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Abstract: Rangelands cover ~23 million hectares and support a $3.4 billion annual cattle industry
in California. Large variations in forage production from year to year and across the landscape
make grazing management difficult. We here developed optimized methods to map high-resolution
forage production using multispectral remote sensing imagery. We conducted monthly flights
using a Small Unmanned Aerial System (sUAS) in 2017 and 2018 over a 10-ha deferred grazing
rangeland. Daily maps of NDVI at 30-cm resolution were first derived by fusing monthly 30-cm
sUAS imagery and more frequent 3-m PlanetScope satellite observations. We estimated aboveground
net primary production as a product of absorbed photosynthetically active radiation (APAR) derived
from NDVI and light use efficiency (LUE), optimized as a function of topography and climate
stressors. The estimated forage production agreed well with field measurements having a R2 of 0.80
and RMSE of 542 kg/ha. Cumulative NDVI and APAR were less correlated with measured biomass
(R2 = 0.68). Daily forage production maps captured similar seasonal and spatial patterns compared
to field-based biomass measurements. Our study demonstrated the utility of aerial and satellite
remote sensing technology in supporting adaptive rangeland management, especially during an era
of climatic extremes, by providing spatially explicit and near-real-time forage production estimates.

Keywords: Drone; MicaSense RedEdge; Commercial satellite; Light use efficiency; Data fusion;
Rangeland; Aboveground biomass; Environmental stress

1. Introduction

Rangelands are a key global resource, both in terms of extent and ecological and economic impact.
In California, over 60% of the land area is rangeland, which provides a wide range of ecological
services, including forage production for livestock and wildlife, water quality protection, biodiversity,
recreation, and wildlife habitat [1]. More than half of California rangelands are grazed [2], supporting
a $3.4-billion per year livestock industry [3]. Rangeland forage production is characteristically variable
and depends on a multitude of drivers—most notably climate, soils and topography, which together
regulate plant-available water [4]. Most California rangelands are rain fed, and thus highly vulnerable
to irregular precipitation patterns [5]. For example, large year-to-year variations in forage production
(from 33 to 11503 kg/ha) were observed in a 14-year record from the California Central Coast region [6].
Warming, drought, and increasing climate variability [7,8] are predicted to become more prevalent
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in the future, and therefore, raise the critical need for cost-effective; timely; and robust tools for
monitoring, predicting and optimizing use of forage while maintaining proper stewardship of the land.

Several studies have examined factors controlling forage production of California’s annual
grass-dominated rangelands. Temperature was found to be an important regulator for timing of
four distinct forage growth stages: germination season, winter growth, rapid spring growth, and peak
forage production [4]. Amount and timing of precipitation are closely related to forage production
with highest yields occurring when sufficient precipitation is received in April (to support rapid spring
growth) [9]. Sensitivity of forage production to weather also varies spatially with soil characteristics
and topography. In Mediterranean climates, such as California, annual systems are highly dependent
on moisture stored in the upper 25~30 cm of soil [10]. Medium texture soils (e.g., loams, clay loams,
and silt loams) have higher plant-available water-holding capacity, which can provide a buffer for
plants when precipitation is sparsely spaced [11]. Topography affects forage production through two
pathways: influencing soil properties such as soil depth, fertility and temperature, and controlling
photosynthetically active radiation (PAR) [12]. Thus, spatial and temporal heterogeneity of forage
production can only be fully explained by coupling these key drivers: temperature, amount and timing
of precipitation, soil characteristics and topography.

Traditional methods for measuring forage biomass rely on time-consuming hand clipping and
drying of quadrats randomly selected across the landscape. Advancements in technology could
facilitate modeling as an alternative for forage production monitoring and prediction. Empirical
statistical models relating observed production with key environmental determinants have been
developed from large datasets of field measurements [9,13–15]. Growing degree days (GDD) and
precipitation were used as inputs to predict California’s rangeland production dating back to the
1970s [9,14]. These empirical models usually do not consider landscape characteristics, and thus,
performance is limited when extrapolating to larger areas with heterogeneity in climate, soils
and topography.

Mechanistic models have also been developed to simulate complex biophysical processes in
rangelands [16]. For example, the Simulation of Production and Utilization of Rangelands model [17]
is able to predict forage production in different regions reasonably well (R2 = 0.3~0.9, depending on
the species and location) [18–20]. However, the model accuracy is often limited by the assumptions
made to simplify the processes and the uncertainties in the model parameters tuned with field
measurements. They also require a large number of site-specific environmental variables, e.g.,
climate, and soil hydrological properties as inputs. Therefore, it is logistically challenging for land
managers to implement simulation models because spatially-explicit data are difficult to obtain for
large heterogeneous areas.

