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Abstract: Image captioning generates a semantic description of an image. It deals with image
understanding and text mining, which has made great progress in recent years. However, it is still a
great challenge to bridge the “semantic gap” between low-level features and high-level semantics in
remote sensing images, in spite of the improvement of image resolutions. In this paper, we present a
new model with an attribute attention mechanism for the description generation of remote sensing
images. Therefore, we have explored the impact of the attributes extracted from remote sensing
images on the attention mechanism. The results of our experiments demonstrate the validity of our
proposed model. The proposed method obtains six higher scores and one slightly lower, compared
against several state of the art techniques, on the Sydney Dataset and Remote Sensing Image Caption
Dataset (RSICD), and receives all seven higher scores on the UCM Dataset for remote sensing
image captioning, indicating that the proposed framework achieves robust performance for semantic
description in high-resolution remote sensing images.

Keywords: remote sensing image captioning; attributes; attention mechanism; convolutional neural
network; long short-term memory network

1. Introduction

With the development of computers and sensors, modern remote sensing technologies have seen
rapid successful progress. Remote sensing images have become an important tool for people to access
geospatial information. In recent years, remote sensing images have played a very significant role not
only in military applications but also in the field of business applications. The applications cover a
wide range of vital areas such as national census, geological survey, water conservancy construction,
oil exploration, map mapping, environmental testing, earthquake prediction, railway, and highway
location, and archaeological research [1–3].

Nowadays, remote sensing images are of high resolution. However, their interpretation and
understanding are still limited to the feature level, such as scene classification [4–6] and object
detection [7,8] with little reasoning and understanding of the scene. This handling cannot solve
the “semantic gap” problem between low-level features and high-level abstract or summarization.
Therefore, correctly interpreting high-resolution remote sensing images at different levels in a large
dataset has become one of the most challenging scientific problems in the field.

Furthermore, due to the high complexity of the scene and the difficulty of sample labeling, there
are very few studies on semantic description of remote sensing images, and the existing results are
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concentrated on image semantic extraction and image retrieval. Liu et al. [9] proposed a semantic
mining-based remote sensing image retrieval model. Zhu et al. [10] proposed a new strategy of
SAL-LDA (Semantic Allocation Level-Latent Dirichlet allocation) at the semantic distribution level.
Yang et al. [11] used the Conditional Random Field (CRF) Framework to model the underlying features
and context information of remote sensing images. Wang et al. [12] proposed a semantic-based remote
sensing image data retrieval solution. Chen et al. [13] proposed to construct a typical object semantic
relation network based on the graph model theory. Li et al. [14] proposed a target semantic model
based on the target detection method, with a better reflection of the essential difference between the
target themes of the semantic meaning of the target category. The methods are obtained through
statistical learning methods.

In order to solve the “semantic gap” problem and make better use of remote sensing images,
for example, remote sensing images understanding and description can help to analyze battlefield
images to achieve a real-time interpretation of the geographical environment. Therefore, we first need
to understand the image content and generate a natural language description of the content, namely
image captioning. Approaches in a multimodal space have achieved significant progress [15–18].
These methods combine image features with text description data, and generate the description of a
new image by learning the corresponding relationship between them.

For remote sensing image captioning, very few research works have been published. Notable
among the modest literature, Qu et al. [19] proposed a multimodal neural network model for semantic
understanding of high resolution remote sensing images. Shi et al. [20] presented a remote sensing
image captioning framework using a convolutional neural network (CNN). Lu et al. [21] explored
some models with multimodal and attention mechanism, and exposed a dataset, Remote Sensing
Image captioning Dataset (RSICD).

Visual attention [22] comes from the study of human vision. In cognitive science, due to the
bottleneck of information processing, humans will selectively focus on some part of the scene while
ignoring other information, which is referred to as the attention mechanism. In image captioning,
attention mechanisms can be introduced to process visual information selectively, which allow the
computer to place computational resources on an object at a time, guided by image attributes. Attention
mechanisms have been widely used [21,23–25]. For example, before an attention mechanism is
introduced into an encoder-decoder framework, the encoder can only convert the image features into
one intermediate vector, which is decoded to generate all the words in the target sentence. When
there are many or complex objects in an image, one intermediate vector is not sufficient to represent
the corresponding image features. The attention mechanism enables the encoder to look at different
regions in the image and generate multiple intermediate vectors, thus improving the quality of the
generated sentences. This is especially important when there is confusion in the image. For remote
sensing images, a large number of ground objects with multiple scales, as well as the mutual occlusion
between various objects, lead to the confusion of information in the image. Therefore, the attention
mechanism pays much attention to the dynamic representation of images. Furthermore, as high-level
concepts, attributes are able to represent global features [25–27]. Unlike natural images in which
specific objects attract the attention, many items in remote sensing images need to be taken into
account. Due to the complex presentation of remote sensing images, the original attention mechanism
in processing remote sensing images lacks attention to some inconspicuous objects. Therefore, we need
to integrate global information to the model in order to improve the attention accuracy.

