longer effective when ghost replicas exist in an imaged scene.
The ghost phenomenon is an intrinsic effect of SAR’s ambiguity, both in azimuth and range [22,23].
Range ambiguity occurs when different backscattered echoes—one related to a transmitted pulse and
the other due to a previous transmission—temporarily overlap during the receiving operation [24].
On the other hand, azimuth ambiguity is caused by the aliasing of each target’s Doppler phase history.
The Doppler frequency, which is higher than pulse repetition frequency (PRF), may lead to azimuth
ambiguity [25]. This phenomenon is particularly relevant for high reflectivity targets, which appears
in SAR images as ghosts in low reflectivity areas [26]. Moreover, according to the ghost generating
principle, it is similar to its real target, rendering discrimination difficult. Azimuth ambiguity is
prominent due to the spaceborne SAR’s fast platform velocity and big azimuth Doppler bandwidth.

According to the ghost generating principle and characteristics, we provided a hierarchical
CNN-based ship target detection method in spaceborne SAR imagery, i.e., H-CNN. Hierarchical
processing includes two stages: the coarse detection and fine detection. First, regions of interest
(ROIs) were extracted from a large imaged scene in the coarse-detection stage. Although most land
and sea background-related clutter was removed, ghost replicas remained in the ROIs. Therefore,
the fine detection stage was introduced to further refine target detection against ghost replicas. In the
experiments, H-CNN was trained and tested using Sentinel-1 SAR data [27]. In the following sections
we first discuss H-CNN parameter configuration for optimal detection results. Then, the feature
extraction quality is analyzed. Detailed texture and abstract semantic information are extracted using
different convolutional layer operations. Finally, we conduct detection experiments to validate the
H-CNN, and compare it to conventional CFAR technique and CNN models.

2. Ghost Phenomenon in Spaceborne SAR

Spaceborne SAR is an applied formation of SAR in space. Spaceborne SAR has some characteristic
differences compared to airborne SAR [28–31], e.g., the former image normally has large data size due
to its large antenna beam irradiation range, etc.

Ghost is an image representation of SAR ambiguity in range or azimuth direction. When PRF is
too high, successive pulses may be aliased in one pulse period [32]. The distance between the target
and its range ambiguity ghost can be calculated as follows [33,34]:

∆DRZ =
n · λ · fPRF

fDR

(
fDC +

n · fPRF
2

)
, (1)
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where n is the index of azimuth ambiguities, indicating the spatial location of ghost replicas in the
azimuth direction, λ is the radar wavelength, fPRF is the PRF, fDR is the Doppler rate, and fDC is the
Doppler centroid.

If the PRF is excessively low, the part of Doppler frequency higher than PRF is folded into the
azimuth spectrum, resulting in the occurrence of azimuth ambiguity. Figure 1 illustrates azimuth
ambiguity formation with azimuth antenna pattern and PRF. BD is the Doppler bandwidth and
BD ≈ 2V/La, where V is the SAR platform velocity and La is the antenna size in the azimuth direction.
When BD is greater than the value of PRF, as shown in Figure 1, undersampling causes aliasing in
the azimuth spectrum. Blue and red dashed curves denote the first left and right replicas due to the
sampling, respectively.
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Figure 1. Azimuth ambiguity illustration in SAR imaging.

The distance between azimuth ambiguity ghost and target can be calculated by Equation (2) [33,34]:

∆DAZ =
n · fPRF · λ · R′

2V
, (2)

where R′ is the slant range and V is the SAR platform velocity.
Moreover, in the case of a scene where ships are moving on a smooth sea surface, bright targets

against a dark background would be present in the SAR image. In such cases, ghosts are noticeably
observed, and may impose severe difficulties during ship target detection.