On the other hand, simplified eco-physiological models provide a robust approach over different
regions and time, by converting photosynthetically active radiative (PAR) energy into biomass
based on light use efficiency (LUE). Forage production is estimated as a product of absorbed PAR
(APAR) and LUE [21]. APAR can be easily estimated from remote sensing data [22–26] and the
LUE calibrated to field measurements; therefore it serves as a good candidate for mapping forage
production [22,23,26–32]. The main challenge is parameterizing LUE as a function of environmental
variables, since the proportion of APAR converted to biomass is down-regulated under various
environmental stressors, such as soil moisture deficits and extreme temperatures. For example, LUE is
derived as a function of potential LUE and the combined effects of low air temperature, high water
vapor deficits, and soil moisture in the Global Production Efficiency Model (GLO-PEM) [32]. In the
MODIS Gross Primary Production algorithm, LUE is calculated as the product of biome-specific
maximum LUE and several down-regulators controlled by air temperature and vapor deficit [26].
In two Mediterranean grassland sites, Eddy Covariance data were used to calibrate the dominant
LUE stress terms from air temperature and soil moisture, where soil moisture was identified as the
dominant factor controlling LUE [31]. While different studies apply different forms of LUE calculation,
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this critical metric needs to be calibrated rigorously in different ecosystems and with different input
datasets, because of its high model sensitivity.

Remotely sensed imagery from satellites provides a relatively reliable source for obtaining
spatiotemporal inputs for LUE-based models. Landsat remote sensing data, with a 30-m resolution
and a 16-day revisiting frequency, have been widely used for many vegetation monitoring studies
worldwide [23,33–36]. However, coincidence of rainfall and growing season in California’s
Mediterranean climate greatly limits the availability of cloud-free Landsat images during critical
plant growth stages from November to April. Moreover, the spatial resolution of traditional satellite
remote sensing generally ranges from a kilometer to 10s of meters, whereas most field biomass
measurements are at a scale of 10s of centimeters. This scale mismatch poses challenges for developing
and validating the LUE optimization.

Recent advances in small unmanned aerial system (sUAS) technology and image processing
make it possible to overcome many challenges involved in quantifying forage production across the
landscape. Compared to satellites, sUAS can be deployed quickly, repeatedly, and flexibly. A 20-minute
flight is sufficient to map a 10-ha area, and with advanced software, data processing can be completed
in a few hours. Cameras designed for sUAS vegetation monitoring capture spectral information in
visible and near infrared (NIR) bands, from which critical information on plant vigor and growth
can be extracted. Users can easily customize the spatiotemporal resolution by adjusting the flight
height and frequency. High-resolution digital surface models (DSMs) generated from sUAS data allow
accounting for topo-edaphic conditions in forage production modeling and related analysis. A few
pilot studies have explored the applications of sUAS technology in monitoring agricultural production
for soybean [37], rice and wheat [38,39], barley [40,41], and mango [42]. However, there is currently
limited research concerning the efficacy of sUASs for rangeland forage production quantification
and modeling.

The primary aim of this paper was to develop LUE-based models to map forage production at
very high spatial (30 cm) and temporal (daily) resolutions using multispectral data collected from sUAS,
augmented with more frequent satellite data from PlanetScope satellites at 3-m resolution [43].
Specifically, our objectives included (1) imaging a Mediterranean-type semi-arid annual rangeland
using sUAS and fusing the sUAS data with PlanetScope data to obtain daily sUAS resolution images;
(2) investigating the connection between ground-based plant biophysical measurements and remote
sensing vegetation indices, (3) building and evaluating forage production models to map daily
rangeland production at 30-cm resolution, and (4) analyzing the predicted spatial and temporal
patterns of estimated forage production to explore the relationship between forage production and its
environmental and climatic drivers.

2. Materials and Methods

2.1. Study Site

Our study focused on a privately-owned, annual grassland (no trees or shrubs), located 56 km
east of the coast in San Luis Obispo County, California (35.5N, 120.3W) (Figure 1), which has been
grazed by beef cattle for more than 15 years. A 10-ha parcel was fenced in November 2016 to exclude
grazing during the growing season. Following peak forage biomass growth, 50 cow-calf pairs grazed
the fenced area for 30 days in the summer of 2017 to prepare the site for a repeated study during the
2018 growing season.

Soils were dominated by the loamy Balcom-Nacimiento complex [6]. The climate is Mediterranean
with hot, dry summers and mild, moderately wet winters. Mean annual rainfall during 2001–2018 was
213 mm, mostly occurring from December through March. Annual rainfall at the site was 176, 139, 57,
and 130 mm during the 2012–2016 drought years, respectively, and 287 and 123 mm during the study
years of 2017 and 2018, respectively. Annual grasses and forbs at the site typically germinate in late fall
with the onset of the rainy season (~November) and grow rapidly (March–April) to reach peak biomass
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in late spring (April-May), depending on the timing and length of the rainy season. Historical forage
production for the site shows a large fluctuation, varying from 132 to 4204 kg/ha (mean = 1866 kg/ha)
during 2001–2014 [6]. The study site was selected to include complex topography, including valley,
hilltop and concave/convex hillslopes with slopes ranging from 10 to 20 degrees (Figure 1). Overall,
45% of the total area was south facing, 29% west facing, 24% north facing, and 2% east facing.

Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 22 

 

from 10 to 20 degrees (Figure 1). Overall, 45% of the total area was south facing, 29% west facing, 24% 147 
north facing, and 2% east facing. 148 

  149 
Figure 1. Topography of the study area (35.5N, 120.3W) on Central Coast, California, from sUAS-150 
derived digital surface model. The study area features large topographic variation including a valley, 151 
a hilltop, and many concave and convex slopes. The soil sensors (in black) and additional 20 biomass 152 
clipping plots (in red) were distributed in multiple topographic positions. 153 

2.2. Field Measurements 154 
In November 2016, 16 pairs of ECH2O 5TM sensors were installed to measure soil moisture and 155 

temperature across the study area (Figure 1). Locations were selected based on a digital elevation 156 
model to capture the spatial variation of topography and soil conditions. At each location, duplicate 157 
sensors were deployed in the shallow rooting zone at a 7-cm depth (most roots occurred in the upper 158 
15 cm soil layer). Data-loggers recorded sensor readings every 15 minutes. Three tipping bucket rain 159 
gauges recorded rainfall, and three time-lapse cameras followed forage germination and growth at 160 
the hilltop, south-facing slope, and north-facing slope positions (Figure 1). 161 

We measured forage production immediately after each of the 10 sUAS flight missions (except 162 
for 11/11/2016). Two replicate 30 cm × 30 cm quadrats at opposite cardinal angles were selected at a 163 
1.5-m radius of the 16 soil sensors, resulting in two sample points per plot [44]. All aboveground 164 
plant biomass was harvested and dried at 60 ˚C for 48 hours before weighing to record dry biomass 165 
values. To further capture the spatial variation in topography and forage production, we classified 166 
the site into five categories based on clustering of topographical features including aspect, slope, flow 167 
accumulation, and elevation, using Iterative Self-Organizing Data Analysis Technique classification 168 
[45]. We selected an additional 20 plots for biomass clipping to ensure that each topographical cluster 169 
had at least eight plots. We collected 32~52 biomass clip-plot samples on each sUAS observation date 170 
and retained a total of 330 (200 and 130 in 2017 and 2018 growing seasons) biomass measurements 171 
after removing outliers (e.g., samples affected by strong rodent activity). For the cumulative NDVI & 172 
APAR and biomass analysis and LUE modeling, we further averaged the plots that had two samples 173 
near soil sensors, resulting 220 data points to work with. 174 

2.3. sUAS Flights and Image Preprocessing 175 
We integrated a MicaSense RedEdge camera with a 3DR Solo quadcopter for monthly aerial 176 

flights over the study area during the 2017 and 2018 growing seasons (November–April). MicaSense 177 
RedEdge is a multispectral camera with five spectral bands including blue, green, red, red-edge, and 178 
NIR. A sun irradiance sensor was included to measure band-specific incoming solar irradiance for 179 
radiometric correction. Flights were scheduled with the closest overpass dates of PlanetScope 180 
satellites when weather permitted it. A total of 10 missions were performed: six from November 11, 181 
2016 to April 30, 2017, and four from January 18, 2018 to April 14, 2018. 182 

We followed the same flight plan with a side- and front-overlap of 85% for all missions. Each 183 
mission was flown at 91-m (350-ft) above ground level (from the launching point) to acquire imagery 184 

Figure 1. Topography of the study area (35.5N, 120.3W) on Central Coast, California, from
sUAS-derived digital surface model. The study area features large topographic variation including a
valley, a hilltop, and many concave and convex slopes. The soil sensors (in black) and additional 20
biomass clipping plots (in red) were distributed in multiple topographic positions.

2.2. Field Measurements

In November 2016, 16 pairs of ECH2O 5TM sensors were installed to measure soil moisture and
temperature across the study area (Figure 1). Locations were selected based on a digital elevation
model to capture the spatial variation of topography and soil conditions. At each location, duplicate
sensors were deployed in the shallow rooting zone at a 7-cm depth (most roots occurred in the upper
15 cm soil layer). Data-loggers recorded sensor readings every 15 minutes. Three tipping bucket rain
gauges recorded rainfall, and three time-lapse cameras followed forage germination and growth at the
hilltop, south-facing slope, and north-facing slope positions (Figure 1).

We measured forage production immediately after each of the 10 sUAS flight missions (except
for 11/11/2016). Two replicate 30 cm × 30 cm quadrats at opposite cardinal angles were selected at a
1.5-m radius of the 16 soil sensors, resulting in two sample points per plot [44]. All aboveground plant
biomass was harvested and dried at 60 ◦C for 48 hours before weighing to record dry biomass values.
To further capture the spatial variation in topography and forage production, we classified the site into
five categories based on clustering of topographical features including aspect, slope, flow accumulation,
and elevation, using Iterative Self-Organizing Data Analysis Technique classification [45]. We selected
an additional 20 plots for biomass clipping to ensure that each topographical cluster had at least eight
plots. We collected 32~52 biomass clip-plot samples on each sUAS observation date and retained a
total of 330 (200 and 130 in 2017 and 2018 growing seasons) biomass measurements after removing
outliers (e.g., samples affected by strong rodent activity). For the cumulative NDVI & APAR and
biomass analysis and LUE modeling, we further averaged the plots that had two samples near soil
sensors, resulting 220 data points to work with.