In this paper, we propose a new model with an attribute attention mechanism for remote sensing
image captioning. In this field, compared with the attention mechanism used in Lu et al. [21],
the proposed model can: (1) focus on the whole image information while paying attention to the
relationship between the input images and the word that the decoder generates, (2) weight the relative
strength of the attention paid onto different attributes, and (3) use features that correspond to the
detected visual attributes rather than the pre-trained features at a particular spatial location [21]. Using
an encoder-decoder framework, our model is shown in Figure 1. First, the input remote sensing image
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is mapped onto the feature maps using CNN. Then, the feature maps are passed to the fully connected
layer of CNN, and we take the output of the last fully connected layer (or softmax layer) as attributes.
By introducing the attributes, the attention mechanism perceives the whole image while knowing
the correspondence between regions and words. Due to the existence of the attention mechanism,
at each moment, different intermediate vectors can be generated. Finally, the intermediate vectors
and the embedded texts are input into the long short-term memory network (LSTM) for training.
We chose LSTM rather than the standard recurrent neural network (RNN) as the decoder because it is
a four-layer network with a special way to interact in the repetitive module of LSTM which uses a very
simple structure e.g., a tanh layer in the standard RNN. Furthermore, the gate structure is applied to
LSTM to discard and store the information and determine the state of the cell. In [15, 21], the reported
experiments also showed that an LSTM performs better than a standard RNN.
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2. Related Work

2.1. Progress on Natural Image Captioning

With the rapid development of computer vision and natural language processing, the generation
of natural language descriptions for an image has attracted the attention of the community. In recent
years, many deep learning models adapted to this problem have been proposed. There are three main
categories of the existing image captioning methods [28]: template, retrieval, and encoder-decoder-
based image captioning.

Template-based methods generate sentences by filling up blanks with various targets, attributes,
and behaviors extracted in the image. [29–31] started by extracting or inferring various objects from
the image before filling the blanks. Sentences generated in this way are grammatically correct but
inflexible and stereotyped due to its predefined templates.

Retrieval-based approaches build a database which includes pairs of images and their
corresponding text descriptions. For a given image, the similar images and their descriptions are
obtained from the database first; then, the sentences for the query image are chosen from those
captions [32–34]. Obviously, the sentences can be correct in syntax and different in sentence structure
if the database is constructed properly.

The last category, encoder-decoder methods, are the most widely used in the field. These methods
use a CNN as an encoder to extract image features and adopt an RNN or LSTM as a decoder to generate
sentences with those image features. Mao et al. [16] proposed a multimodal recurrent neural network
(m-RNN) to generate captions with a CNN and RNN interacting with each other in a multimodal layer.
However, compared with RNN, LSTM solves the problem of gradient dissipation while retaining
the correlation of long time series. Vinyals et al. [15] proposed a neural image captioning (NIC)
generator replacing the RNN in [16] with an LSTM to make the model handle long sentences. In the
encoder-decoder structure of the NIC model, an encoder encodes all the image features into one unified
semantic feature vector whose length has become a bottleneck problem which restricts the performance
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of the model. To solve this problem, Xu et al. [23] first introduced an attention mechanism into the
encoder-decoder framework to generate different semantic feature vectors at different time steps,
and the model concentrates on different regions of the image during the word generation. In addition
to using the attention mechanism to improve encoder-decoder structure, high-level semantic features
also provide an improved solution. Wu et al. [35] considered the role did of the explicit high level
concepts play in image captioning, and they found high level concepts had achieved greater better
performance than image feature maps. As high-level image features, the importance of semantics or
attributes in images is discussed in [25–27].

2.2. Progress on Remote Sensing Image Captioning

With regards to natural image captioning, researchers have carried out thorough study on remote
sensing image captioning.