According to spaceborne SAR parameters, theoretical range and azimuth ambiguity distances can
be estimated by Equations (1) and (2), respectively. Taking for instance Sentinel-1 SAR data, we analyze
its azimuth ambiguity in some SAR images. Its imaging geometry is shown in Figure 2a. Although it
contains four imaging modes, we only show the interferometric wide (IW) swath mode. Moreover,
Sentinel-1 SAR system parameters play a significant role in the imaging, which contain platform speed,
altitude of satellite to earth ground R, elevation angle β, PRF, etc. Table 1a,b show the Sentinel-1
satellite SAR system and a ship’s example parameters, respectively. Three different PRFs exist in one
group of Sentinel-1 data. Furthermore, according to the characteristics of spaceborne SAR, slant range
is influenced by the Earth’s curvature and distance from ground to satellite—their relationship is
shown in Figure 2b. In other words, it can therefore be calculated using the satellite’s altitude from the
Earth’s ground, radius of the Earth Rearth, elevation angle, and incidence angle θ.
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Figure 2. Geometry of the Sentinel-1 SAR satellite operation in interferometric wide (IW) mode:
(a) imaging geometry of the Sentinel-1 SAR system; (b) interpretation of Sentinel-1 satellite in orbit.

Table 1. Some parameters of the Sentinel-1 satellite SAR system and a ship target in an imaged scene:
(a) Sentinel-1 satellite SAR system parameters; (b) ship parameters.

(a)

Parameters Symbols Values Parameters Symbols Values

Altitude of satellite R 693 km Radius of curvature Rearth 6371 km

Velocity in x direction vx 2.3455 × 103 m/s Radar wavelength λ 5.55 × 10−2 m

Velocity in y direction vy −1.5613 × 103 m/s
PRF

f PRF1 1.717 kHz

Velocity in z direction vz 7.0588 × 103 m/s f PRF2 1.452 kHz

Elevation angle β 27.4967◦ f PRF3 1.686 kHz

Incidence angle θ 30.8312◦

(b)

Velocity of the ship 17.2 nk Type Cargo ship

Latitude −38.3061◦ Time 18/12/2016:
00:34:59

Longitude 144.8005◦

Theoretical azimuth ambiguity distance can be obtained using Equation (2). When n = 1,
the results in the cases of three PRF are ~5031.4 m, 4254.9 m, and 4940.6 m, respectively. The right
graph of Figure 3 depicts the SAR image of the ship example and corresponding ghost replicas. We then
extracted the azimuth direction sequence in one fixed range direction cell. In order to decrease the
dynamic range of amplitude in azimuth direction, we expressed it in decibels. Finally, the sequence
in azimuth direction is shown in the left graph of Figure 3. The distances between two ghosts and
their target are approximately estimated to be ~4630 m and 4970 m, respectively, which are close to
theoretical values mentioned above.

Discrimination difficulty is due to the fact that some traditional characteristics of a target and
its corresponding ghost are similar, i.e., length–width ratio, area and shape complexity, etc. [35–37].
We therefore need to dispose of special discrimination between target and ghost, to eliminate the
negative effects of ghosts on the detection performance.
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Figure 3. Illustration of a ship target and corresponding ghost replicas in a Sentinel-1 SAR image.

3. Property Analyses of Ship Target and Ghost Replica

Some traditional characteristics are similar between a target and its corresponding ghost, i.e.,
length–width ratio, area and shape complexity, etc. It is therefore necessary to analyze their differences.
The proposed method in this paper was designed based on the amplitude information in space
dimension. Thus, we discuss the amplitude statistical feature of target chips and their ghost replicas.
Amplitude distribution differences between target and ghost highlight their degree of distinction.
In other words, a more obvious amplitude distribution difference makes the discrimination between
target and ghost easier. First, one-to-one target chips and ghost replicas were collected from Sentinel-1
SAR data, all of which contain 100 groups. Amplitude normalization was performed for comparison
convenience. For ghost replicas and target chips, the ratio of point number in the corresponding
amplitude range to the overall pixel number was calculated as shown in Figure 4. Moreover,
we enlarged local distribution results in the range of normalized amplitude from 0 to 0.02, which
demonstrated that the amplitudes of most pixels are in this region. We found that the two distribution
formations are similar, in that they first increase and then decline. When the normalized amplitude is
higher than 0.02, the proportion difference of two distributions decreases and all the values are close
to zero.
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4. Architecture of the H-CNN Model

Traditional CNN consists of convolutional, pooling, and fully connected layers. The convolutional
layer is used for feature extraction. Many convolutional kernels exist in every convolutional layer,
and each pixel of kernel corresponds to one weight and one bias. Each neuron in the convolutional
layer must be connected to several neighboring regions of the front layer. In addition, kernel size
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decides region size. In convolutional operation, kernels regularly slide in the whole feature map and
feature extraction is realized as:

Zl+1
i,j = f

(
Zl

i,j ⊗ wl + b
)

, (3)

where Zl
i,j and Zl+1

i,j are the input and output results in (i, j) pixel of the lth convolutional layer,

respectively. They are all named as feature maps. In addition, wl and b are weight and bias of
convolutional kernel in convolutional layer l, respectively. f (·) is an activation function which is
usually designed as sigmoid, rectified linear unit (ReLU) [38], etc. In this paper, ReLU is selected and
is defined by:

f (x) = max(0, x), (4)

After convolutional layer feature extraction, feature maps are transmitted to the next pooling
layer. The pooling operation is used for selecting a few points to replace the whole feature map. Classic
pooling methods include max pooling—which we applied in this paper—mean pooling, etc.

Finally, feature maps are fully connected in the last layer, which is similar to the hidden layer
of traditional feedforward neural network. In this layer, multi-dimensional feature map structures
are reshaped.

Traditional CNN is a supervised network. It is usually optimized by the well-known stochastic
gradient descent (SGD) algorithm [39,40], which is basically an improved version of the batch
gradient descent (BGD) method. In every iterative procedure, all samples were computed using
this optimization algorithm. Moreover, to solve the slow update problem, a group of samples were
stochastically selected and used for gradient direction determination in one iterative procedure. In the
next iteration, a new group of stochastically selected samples was applied for the parameter update.
When the loss of function arrives at the minimum value and remains stable, all parameters, i.e., weight
and bias, are confirmed.

In this paper, we provide the H-CNN method for ship target detection in the spaceborne SAR
imagery, with the hierarchical training pattern. The first coarse-detection stage of H-CNN was used
to discriminate between ROIs and background. The ship targets were further determined from the
interference of ghost replicas during the fine-detection stage. In the test phase, the whole SAR image
was cut into several chips, and processed using coarse- and fine-detection stages, during which ship
targets are extracted from the whole SAR. Here, all SAR chips were input in the coarse-detection
stage. The chips were extracted when different from background. In order to further mitigate
ghost interference, chips extracted after the coarse-detection stage were discriminated during the
fine-detection stage for the ship target detection. It should be noted that large quantities of sea chips
were always present. Therefore, the coarse detection could ease the computational burden for the
following step by removing plenty of background chips. Furthermore, the fine-detection stage focuses
on the elimination of ghost interference. However, since the sliding step is smaller than chip size,
the overlapping phenomenon may occur. We used non-maximum suppression (NMS) [41] to further
dispose of coarse-detection stage results. Architecture of the H-CNN model is shown in Figure 5.

During the coarse-detection stage, the network was trained using target and background samples.
This part of the network mainly focuses on ROI extraction from a large imaged scene. Since unwanted
ghost replicas are major interference sources that remain in ROIs, coarse-detection stage outputs are
inputs into the fine-detection stage network, which facilitates the discrimination between real targets
and ghosts. In the meantime, the fine-detection stage network is trained using target and ghost samples.
NMS is disposed to all ROIs, which are extracted during the coarse-detection stage. Based on this
process, ship target detection in spaceborne SAR imagery can be realized.
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Figure 5. Architecture of the hierarchical convolutional neural network (H-CNN) model.

5. Experiments and Results

5.1. Dataset

In order to verify the effectiveness of proposed method, we applied it to Sentinel-1 SAR data [27].
Sentinel-1 satellite is an Earth observation satellite from the European Space Agency Copernicus
Project. It consists of two satellites: Sentinel-1A and Sentinel-1B, and carries C-band SAR, which
can provide continuous images in all-weather/all-day-and-night conditions. Nowadays, a series of
operational services can be provided by Sentinel-1 SAR data, which include mapping of arctic sea ice
and daily sea ice, marine environment monitoring, ground motion risk monitoring, forest mapping, etc.
In this study, we collected data in the IW model, as shown in Figure 2. Its resolution was 5 m × 20 m,
imaging field width is 250 km, and orbit altitude is 693 km.