2.3. sUAS Flights and Image Preprocessing

We integrated a MicaSense RedEdge camera with a 3DR Solo quadcopter for monthly aerial
flights over the study area during the 2017 and 2018 growing seasons (November–April). MicaSense
RedEdge is a multispectral camera with five spectral bands including blue, green, red, red-edge,
and NIR. A sun irradiance sensor was included to measure band-specific incoming solar irradiance for
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radiometric correction. Flights were scheduled with the closest overpass dates of PlanetScope satellites
when weather permitted it. A total of 10 missions were performed: six from 11 November 2016 to
30 April 2017, and four from 18 January 2018 to 14 April 2018.

We followed the same flight plan with a side- and front-overlap of 85% for all missions. Each mission
was flown at 91-m (350-ft) above ground level (from the launching point) to acquire imagery at a 7.5 ~
7.9 cm resolution and cover the whole study area in less than 30 minutes due to the payload constraint.
Flying speed was set at 7 m/s along a fixed direction parallel to the east/west site boundary (Figure S1).
Flights were conducted around solar noon to minimize the impacts of sun-angle variation throughout
the season. Images of a calibrated white reflectance panel were recorded before and after each flight
to calibrate raw pixel values to absolute reflectance values. To ensure the accuracy of the sUAS image
geo-registration, we established eight permanent landmarks as ground control points (GCPs) evenly
distributed at the corners (and center) of the study area. Coordinates of GCPs, forage clip-plot samples
and soil sensors were recorded using a Trimble Geo 7x Series Handheld Data Collector.

Raw sUAS images were stitched and processed in Pix4dMapper Pro to generate orthomosaic
maps of surface reflectance and DSM. The software converts the raw data in digital number (DN) to
surface reflectance using images of the calibration panel, incoming sunlight irradiance, and camera
parameters (e.g., ISO, aperture, shutter speed, and vignetting) recorded in the EXIF metadata [46].
DSMs were based on a dense point cloud generated from tie points that were automatically identified
by the software. Mean average error (MAE) between GPS measurements and derived elevation was
3.5 cm across the study area.

A two-step geo-registration was performed on the time series of sUAS images to ensure spatial
alignment of all aerial images. Images were first geo-registered in Pix4dMapper Pro using the eight
GCPs to minimize the spatial mismatch when relating images to ground measurements. A mean
Root Mean Square error (RMSE) of less than 3 cm was achieved. Reliability of this GCP-based
geo-registration is highly dependent on the accuracy of the GPS. Since we did not upgrade our GPS
to centimeter accuracy until the summer of 2017, we then used the Image to Image Registration
function in ENVI 5.3 (using the 4/6/2017 image as the base image and second-order cubic) to align the
images acquired in the 2017 growing season on different dates. In the Image to Images registration,
we selected GCPs visually for each pair of images. The resulting RMSE was maintained at ~3 cm,
less than 0.3 pixels at the original 8-cm resolution for all pairs of images. The geo-registered 8-cm
resolution surface reflectance maps were then aggregated to 30-cm resolution to match the plant
biomass field measurement plots and used for further analysis, which resulted in a <10% geolocation
displacement in the final 30-cm maps.

Standard reflectance calibration assumes similar incoming solar radiation for all pixels. However,
the complex topography of the study site led to significant variation in illumination conditions among
pixels at different topographic positions. We applied the C model [47] to correct pixel reflectance based
on its illumination condition (IC) for each spectral band (supplemental online material, SOM). The C
model has been applied for correcting Landsat satellite data [47–50], but its feasibility and accuracy in
correcting sUAS has not been fully evaluated. We used our 30-cm resolution DSM derived from the
sUAS data to perform the illumination correction. The illumination-corrected red and NIR reflectance
values were then used to calculate sUAS NDVI.

2.4. High Resolution Satellite Imagery and Data Fusion

Relatively high temporal frequency of remote sensing imagery is needed to capture the rapid
growth cycle of annual plants. We downloaded a total of 174 cloud-free PlanetScope (PS) orthorectified
scenes (level 3A) from Planet at 3.125-m spatial resolution for the 2017 and 2018 growing seasons.
With a constellation of around 120 CubeSats, PS aims to provide daily images of three visible bands
and one NIR band for any place on Earth. We converted the DN to the Top of Atmosphere (TOA)
reflectance, using the TOA reflectance coefficients embedded in the metadata XML for each individual
scene. The NDVI was then calculated with red and NIR reflectance.