Qu et al. [19] proposed a multimodal neural network model using visual and textual information
of high resolution remote sensing images to describe images. It used an encoder-decoder framework,
and demonstrated that a framework suitable for natural images can also achieve good performance
for processing remote sensing images. In addition, Qu et al. [19] also studied the currently CNN
and RNN model combination and found that the system with Vgg19 as the encoder and LSTM as
the decoder obtained satisfactory results on the UC Merced (UCM) [36] and Sydney [37] datasets.
Unlike Qu’s method, Shi et al. [20] stated that using LSTM as the language model was not suitable for
generating captions for remote sensing images due to the inadequate training. Therefore, they reported
a template-based approach to generate captions instead. It is convenient to design different templates
and generate new rules according to the characteristics of remote sensing images. Recognizing the
lack of datasets in remote sensing image captioning, Lu et al. [21] disclosed a dataset named RSICD
for research work on remote sensing images caption. Furthermore, they revealed several models
with an encoder-decoder framework and an attention mechanism, and found that these methods
for handling natural images can be transferred to the process of remote sensing images. All of the
above methods are encoder-decoder-based or template-based methods. Recently a retrieval-based
method was proposed. Wang et al. [38] used latent semantic embedding by metric learning and a
learned Mahalanobis matrix to compute the distance between the image and the collective sentences
to accomplish the multi-sentence captioning task.

3. Remote Sensing Image Captioning with Feature Extraction and Attribute Attention

In this section, we introduce the overall framework of our method and focus on the rationale of
using attribute attention mechanisms. In Section 3.1, the process of extracting image and sentence
features is presented. A CNN and an LSTM that extract image and sentence features respectively
constitute the main body of our model. In Section 3.2, we first briefly introduce the original attention
mechanism, and then introduce the principle of the attribute attention mechanism.

3.1. Feature Extraction

3.1.1. Image Feature Extraction

The description of remote images is related to the features and attributes extracted in the remote
images, so we use CNN to extract image features and attributes in each remote sensing image. CNN
is composed of convolution, pooling, activation function, and fully connected layers. The different
features of CNN are designed to encode different levels of information. High-level features focus
more on semantic information and less on details, while low-level features contain more details.
We expect to use a simple and effective method to take advantage of high and low level characteristics
and complement each other. Therefore, in our method, both low-level feature h extracted from the
relatively shallow convolution layer and high-level feature attr extracted from the relatively deep fully
connected layer or softmax layer are used, which can be written as:
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h = CNN−C(I) (1)

attr =

{
CNN−FC(I), output o f f c layer
CNN−SM(I), output o f sm layer

(2)

where I represents the input images, and CNN−C(·), CNN−FC(·), CNN−SM(·) represent the output
of the convolution layer, fully connected layer and softmax layer in CNN, respectively. Instead of
simply fusing h and attr, we use the attention mechanism to combine these two features, which will be
described in Section 3.2.

In [35], attributes obtained by a trained multi-label CNN replace feature maps as the input image
feature. Different from [35], our proposed attributes do not require particularly precise multi-label
training and are applied to the attention mechanism, rather than directly going to the decoder as feature
maps. In the field of natural image captioning, [25,26,35] used semantic concepts. However, those
methods cascade the high-level semantics with feature maps or substitute the feature map as the input
of the LSTM. They do not take into account the introduction of high-level semantics (attributes) into
the attention mechanism used to re-weight the objects. These are the distinctions in the construction
and use of attributes between the previous research works and our method.

3.1.2. Sentence Feature Extraction

Similar to [15,23,35], we cannot import the descriptive sentences into our model directly, so each
word in sentences is represented as a one-hot vector Si whose dimension equals the vocabulary size of
words. For example, the vocabulary is built based on the top 2000 words in terms of their occurring
frequency in the RSICD training set. Therefore, all the sentences can be represented in the form of
{S1, S2..., SL}, and our goal is to maximize the log-likelihood of the sentences:

logp(S|h, attr ) =
L

∑
i=1

logp(Si|S1:i−1, h, attr ) (3)

where p(Si|S1:i−1, h, attr ) is the probability of generating word Si given previous words S1:i−1, image
low-level feature h and image high-level feature attr.