To further ensure the training samples’ reliability, each ship in the target sample set was verified
using the Australian Maritime Safety Authority’s (AMSA) information [42]. These ship samples are
collected in three Australian regions (North West, Great Australian Bight, and Bass Strait), which
are indicated by white rectangles in Figure 6. To further guarantee the high diversity of ship types,
we elaborate ship types using information provided on the AMSA website. For example, six-type ship
SAR data are confirmed, i.e., cargo, tanker, dredging ship, fishing ship, tug, and other.
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Figure 6. Location illustration: North West, Great Australian Bight, and Bass Strait of Australia, where
Sentinel-1 SAR images are collected for the experiments.

Some samples of SAR target images and their corresponding optical images are shown in Figure 7.
In most cases, cargo and tanker are larger than other ships, and thus their structures in SAR images
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are obvious. On the other hand, the dredging ship is small, which is indicated by the SAR and
optical images.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 17 
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Figure 7. Samples of SAR and optical image chips of various types of ship targets.

Ghost samples are extracted based on the corresponding target positions. Figure 8 shows a
SAR image used in the test, where target chips and ghost replicas are highlighted by blue and
yellow squares, respectively. In order to present the corresponding relationship, we labeled target
as T-i, where the target chip is i. The ghost is labeled as G-i, where the ghost replica is i. We can
identify 23 ship targets and 4 ghost replicas in this image. On this basis, target chips, ghost replicas,
and background chips were collected, which contained 350 samples with the size of 40 pixels × 40
pixels, respectively, and were used for H-CNN training. Additional 149 Sentinel-1 SAR images with
the size of 670 pixels × 643 pixels were applied to test the proposed networks performance. Altogether,
480 ships chips and 304 ghost replicas were present. To verify the effectiveness of H-CNN, training
samples and test SAR images were acquired from different Sentinel-1 SAR data. The ship targets were
confirmed by the maritime information on the AMSA website. Furthermore, we gained approximate
corresponding ghost information based on the spaceborne SAR imaging theory, Sentinel-1 system
parameters, and maritime information. The ghost confirmation method is shown in Section 2.
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Figure 8. Ship targets and ghost replicas in a SAR image sample in test. Twenty-three ships and four
azimuth ghosts are indicated by blue and yellow squares, respectively.
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5.2. Discussion of Parameter Configuration of H-CNN

The key point of the proposed method is to mitigate the influence of ghost replicas on CNN
models’ detection performance. Particularly, hyperparameters of convolutional kernels play a key role
in the H-CNN performance. In this part, we studied H-CNN configurations with a variety of kernel
hyperparameters to obtain its optimal detection performance. Details of kernel hyperparameters
involved in H-CNN are shown in Table 2. In order to conveniently present different parameter
configurations, we defined a brief description of network structure as H-i-j. It presents structure cases
i and j in coarse- and fine-stage detection, respectively. We discuss the influence of kernel numbers
and sizes during coarse- and fine-detection stages on detection performance, respectively. Moreover,
in each layer, the structure is shown as A@B × B-Maxpool C × C formation, where kernel number
is A, the kernel size is B × B, and max-pool is operated in each region of C × C. Different networks
were trained by the same samples. We only changed kernel numbers of the coarse-detection stage and
other parameters were fixed, as shown in Table 2a. According to the detection results, we confirmed
the optimal kernel numbers and sizes during the coarse-detection stage using network comparisons
shown in Table 2b. Similarly, kernel numbers and sizes during the fine-detection stage were confirmed
using network comparisons shown in Table 2c,d. Detection performance was evaluated using four
typical measures, including figure of merit (FoM), precision, recall, and F-measure [19,43], respectively.
They are defined as follows:

FoM =
TP

TP + TN + FP
, (5)

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + TN
, (7)

F−measure =
2× Precision× Recall

Precision + Recall
, (8)

where TP is the number of correct detected targets, TN denotes the number of falsely detected targets,
and FP is the number of undetected targets.

Table 2. Configurations of H-CNN with different network hyperparameters with respect to
convolutional kernels: (a) number of kernels in the coarse-detection stage; (b) kernel size in the
coarse-detection stage; (c) number of kernels in the fine-detection stage; and (d) kernel size in the
fine-detection stage.