Remote Sens. 2019, 11, 595 6 of 22

To compensate for the limited temporal acquisition of sUAS data, we combined PS satellite data
with monthly sUAS data to obtain a complete time series of daily NDVI at the 30-cm sUAS resolution.
Our goal was to predict a sUAS-resolution NDVI map U(x,y,tp), for any particular date (tp), using
(1) two pairs of coincident sUAS and PS images during the nearest two sUAS flight dates on tb1
and tb2 and (2) a PS-based image on the prediction date tp. We followed the basic concept of the
Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [51] to take advantage of the
complementary spatial and temporal information from PS and sUAS. We first took advantage of the
PS’s high temporal frequency and linearly interpolated temporally the available cloud-free PS NDVI
images to obtain a continuous daily time series. To facilitate the pixel-based process, daily PS data
were reprojected and bi-linearly resampled, denoted as P(x,y,t) to match the resolution, projection,
and extent of the sUAS data. Since the study area has a relatively homogeneous landcover, we assumed
that the temporal change from the daily PS NDVI images was similar at the 30-cm resolution:{

U
(

x, y, tp
)
= U(x, y, tb ) + ∆NDVI

P
(

x, y, tp
)
= P(x, y, tb ) + ∆NDVI

(a)

The sUAS-resolution NDVI for a given location (x,y) and day (tp) was then estimated as a weighted
sum of the two closest pairs of sUAS base NDVI images at 30-cm resolution (Figure 2), each adjusted
for temporal change derived from the PS NDVI time series:

U
(
x, y, tp

)
= w1

(
U(x, y, tb1) + P

(
x, y, tp

)
− P(x, y, tb1)

)
+w2

(
U(x, y, tb2) + P

(
x, y, tp

)
− P(x, y, tb2)

) (1)

where tb1 and tb2 are the dates for the base image pair, and w1 and w2 are the temporal weights
representing the contribution of each base image pair to the estimated NDVI, based on a linear function
of the correlations between the base PS NDVI images on tb1 and tb2 and the PS NDVI image on tp (SOM).
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Figure 2. Flowchart for the data fusion method to combine the monthly sUAS imagery and more
frequent PlanetScope imagery. (Step 1) PS imageries are first interpolated daily and preprocessed to the
same projection and resolution as the sUAS imageries. (Step 2) The preprocessed daily PS imageries
are used to calculated weights based on correlations between base imageries (on tb1 and tb2) and the
imagery on tp. (Step 3). Finally, the predicted NDVI values are computed from the weighted NDVI
values from both PS and sUAS (Equation (1)).
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We tested the performance of our data fusion method using a leave-one-out method. Within each
iteration, we left out one sUAS NDVI image and predicted that image using the nearest neighboring
image pairs and the PS NDVI image taken on the same day. The accuracy of the method was evaluated
by comparing the predicted sUAS NDVI image to the observed sUAS NDVI image.

2.5. Forage Production Estimation Methods and Assessment

2.5.1. Empirical Statistical Analysis

We first examined the relationship between the measured biomass and two types of remote
sensing metrics derived from the fused data, namely NDVI and APAR. NDVI was used as a proxy
for net primary production and biomass [52–55]. Specifically, we used univariate linear regression
(in R) to quantify the spatial variance in biomass across various plots explained by the corresponding
coincident NDVI and the spatial and temporal variance explained when pooling data from all sites and
dates together. When analyzing the coincident NDVI–biomass relationship, we did not average the
paired samples taken close to the soil sensors, considering the limited number of samples on a single
observation day. We investigated the relationship between biomass and cumulative NDVI integrated
from the beginning of the growing season to the date of observation. Critical phenological days,
such as the beginning (germination date) and end of the growing season were identified by fitting a
logistic function (SOM) to the fused NDVI time series [56]. A similar statistical analysis was performed
for cumulative APAR derived from the fused daily data and the California Irrigation Management
Information System (CIMIS) spatial solar radiation.

2.5.2. Light Use Efficiency (LUE) Models

We estimated forage production based on LUE theory, as the cumulative product of APAR and
LUE [22]:

Biomass
(

x, y, tp
)
=

tp

∑
t0

[
APAR

(
x, y, tp

)
∗ LUE

(
x, y, tp

)]
(2)

where, tp is the date of prediction, and t0 is the corresponding germination date.
APAR was estimated as the product of fPAR and PAR. We calculated fPAR as a function of

NDVI [57]:

f PARNDVI =
(NDVI − NDVImin)( f PARmax − f PARmin)

NDVImax − NDVImin
+ f PARmin (3)

where fPARmax = 0.95, fPARmin = 0.001, and NDVImax and NDVImin are the NDVI values corresponding
to the upper and lower 2% of the NDVI histogram. NDVImin and NDVImax were set to 0.23 and 0.8,
respectively, based on the NDVI distribution of sUAS data.