3.1.3. Overall Framework

In the training process of our model, we chose Vgg16 as the encoder and the standard LSTM as
the decoder. LSTM is a special type of RNN that can learn long-term dependency information, so it
is widely used in fields such as natural language processing and image captioning. In our model,
LSTM, as the decoder, utilizes the information of sentences S = {S1, S2..., SL}, image features h and
attributes attr to generate words one by one for the description of remote sensing images. In the
beginning, we used the mean of h to initialize the memory state and the last output value of the LSTM.
Our training objective was to learn all the training parameters in CNN and LSTM by minimizing the
following loss function:

l = − 1
N

N
∑

n=1
logp

(
S(n)

∣∣∣h(n), attr(n)
)
+ λθ · ‖θ‖2

2

= − 1
N

N
∑

n=1

L(n)

∑
i=1

logpi

(
S(n)

i

)
+ λθ · ‖θ‖2

2

(4)

where N is the number of the images in the training set and L(n) is the length of the sentence for the
nth training example. λθ · ‖θ‖2

2 is a regularization term. Furthermore, the CNN and LSTM are trained
at the same time. The flow-chart of the model is shown in Figure 2.



Remote Sens. 2019, 11, 612 6 of 18

1 
 

 

 

 

 

 

 

 

Figure 2. The structure of our model, and attr can be the output of the last fully connected layer or
softmax layer.

3.2. Attribute Attention Model

Bahdanau et al. [39] were pioneers in introducing the attention mechanism into the field of
natural language processing. In [39], the attention mechanism is demonstrated by a series of attention
allocation coefficients, that is, a series of weight parameters. Corresponding to the field of image
caption, the attention mechanism assigns different weights to different regions of the image, which
associates the intermediate variables generated by the encoder change with the change of the region of
interest. The ith intermediate vector ci can be expressed as:

ci = ∑
j

αijhj (5)

where hj represents the jth region that we attend. The weight αij of each hj is computed by:

αij =
exp

(
eij
)

∑
k

exp(eik)
(6)

where
eij = a

(
si−1, hj,

)
(7)

can be calculated by the alignment model a(·), which is based on the correlation between the jth region
of the image and the ith word in the generated sentence. In other words, eij is the weight calculated by
measuring the relationship between hidden state si−1 in the decoder and hidden state hj in the encoder.

The attention mechanism can bring improvements in image captioning due to the fact that the
encoder generates different intermediate variables, based on different regions of images, to generate
target words in different positions. It is shown that the intermediate vector c is affected by α, which
is the output of ε through the softmax function. Therefore, we are able to ameliorate ε to influence
α, which in turn improves the performance of the model. In Equation (7), eij is affected by the state
si−1 at the last moment of the decoder and the state hj at this moment of the encoder, representing the
degree of the correlation between si−1 and hj.

Many previous works related to the attention mechanism that were derived from or inspired
by [39], such as [21,23], only used low-level image features h represented by Equation (1); high-level
image features were often ignored. Due to the richness and complexity of remote sensing image
content, it may miss the target in the image if we overlook the high-level features. Therefore, global
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features are required to support the image analysis. As the convolution layers increase, the receptive
field becomes larger, which tends to contain the global information [20]. Hence, the top layer of CNN,
e.g., a fully connected or softmax layer, concerns global information. Inspired by that, we present our
model based on a different attention mechanism with a new means to construct e, written as:

eij = a
(
si−1, C

(
hj, attr

))
(8)

where attr is the output of the last fully connected or softmax layer of CNN, which is defined as the
attributes of the input image. C(·) is a function that concatenates hj with attr. So Equation (8) can be
written as:

eij = sT
i−1Wsh

[
hj; Wattrattr

]
(9)

where Wsh and Wattr are trainable weight matrices. Wsh contains a number of parameters for adjusting
the matrix multiplication of si−1 and C(·) to obtain a reasonable corresponding relation, and Wattr

can change the weight of attributes so that attributes can focus on different objects in the images.
By substituting Equation (9) into Equation (6) and Equation (5), we can obtain the intermediate vector
ci, different from [21] and [23].