(a)

Case H-1-1 H-2-1 H-3-1 H-4-1 H-5-1 H-6-1

Input 40 × 40

Coarse-detection
stage

L1
Conv. 3@9 × 9 4@9 × 9 6@9 × 9 8@9 × 9 9@9 × 9 12@9 × 9

Maxpool 2 × 2

L2
Conv. 3@9 × 9 4@9 × 9 6@9 × 9 8@9 × 9 9@9 × 9 12@9 × 9

Maxpool 2 × 2

L3 Fully connection

Fine-detection
stage

L1
Conv. 3@7 × 7

Maxpool 2 × 2

L2
Conv. 3@8 × 8

Maxpool 2 × 2

L3 Fully connection

Output 2 × 1
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Table 2. Cont.

(b)

Case H-1-1 H-7-1 H-8-1 H-9-1 H-10-1 H-11-1

Input 40 × 40

Coarse-detection
stage

L1
Conv. 3@9 × 9 3@3 × 3 3@5 × 5 3@7 × 7 3@11 × 11 3@13 × 13

Maxpool 2 × 2

L2
Conv. 3@9 × 9 3@4 × 4 3@7 × 7 3@8 × 8 3@8 × 8 3@7 × 7

Maxpool 2 × 2

L3 Fully connection

Fine-detection
stage

L1
Conv. 3@7 × 7

Maxpool 2 × 2

L2
Conv. 3@8 × 8

Maxpool 2 × 2

L3 Fully connection

Output 2 × 1

(c)

Case H-10-1 H-10-2 H-10-3 H-10-4 H-10-5 H-10-6

Input 40 × 40

Coarse-detection
stage

L1
Conv. 3@11 × 11

Maxpool 2 × 2

L2
Conv. 3@8 × 8

Maxpool 2 × 2

L3 Fully connection

Fine-detection
stage

L1
Conv. 3@7 × 7 4@7 × 7 6@7 × 7 8@7 × 7 9@7 × 7 12@7 × 7

Maxpool 2 × 2

L2
Conv. 3@8 × 8 4@8 × 8 6@8 × 8 8@8 × 8 9@8 × 8 12@8 × 8

Maxpool 2 × 2

L3 Fully connection

Output 2 × 1

(d)

Case H-10-1 H-10-7 H-10-8 H-10-9 H-10-10 H-10-11

Input 40 × 40

Coarse-detection
stage

L1
Conv. 3@11 × 11

Maxpool 2 × 2

L2
Conv. 3@8 × 8

Maxpool 2 × 2

L3 Fully connection

Fine-detection
stage

L1
Conv. 3@7 × 7 3@3 × 3 3@5 × 5 3@9 × 9 3@11 × 11 3@13 × 13

Maxpool 2 × 2

L2
Conv. 3@8 × 8 3@4 × 4 3@7 × 7 3@9 × 9 3@8 × 8 3@7 × 7

Maxpool 2 × 2

L3 Fully connection

Output 2 × 1

Figure 9a illustrates detection results of H-1-1, H-2-1, H-3-1, H-4-1, H-5-1, and H-6-1. According
to Table 2a, we identified differences in kernel numbers in stage1, while other parameters were
similar. Hence, we could confirm kernel numbers during the coarse-detection stage by applying this
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comparison. Results in terms of FoM, precision, and F-measure showed that the optimal situation
is H-1-1. As to the assessment in recall, H-1-1 is the second best one, but very close to H-5-1, which
has the highest value in Figure 9a. It illustrates that compared to 4, 6, 8, 9, and 12, 3 is the best kernel
number choice during coarse-detection stage. Therefore, the kernel number during coarse-detection
stage was set to be 3 for the following comparison experiments.
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Figure 9. H-CNN detection performance comparison with respect to different kernel hyperparameters
in terms of various assessment criteria: (a) number of kernels in the coarse-detection stage; (b) kernel
size in the coarse-detection stage; (c) number of kernels in the fine-detection stage; and (d) kernel size
in the fine-detection stage.

According to Table 2b, kernel sizes alone during the coarse-detection stage in H-1-1, H-7-1, H-8-1,
H-9-1, H-10-1, and H-11-1 were different. Hence, we could confirm this parameter via the detection
results, which are shown in Figure 9b. Detection results of H-10-1 have a little superiority, i.e., best
kernel size results are 11 × 11 and 8 × 8 in two layers of the coarse-detection stage.