PAR was calculated as 50% of the daily shortwave incoming solar radiation, available from
the CIMIS Spatial dataset at a 2-km resolution [58], assuming a constant ratio of 0.5 for PAR over
incoming solar radiation [59–64]. The CIMIS Spatial incoming solar radiation showed an R2 of 0.99
when validated with CIMIS measured incoming solar radiation. The 2-km PAR was further sharpened
to 30-cm resolution using the sUAS DSM to account for topography-induced illumination, and thus,
PAR variations. We first generated daily solar radiation maps of the study area using the Area Solar
Radiation function in the Arcpy package in Python, based on the sUAS-derived 30-cm DSM, latitude,
and day of year [65]. Similar maps were derived for a simulated flat surface assuming DSM at the
average elevation of the study area (491 m). For each 30-cm pixel and each day, the ratio of the daily
30-cm solar radiation from the actual DSM over the simulated flat DSM was used to multiply the
corresponding CIMIS spatial solar radiation to derive solar radiation and PAR at 30-cm resolution.

We developed two semi-empirical statistical models to estimate LUE, depending on availability
of the input data. All parameters in LUE models were optimized with field measurements. We first
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parameterized LUE as a function of topographic variables (Equation (4), Model I), which were derived
from the DSM generated from sUAS data:

LUE
(

x, y, tp
)
= LUE0 ∗ f (Topo, x, y) (4)

LUE0 is the LUE at the optimal topographic position. LUE0 is estimated by scaling f(Topo,x,y)
from 0 to 1. We used topographic variables to drive an empirical scalar because we did not have the
spatial soil moisture and air temperature data that are traditionally used for LUE down-regulators.
We explored a suite of topographic features including cosine aspect, slope, flow accumulation, IC,
and elevation, and enumerated the possible combinations of these variables in the equation.

We further added time-varying controls of soil moisture (W) and air temperature (T) on LUE,
in addition to significant topographic features (Equation (5), Model II), as shown below:

LUE
(

x, y, tp
)
= LUE0 ∗ g

(
W, x, y, tp

)
∗ p
(
T, x, y, tp

)
∗ h(Topo, x, y

)
(5)

where g
(
W, x, y, tp

)
, p
(
T, x, y, tp

)
, and h(Topo, x, y) range from 0 to 1. Forms of the W and T scalar

functions were set to the same as those in Reference [22] but coefficients were optimized using
field-measured biomass. The temperature (T) stress scalar was based on deviation from optimal air
temperature (Topt):

p
(
T, x, y, tp

)
=

4(
1 + ea(Topt−Ta(x,y,tp))

)
∗
(

1 + ea(−Topt+Ta(x,y,tp))
) (6)

where a is the coefficient to be calibrated, Ta is the air temperature (◦C), and (x, y, tp) denotes the location
and time. Topt is here defined as the average temperature during the month with the highest NDVI.
We used daily mean air temperature from the 2-km CIMIS spatial dataset. The T scalar decreases from
1 to 0 as temperature deviates from Topt, with the rate of decrease represented by a.

The water stress (W) scalar represents the down regulation of light use efficiency under drought
conditions, and was parameterized as a function of soil moisture (M) (Equation (7)):

g
(
W, x, y, tp

)
=

1

1 + e−b(M(x,y,tp)−WP)
(7)

where b is the coefficient to be calibrated; M is the derived soil moisture, represented by volumetric
water content (VWC); and WP is the wilting point. W ranges from 0.5 to 1 as soil moisture varies
from the wilting point to field capacity. The wilting point was set to a water content of 0.14 cm3 cm−3

determined by averaging soil moisture content in June during the dry season when grass and forbs
had desiccated and soil moisture was at its water-year minimum [66]. For operational mapping
purposes, we required soil moisture for every pixel. We estimated the daily soil moisture using a
simple bucket model (SOM) following Reference [22], based primarily on precipitation data from
PRISM [67] and potential evapotranspiration from CIMIS Spatial [58]. The topographic control term is
a linear function of elevation and IC for Model II. Elevation and IC were selected because they had the
highest statistical significance for minimizing differences between measured and predicted biomass
among topographic variables.

As a comparison to Model II, we also built a Model III by replacing the air temperature and
derived soil moisture with measured soil temperature and soil moisture in the LUE parameterization.
As for the topographic variable, we selected elevation because it had the highest statistical significance
on minimizing model error.

We optimized the model coefficients using the Stochastic Gradient Descent (SGD) method [68,69].
We used 70% of the data for training and the remaining 30% for validation of the SGD LUE optimization.
Model performance was evaluated by comparing model estimates with measured biomass values in
the validation dataset. We used R-squared (R2) and RMSE to quantify the uncertainty of models for
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estimating forage production. The LUE scalars and their corresponding coefficients may be site-specific
as they were specifically optimized for our study area.

2.6. Forage Production Mapping and Patterns

We implemented Model II to generate daily forage production maps for the study area. The maps
were compared against the concurrent RGB images from sUAS to determine if prediction captured a
similar spatial pattern. To further study the interaction between topography (aspect and slope) and
forage production, we calculated the predicted biomass for topographic zones divided by aspect (north
and south) and slope (flat, moderate, and steep) and performed zonal statistical analysis.