Figure 3 shows the differences between the original attention and our attribute attention models.
For visual simplicity, we omit the LSTM part related to the attention mechanisms. The left part of
Figure 3 shows the construction of the two mechanisms. The original attention model uses the feature
map information while our attribute attention model utilizes attributes in addition to the feature map,
represented by Equations (7) and (9). The right part of Figure 3 shows two line charts, respectively
showing the weight of the corresponding words of the original attention mechanism and the proposed
attribute attention mechanism in generating descriptive sentences. We see that due to the existence
of attributes, the likelihood of some words (such as yellow) is increased, and some ignored words
(such as wave) are generated with high possibility. In addition, the attributes may contain interfering
information. For example, attributes may contain the weight of desert and yellow beach in the image
is likely to be identified as yellow desert. Therefore, Wattr is important because it can make the weights
of attributes trainable and reweight the attributes for better sentences generation.

4. Experiments

4.1. Dataset

In the experiment, we use three public datasets for image description generation. UCM-Captions
Dataset [19,36], of 2100 images, is based on the UC Merced Land Use data, and contains 21 classes
including agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residential,
forest, freeway, golf course, harbor, intersection, medium residential, mobile home park, overpass,
parking lot, river, runway, sparse residential, storage tanks, and tennis court. There are 100 images for
each class and every image is with a size of 256 × 256 pixels and five different sentences are exploited
to describe every image. The phrasing of five sentences for one image is different, but the meaning
is the same. All the images were extracted from large images of the United States Geological Survey
National Map Urban Area Imagery. The examples of the UCM Dataset are shown in Figure 4.
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Sydney-Captions Dataset [19,37] is based on the Sydney Dataset, and contains seven classes,
including residential, airport, meadow, rivers, ocean, industrial and runway. There are 613 images
and every image is with a size of 500 × 500 pixels, and five different sentences are exploited to
describe every image. Each image has five different descriptive sentences with the same meaning. All
the images were extracted from the 18,000 × 14,000 pixels image of Sydney, Australia, which were
produced on Google Earth. Some examples of the Sydney Dataset are exhibited in Figure 5.
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4.2. Metrics and Baselines

We use the following metrics to evaluate the results. BLEU [40] scores can measure the fraction of
n-gram (n = 1,2,3,4) in common between the references and the generated sentences; this focuses on
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the precision. ROUGE [41] focuses on the recall and calculates it between the reference sentences and
the generated sentences based on the n-gram. METEOR [42] calculates the harmonic mean F-measure
according to the matching degree including synonym matching, and returns the highest score as
a quality indicator to a set of references. CIDEr [43] measures the similarities by adding a Term
Frequency–Inverse Document Frequency (TF-IDF) weighting for n-gram, so it can reduce the weight
of high frequency words and non-keywords.

In order to verify the effectiveness of our model, we also use several available models to obtain the
scores of various metrics for the comparison. The multimodal method shown in [19] used information
from different modes including visual and textual information of high resolution remote sensing
images. It used a CNN as the encoder to encode an image to a vector and an RNN as the decoder to
decode the vector and textual features to a sentence, and the structure is shown in Figure 7. For the
unity of all the experiments, we use Vgg16 and LSTM. For the attention-based method shown in [21],
the attention mechanism was applied to construct the vectors between the encoder and decoder, so this
model could improve the attention of those objects in images whose structure is shown in Figure 8.
We should note in this method that the image features were extracted by the convolution layers rather
than the fully-connected layers. For CSMLF [38], collective semantic metric learning was used for
generating sentences. It embedded an image onto the semantic space by CNN, then computed the
distance between the image and the collective sentences by the learned Mahalanobis matrix, and finally,
the closest collective sentence as the caption for the given image.

1 
 

 

 

 

 

 

 

 

Figure 7. The structure of multimodal method.

1 
 

 

 

 

 

 

 

 

Figure 8. The structure of attention-based method.

The structure of our method is shown in Figure 2. We evaluate two variants of our approach,
FC-Att+LSTM and SM-Att+LSTM. The FC-Att+LSTM model is in the framework of encoder-decoder
with an attribute attention mechanism used. It utilizes the output of the last fully connected layer of
Vgg16 as the high-level attributes to affect the attention mechanism, while the feature maps of the
last convolution layer of Vgg16 are fed into the LSTM as image features. The SM-Att+LSTM model is
identical to the FC-Att+LSTM model except that it uses the output of the softmax layer of Vgg16 as



Remote Sens. 2019, 11, 612 11 of 18

attributes. Furthermore, we changed the dimensions of the last fully connected layer of Vgg16 from
1000 to 512 in order to extract 512 attributes.