On this basis, we further compared the results using different kernel numbers during the
fine-detection stage, as shown in Table 2c. H-10-1 results are the best, indicating 3 as the kernel
number during the fine-detection stage.

Finally, we discuss the influence of kernel size during the fine-detection stage on detection
performance. According to Figure 9d, H-10-1 shows the best result, thus representing that the two
layers kernel size during the fine-detection stage should be designed as 9 × 9.

5.3. Analyses of Feature Extraction by H-CNN

To analyze feature extraction quality, we first observed feature maps of target, background, and
ghost chips. Figure 10 shows some feature map examples of H-CNN during the test. The target and
ghost chips had clear boundaries compared to the background chip, thus the first layer’s feature maps
both in coarse- and fine-detection stages had obvious texture in target and ghost chips. On the other
hand, feature maps in the last layer presented abstract semantic information. We found that feature
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maps of target and ghost in the last layer were hardly discriminated during the coarse-detection
stage. However, feature map differences between target and background were obvious, thus target
and background discrimination was easy to detect during the coarse-detection stage. During the
fine-detection stage, feature maps differences between target and ghost in the last layer became more
obvious, thus their discrimination difficulty decreased.
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Figure 10. Feature map examples in two stages of H-CNN for ship target, ghost replica, and sea clutter
background in test.

In this part, we investigated the feature extraction quality of target chips and ghost replicas.
If features are significantly different, the degree of distinction between two chips improves. The chips
introduced in Section 3 were disposed by H-CNN and we collected their feature maps. The amplitude
distribution was obtained by the same method. Distributions are shown in Figure 11. Amplitude
for most focus points on the two regions, 0–0.02 and 0.96–1, are enlarged. The two distributions are
dissimilar, especially in these two enlarged parts. Compared to Figure 4, distribution differences are
obvious in Figure 11. It indicates that the distinguishable degree of features extracted by H-CNN is
stronger than that of the original chips.
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In order to further quantitatively analyze feature extraction quality, we introduced a linear
discrimination analyses (LDA) theory. It is well known that LDA is aimed at maximizing between-class
to within-class scatter matrices ratio. Here, two scatter matrices, called the within-class and
between-class scatter matrices, are defined as [44]:

Sw = E
{
‖Xi − Xj‖2

}
= E

{(
Xi − Xj

)T(Xi − Xj
)}

, (9)

Sb =
c

∑
i=1

P(ωi)‖Mi −M0‖2 =
c

∑
i=1

P(ωi)(Mi −M0)
T(Mi −M0), (10)

where Sw is the within-class scatter matrices, Sb is the between-class scatter matrices, Xi is the samples
i, E{·} is the mean value, c is the type number, P(ωi) is the ωi sample number ratio to all sample
numbers, Mi is the mean value matrix of ωi samples, and M0 is the mean value matrix of all samples.

Furthermore, there are two criteria for evaluating feature extraction quality, J1 and J2, as follows:

J1 = trace
(

S−1
w · Sb

)
, (11)

J2 = trace(Sb)/trace(Sw), (12)

where trace(·) is the operation of calculate matrix trace. According to the LDA theory, the bigger J1 and
J2, the stronger distinguishable degree it has. Taking fine-stage detection for instance, we calculated
J1 and J2 of a feature map in two layers as shown in Table 3. It is obvious that criteria values of the
L2 layer were bigger than those of L1 layer. In other words, features in the L2 layer had a stronger
distinguishable degree than those in the L1 layer.

Table 3. Quantitative evaluation of feature extraction for fine-detection in different layers.

Layer L1 L2

J1 0.1915 1.0728
J2 0.0306 0.0486

5.4. Detection Result Comparison

Comparative analyses of CFAR, traditional CNN, low complex CNN, and the proposed network
are presented herein to validate the H-CNN. In the CFAR method, we used the cell average CFAR
(CA-CFAR) to detect above SAR images [45] where the false alarm rate was set as 1 × 10−3. Moreover,
the traditional CNN model consisted of two convolutional layers, two pooling layers, and one fully
connected layer. Its parameter configuration was confirmed by detection result comparisons of multiple
networks. Moreover, a low complex CNN was introduced by [17]. H-CNN parameter configuration
was set as aforementioned H-10-1.