3. Results

3.1. Terrain Correction

The wavelength-specific C model significantly removed the topographic varying illumination
effect present in the original sUAS images (Figure 3). For example, pixels on the north-facing slopes,
when displayed in true color composite, appeared very dark due to terrain shadows, especially for
early season images when the sun angle was relatively low, e.g., 16 January 2017. This shadowing
effect was minimized after applying the correction. Raw reflectance was significantly correlated with
IC (p < 0.01 in most cases), but the correlation was minimized and not significant after correction
(Figure 4). For example, R2 was reduced from 0.33 (p < 0.01) to 0.12 (p = 0.02) in the red and from 0.80
(p < 0.01) to 0.01 (p = 0.5) in the NIR for January 2017 imagery (Figure 4). The topographic illumination
effects were found to be more pronounced in the NIR band and early in the growing season.
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Figure 3. Original (a,c) and terrain corrected (b,d) example images, in true color composite, acquired
from the sUAS on (a,b) 17 January 2017 and (c,d) 17 March 2017. The C model removed most of the
topographic illumination effect (b,d) as presented in the original images (a,c). The shadow (pixels in
very dark color) on the north-facing slopes is removed in the corrected images.
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Figure 4. Scatterplots of red (top panels) and NIR reflectance (bottom panels) vs. the illumination
condition (IC) for 200 pixels with biomass clipping as shown in Figure 1. Raw reflectances are shown
in left column (a,c), and corrected reflectances in right column (b,d).

3.2. sUAS and PlanetScope Data Fusion

We combined all available 30-cm sUAS NDVI images and satellite NDVI images from the two
growing seasons to generate daily 30-cm NDVI time series from 11 November 2016 to 30 April 2017
and from 1 January to 14 April 2018. The fused daily NDVI curve had a similar magnitude to those
from sUAS imagery, and a quantitative comparison showed that the predicted 30-cm NDVI agreed well
with the original sUAS NDVI images (R2 = 0.87 and RMSE = 0.06) (SOM, Section 2). The fused time
series followed similar temporal patterns with those from PS data. For a selected plant pixel within a
relatively homogeneous patch, Figure 5 shows three sets of NDVI values from PS and sUAS sensors at
30-cm resolution and data fusion. The sUAS NDVI values were typically higher than those from the
concurrent PS imagery, e.g., 0.65 vs. 0.46 on 6 April 2017. This difference was most likely due to lower
atmospheric effects on surface reflectance from the low-altitude sUAS flights. The fused time series
was able to conserve the sUAS NDVI values, e.g., 0.65 on the same day. Due to its higher temporal
frequency, the PS NDVI time series captured more detailed temporal dynamics of plant growth than
the less frequent sUAS snapshots. Both fused and original PS NDVI time series in 2018 showed a
unique bimodal shape, with peaks on January 25th and March 19th. This variation was consistent with a
gap in precipitation that greatly reduced plant growth in February, but growth resumed following late
March rainfall. The smoothed and fused NDVI time series successfully captured the rapid changes in
phenology, while preserving the magnitude of NDVI values with minimal atmospheric contamination
(Figure 5).
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Figure 5. NDVI time series of a randomly selected grass pixel over a relatively homogeneous area,
from 10 sUAS missions (6 and 4 in the 2017 and 2018 growing season respectively), PlanetScope (PS),
and data fusion. Also shown is daily precipitation (grey bar) from the on-site rain gauge measurement.

NDVI maps derived from sUAS imagery showed similar spatiotemporal patterns to those from
the PS satellite, as shown by the coincident images acquired by both sensors on 19 November 2016,
and 16 January 2017 (Figure 6). However, the sUAS NDVI map revealed greater spatial details.
The sUAS-resolution NDVI map on 15 December 2016 (Figure 6e), predicted by the simplified STARFM,
demonstrated that the prediction retained sUAS spatial resolution, as the road boundary and patterns
of NDVI heterogeneity were preserved, and at the same time, captured phenological changes shown
in the PS time series.
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Figure 6. NDVI maps at PlanetScope resolution (upper panels) and sUAS resolution (bottom panels).
Concurrent images were available on November 19, 2016 (a,d) and 16 January 2017 (c,f), while only
a PlanetScope image was available on 15 December 2016 (b). The predicted NDVI image from data
fusion at 30-cm resolution on December 15, 2016 is shown in (e).

3.3. Relationships Between Remote Sensing Metrics and Biomass Measurements

Daily fused NDVI was positively related (with varying significance) to biomass measurements
(mean = 1122 kg/ha; range = 17 - 4483 kg/ha) taken on the same day over all the clipping sites, with R2