It should be noted that there are clear differences among the baseline methods and our method.
All five methods use a CNN to obtain image features, but in the CSMLF [38] method, sentences are
embedded into a semantic space to measure the distance between images and sentences to train the
model, while other methods use an LSTM to process image and sentence features. The remaining
four methods are in an encoder-decoder structure, but the multimodal method [19] does not use the
attention mechanism, while the others do. In addition, due to introducing attributes of images, our
methods use the attribute attention mechanism which differs from the one used in the attention-based
method [21].

4.3. Results on Three Datasets

Tables 1–3 report image captioning results of the Sydney Dataset, UCM Dataset, and RSICD
respectively. There are certain differences between the three datasets, the biggest being the number of
images. As described above, the Sydney Dataset has only 613 images in total, while RSICD has more
than 10,000 images and UCM is with 2,100 images. A different number of images bring different scales
of sentences data and also bring training difficulties, so it is normal that metrics may produce different
scores on different datasets.

Table 1. Results of the baseline and our methods on the Sydney Dataset.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH CIDEr

CSMLF [38] 0.5998 0.4583 0.3869 0.3433 0.2475 0.5018 0.7555
Multimodal [19] 0.6966 0.6123 0.5431 0.5040 0.3588 0.6347 2.2022‘
Attention [21] 0.7905 0.7020 0.6232 0.5477 0.3925 0.7206 2.2013
FC-Att+LSTM 0.8076 0.7160 0.6276 0.5544 0.4099 0.7114 2.2033
SM-Att+LSTM 0.8143 0.7351 0.6586 0.5806 0.4111 0.7195 2.3021

Table 2. Results of the baseline and our methods on the UCM Dataset.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH CIDEr

CSMLF [38] 0.4361 0.2728 0.1855 0.1210 0.1320 0.3927 0.2227
Multimodal [19] 0.7087 0.5966 0.5521 0.4599 0.3426 0.6612 2.9254
Attention [21] 0.7993 0.7355 0.6790 0.6244 0.4174 0.7441 3.0038
FC-Att+LSTM 0.8135 0.7502 0.6849 0.6352 0.4173 0.7504 2.9958
SM-Att+LSTM 0.8154 0.7575 0.6936 0.6458 0.4240 0.7632 3.1864

Table 3. Results of the baseline and our methods on RSICD.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH CIDEr

CSMLF [38] 0.5759 0.3859 0.2832 0.2217 0.2128 0.4455 0.5297
Multimodal [19] 0.6378 0.4756 0.4004 0.3006 0.2905 0.5333 2.2536
Attention [21] 0.7336 0.6129 0.5190 0.4402 0.3549 0.6419 2.2486
FC-Att+LSTM 0.7459 0.6250 0.5338 0.4574 0.3395 0.6333 2.3664
SM-Att+LSTM 0.7571 0.6336 0.5385 0.4612 0.3513 0.6458 2.3563

4.3.1. Results on Sydney Dataset

In this experiment, about 81% images are randomly selected from each class for training
(497 images in total), and both validation and test sets have 58 images. Table 1 shows the results of
seven metrics including BLEU1~4, METEOR, ROUGE, and CIDEr by different methods, i.e., CSMLF
method [38], multimodal method [19], attention-based method [21], SM-Att+LSTM method, and
FC-Att+LSTM method on the Sydney Dataset. In the table, the best results are marked in bold. For the
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Sydney Dataset, we make its vocabulary size 214, i.e., equal the number of words in all the sentences
in the training set, which is also equal to the dimension of the attributes.

From Table 1, we clearly see that CSMLF method [38] does not perform very well, while
multimodal method [19] has an average score. The attention-based method [21] has better, but also
average, performance in every metric, which means the attention-based method [21] has the ability
to generate sentences roughly matching remote sensing images. However, SM-Att+LSTM and
FC-Att+LSTM have better performance than the attention-based method [21] on METEOR and
CIDEr. Moreover, all the improvements of these indicators are greater than 0.02 on BLEU-1~4 by the
SM-Att+LSTM method. These results further confirm the effectiveness of our attribute attention-based
image captioning model and the significance of the attributes. The results also show the information
which is the output of the fully connected layer is inferior to that of the softmax layer.

4.3.2. Results on UCM Dataset

In this section, we evaluate the proposed methods on the UCM Dataset while comparing it with
the aforementioned methods. Around 80% samples from each class are randomly chosen for training
(in total 1680 samples) and the validation set is the same in terms of the images numbers, which is
210. Table 2 shows the results on the seven metrics mentioned above on the UCM Dataset used by the
same five methods in the last section. Due to the small quantity in the sentences data, like the Sydney
Dataset, all the words shown in the UCM training set are used to build vocabulary and the dimension
of the attributes is 320, which is equal to the vocabulary size.