In order to intuitively observe detection results based on different methods, we provided one
instance as shown in Figure 12. It illustrates detection results of the SAR image of Figure 8, where
targets and ghosts are labeled. We can see that all targets were detected, but the performance on ghosts
was different. Hence, let us focus on the detection results of ghost replicas. G-2 was accurately detected
as a ghost replica by these four methods. Other ghosts may be falsely detected by CFAR, traditional
CNN, or low complexity CNN. For example, G-4 was identified as a target by CFAR, G-7 was also
identified as a target by CFAR and traditional CNN. Only H-CNN was able to discriminate G-19 as a
ghost replica. In other words, H-CNN could resist the interference of ghost replica and its detection
performance outperforms other detection methods.

Furthermore, we calculated the statistical results to accurately illustrate detection performance.
Detection results of CFAR, traditional CNN, low complexity CNN, and the proposed H-CNN are
presented in Table 4. All the test data consisting of 149 Sentinel-1 SAR images with 480 ship targets
and 304 ghost replicas are used herein. We can see that superiority of the proposed H-CNN is obvious.
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More specifically, the proposed method could achieve more than 13.83% and 4.57% improvement
compared to the CFAR technique and traditional CNN model, respectively. In addition, compared
with low complexity CNN, the increase of 3.51%, 3.47%, and 2.54% in FoM, recall, and F-measure,
respectively, could be achieved by H-CNN.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 17 
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Figure 12. Ship target detection results in Sentinel-1 SAR image samples: (a) constant false-alarm rate
(CFAR); (b) traditional CNN; (c) low complexity CNN; and (d) H-CNN.

Table 4. Comparison of statistical detection results in terms of various assessment criteria.

FoM (%) Precision (%) Recall (%) F-Measure (%)

CFAR [45] 72.88 78.05 91.67 84.31
Traditional CNN 85.40 87.31 97.50 92.12

Low complexity CNN [17] 85.55 90.18 93.20 91.67
H-CNN 89.06 91.88 96.67 94.21

6. Conclusions

A ship target detection method was proposed in this paper based on hierarchical CNN in the
spaceborne SAR imagery. Its major contributions are twofold. First, a hierarchical pattern was designed
to allow the single attention of each stage for the ship target detection against different interference,
i.e., sea clutter and ghost replicas. Second, we adopted the statistical analyses of feature maps in
the last layer, which may facilitate the understanding of these abstract features of ship targets and
ghosts in spaceborne SAR images. Specifically, in the coarse-detection stage of H-CNN, ROIs can be
extracted from whole images. Moreover, ship targets were detected against ghosts in the fine-detection
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stage. According to spaceborne SAR characteristics, we analyzed the ghost-generating principle, which
conforms to the actual data situation. H-CNN designation was based on the amplitude information of
SAR image chip in space dimension, and amplitude distribution differences between target and ghost
were then discussed. Amplitude proportion differences were obvious, but the envelope forms of the
two distributions were similar. In the experiments, we first discussed the parameter configuration of
H-CNN as H-10-1 to obtain optimal detection results. Then, the feature extraction quality of H-CNN
was studied. It was found that some detail texture features, and abstract semantic features, were
extracted by different convolutional layers of H-CNN. Moreover, feature map amplitude distributions
of target and ghost had different envelopes, which improved their distinguishable degree. Furthermore,
the feature extraction quality during the fine-detection stage of H-CNN was quantitatively analyzed
based on the LDA theory. Finally, we compared the proposed method with conventional CFAR
technique, traditional CNN model, and low complexity CNN model using the same data. Detection
results of H-CNN were optimal, and it achieved more than 13.83% and 4.57% improvement compared
to CFAR and traditional CNN model, respectively. Additionally, compared with low complexity CNN,
H-CNN increased by 3.51%, 3.47%, and 2.54% in FoM, recall, and F-measure, respectively. In other
words, the proposed H-CNN could effectively resist the interference of sea clutter and ghost replicas.
To probe deeper, we plan to explore the joint detection and classification of SAR ship targets based on
DL methods in future work. The influence of more factors in practical applications will be considered
and studied, such as multi-resolution, speckle noise interference, image with some defocused ROIs, etc.
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