From Table 2, we can draw the same conclusion as that shown in the last section: the methods
with attention perform better than those without attention, and using attribute attention demonstrates
its better performance compared to the systems of the original attention. The FC-Att+LSTM method
surpasses the attention-based method [21] on BLEU1~4 and ROUGH, and lags behind slightly on
METEOR and CIDEr but very close to attention-based method [21]. The SM-Att+LSTM method is
even better and achieves satisfactory results on all seven metrics on UCM Dataset.

4.3.3. Results on RSICD

For the RSICD dataset, 8734 images are selected from all kinds of classes to form the training
set, which have 80% of the total images. The validation and test sets account for 10% respectively.
The results are shown in Table 3, with the best results annotated in bold. Due to the large number
of the images and sentences, we do not need all the words in the training set to form the vocabulary.
Instead, the vocabulary is built based on the top 2000 words in terms of the occurring frequency in
the training set. We set the dimension of the attributes to be 512 as RSICD is quite larger than the
two above.

From Table 3, we can see that models with the attention mechanism have better performance than
those without it. Like the two datasets above, we can find that our attribute attention models generate
better results. The SM-Att+LSTM model generates the best results on BLEU-1~4 and ROUGH, and
the FC-Att+LSTM model performs the best in CIDEr. The attention model [21], which does not use
the attributes information, is far behind our two models in several metrics, and only shows a little
superiority in METEOR. It is worth mentioning that our models have a very high score in CIDEr,
which has been improved to more than 0.1 on all three datasets.

Figure 9 shows the results of using the SM-Att+LSTM on RSICD. Figure 10 shows the results of
the test remote sensing images using the attention-based method [21] and SM-Att+LSTM respectively.
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Figure 9. Some results using our model on RSICD. (a) many buildings and some green trees are
in a commercial area. (b) a bridge is on a river with some green trees in two sides of it. (c) some
buildings and green trees are around a circle center building. (d) many ripples are in a piece of
yellow desert. (e) many green trees are in a piece of forest. (f) many building and green trees are in
a medium residential area. (g) a playground is surrounded by many green trees and buildings. (h)
many buildings and some green trees are in a commercial area. (i) many buildings are around a circle
square.
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Figure 10. Some results using the attention-based method [21] and SM-Att+LSTM. (a) Attention [21]:
many cars are parked in a parking lot near several green trees. SM-Att+LSTM: many cars are parked
in a parking lot. (b) Attention [21]: yellow beach is near a piece of green ocean. SM-Att+LSTM: yellow
beach is near a piece of green ocean with white wave. (c) Attention [21]: some buildings and green
trees are around a playground. SM-Att+LSTM: a playground is surrounded by some green trees
and buildings.

4.4. Results Analysis

From Tables 1–3, it may be seen that CSMLF [38] performs much worse than the other four
methods, which shows the validity of LSTM, and it explains the popularity of the encoder-decoder
structure in this field. The multimodal method [19] does not perform as well as the other three methods
because of the absence of the attention mechanism. Additionally, the attention-based method [21]
has high scores but is still lower than our methods, which validates the effectiveness of the model
with attributes and the attention mechanism. SM-Att+LSTM scores higher than FC-Att+LSTM in most
cases, and it indicates that the type of the attributes also affects the system performance.

Figure 9 shows partial but typical sentence results generated by our method on RSICD. From
Figure 9, we can see that most of the generated sentences can describe the corresponding images well,
such as Figure 9a–f. For example, even the color features (like green in Figure 9c and yellow in Figure 9d)
can be accurately identified and described in the generated sentences. Therefore, it is effective to use
the attribute attention mechanism to generate description for remote sensing images.

However, there are also some inaccurate examples, such as Figure 9g–i, which is discussed below:

1. The generated content is not in the image. There is no building in Figure 9g, but the word
“buildings” is in its generated sentence. Due to the high frequency of some words appearing
together in the training set, the proposed model may misclassify them. For example, a parking
lot often appears in the same image with trees, so there are a large number of reference sentences
in which both “parking lot” and “trees” appear at the same time. If an image contains a parking
lot in the test set, the generated sentence tends to have "trees" whether or not there are trees in
the image.

2. Misrecognition. In Figure 9h, the scene is misrecognized as the commercial area while the ground
truth is an industrial area as they are very similar. Both industrial and commercial areas in remote
sensing images have the same characteristics of dense and crowded buildings. This is a challenge
in the field of remote sensing image/scene classification, which is called the small interclass
dissimilarity problem [44]. More work needs to be done to get over around this problem.

3. Both above problems occurred. In Figure 9i, the key object is a center but it is recognized as a
circle square. In addition, a square often appears with buildings around in the training set, which
leads to “buildings” shown in the generated sentence.

Figure 10 shows some results in the sentences generated by attention-based method [21]
and SM-Att+LSTM. For Figure 10a, “near several green trees” in the sentence generated by the
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attention-based method [21] is not the content of the image while SM-Att+LSTM generates a correct
sentence. Meanwhile, both methods generate the sentence containing “buildings”, even if there is
no building in Figure 10c. In fact, by observing the results of the whole test set, we find that our
model, in some cases such as parking lot images, can well restrain the generation of words that are not
the content of the image, while in other cases such as playground images, our model may produce
the same error of generating some words that are not shown in the image, as the attention-based
method [21] does. The above observation shows that attributes can indeed improve the understanding
of image contents, but further research and improvement on attributes is needed. As we can see in
Figure 10b, our model picks up the white wave in the image while the baseline dose not. Therefore,
our model is superior to the attention-based method [21] in generating semantics that are present in
the image.

4.5. Parameter Analysis

In this section, we investigate the effects of changing the size sattr of the attributes in our model
with the seven metrics on the RSICD dataset. We conduct the experiments with sattr=256, 512. The seven
metrics values for different sattr are shown in Table 4.

Table 4. Results with different sattr on RSICD.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH CIDEr

256-FC 0.74467 0.62012 0.52313 0.44390 0.34823 0.64175 2.35417
256-SM 0.74189 0.62112 0.52809 0.45019 0.33937 0.63333 2.29751
512-FC 0.74592 0.62498 0.53381 0.45740 0.33947 0.63325 2.36639
512-SM 0.75711 0.63360 0.53850 0.46118 0.35134 0.64575 2.35632

256-FC, 256-SM, 512_FC, and 512_SM represent FC-Att+LSTM with sattr = 256, SM-Att+LSTM
with sattr = 256, FC-Att+LSTM with sattr = 512, and SM-Att+LSTM with sattr = 512 respectively. Table 4
revels that the size of the attributes can influence the performance of the model. We can see that the
best results are obtained when the attributes size is equal to 512. A smaller size allows us to focus on
fewer attributes and add less global information to the attention mechanism, which may cause weaker
performances. However, it remains to be verified whether or not it is true that the larger the size of the
attribute, the better of the results.

4.6. Computational Cost

We performed our method on a server with 128G RAM and an Nvidia GeForce GTX 1080Ti
graphics card under the Linux system. Like other studies for this task, the offline training process is
time consuming due to the large amount of the parameters of the CNN and the LSTM. Taking RSICD,
the largest dataset in our experiments for example, one epoch including more than 8000 images and
40000 sentences costs about 3.3 hours, and our optimal model was obtained after the training of more
than 20 epochs. After the model training, the test process is fast. For a 224 × 224 sized input image,
our model takes about 300 millisecond to finish the whole captioning process.

5. Conclusions

This paper presented a novel framework for description generation of remote sensing images
based on the attribute attention model. We use a CNN to produce image features, which are the
feature maps of the last convolution layer region proposals for the input remote sensing image.
In the encoder-decoder framework with the attention mechanism, the attention mechanism is able to
influence the intermediate vector by assigning different weights to different areas of the image, which
compensates the deficiency of the original attention mechanism in complex remote sensing images.
To apply the high-level features of remote sensing images, we use suitable attributes to embed the
global information so that it can affect the parameter of the attention mechanism, focusing on more
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objects and scenes. We feed the intermediate vector into the decoder and adopt the LSTM to generate
the description of the given remote sensing image. We observed that better results can be achieved if
the attribute size is appropriate.

From the observation of the experiments, our model can reach high scores on the different
assessment criteria, and obtained satisfactory results when the remote sensing image is less complicated.
In the future, we will focus on understanding semantics information, and use this to better train
our models.
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