ranging from 0.01 to 0.33 on various sUAS image acquisition dates (Figure S4). The highest R2, 0.33
(p < 0.05, N = 21), was found for February 2018. The varying R2 among different dates suggests limited
performance for using instantaneous NDVI to predict biomass over the growing season. NDVI values
were typically lower in 2018 than those in 2017 for the same month, consistent with differences in
corresponding biomass measurements.
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When integrated from the germination date to the date of observation (using the fused time
series), the cumulative NDVI explained 68% of the variance in measured biomass among all field
sampling plots during the two growing seasons (Figure 7a), and the cumulative APAR explained 69%
of spatial and temporal variance (Figure 7b) (N = 220). The linear regression model, based on 70%
of the randomly selected data points, showed that cumulative APAR predicted biomass with an R2
of 0.67 ± 0.06 and a RMSE of 631 ± 82 kg/ha, when compared with the remaining 30% of the data
(N = 66). Similarly, predictions from cumulative NDVI showed an R2 of 0.67 ± 0.05 and an RMSE
of 627 ± 73 kg/ha. However, the empirical NDVI-only and APAR-only methods may have large
uncertainties when extrapolated to other areas or time periods.
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Figure 7. Scatterplots of measured biomass versus the cumulated NDVI (a) and cumulated APAR (b)
over 220 clip-plot samples in 2017 and 2018.

3.4. Forage Production Models

Optimization of the topography-based LUE model (Model I) with 70% of randomly selected data
resulted in the following forage production model:

Model I : Biomass = ∑ tp
t0
(APAR) ∗ 0.18 ∗ ( 57.81

(1 + IC) ∗ (Elevation − 430)
+ 0.1) (8)

LUE decreased with both elevation and IC. When compared with the remaining 30% of the data
(N = 66), predicted biomass showed an R2 of 0.70 and an RMSE of 567 kg/ha (Figure 8a), suggesting
a better performance (a decrease of 56 kg/ha in RMSE) than the linear model driven only by APAR
(Figure 7b).
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Figure 8. Biomass predicted by models with LUE optimized as functions of (a) elevation and IC
(Model I); and (b) elevation, IC, and air temperature and soil moisture stress terms (Model II). Each point
represents a pair of the predicted and observed biomass from the validation dataset.
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The final optimized LUE Model II was generated as a function of soil moisture (SM),
air temperature (Ta), elevation and IC:

Model I I : Biomass = ∑
tp
t0
(APAR ∗ 1

1+e−46.16(SM−0.144) ∗ 4
(1+e1.89(10.33−Ta))∗(1+e1.89(−10.33+Ta))

) ∗ 0.032∗

( 56.42
(IC+1)∗(Elevation−430) + 0.13)

(9)

The soil moisture scalar showed that decreasing moisture down-regulated LUE. The W scalar
increases logistically from 0.5 to 1 as soil moisture changes from wilting point (θv = 0.14 cm3 cm−3)
to field capacity (θv = 0.29 cm3 cm−3). The T scalar dropped to 0.5 when air temperature was 1◦C
below or above the optimal temperature of 10.33 ◦C. This full model resulted in improved accuracy for
predicting biomass with greater explanation of variance (81%) and lower RMSE (542 kg/ha) compared
with the topography-based LUE model (Figure 8b). This suggests that time-varying controllers of soil
moisture and air temperature captured environmental stress impacts on forage production.

When using field-measured soil moisture and soil temperature, Model III:

Biomass =
tp

∑
t0

(APAR ∗ 1
1+e−58.86(SM−0.144) ∗ 4

(1+e0.84(14.21−ST))∗(1+e0.84(−14.21+ST))
) ∗ 0.0625∗(

−1.56e−3 ∗ Elevation + 1.73
) (10)

predicted biomass with an RMSE of 472 kg/ha and R2 of 0.77 (Figure S5).

3.5. Forage Production Mapping and Patterns

We summarized forage production across the study area based on daily biomass maps generated
from Model II. Forage production increased gradually during the growing season, but followed an
unstable trajectory with bursts and plateaus (Figure 9). Most rapid growth was from 20 March to
2 April 2017 (averaging 107 kg/ha/d) and from 10 March to 19 March 2018 (averaging 15 kg/ha/d).
The 2017 growing season had higher overall growth rates than 2018, which resulted in a mean peak
standing biomass of 3216 (±678SD) kg/ha versus 1054 (±374SD) kg/ha, respectively. This large
difference in peak standing biomass was linked to higher precipitation in 2017 (287 mm) compared
to 2018 (123 mm). The standard deviation of biomass for the sUAS flight dates (Figure 9) showed
increasing spatial variability in biomass as the growing season progressed.
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Figure 9. Daily time series of the estimated biomass averaged across the study area in 2017 and 2018
growing seasons. Error bars, denoting the standard deviation, were added to the eight sUAS flight
dates, indicating the increase of spatial variability in biomass as plants grow.

Predicted biomass maps at 30-cm resolution provided a visual representation of spatial variation
across the landscape (Figure 10). At peak biomass in 2017 (Figure 10d), high biomass production was
predicted at low elevation (Figure 10i) and high IC (Figure 10j) regions, whereas in 2018, high biomass
production was predicted in low elevation and low IC regions. Lower elevation regions often have
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higher soil moisture because lower slope positions receive runoff and throughflow from upper hillslope
positions. IC values are positively related to PAR with higher PAR leading to higher biomass when
plants are not water stressed. However, when water is limited, high PAR could contribute to lower
biomass production (i.e., greater plant water stress). The maps also captured human disturbance on
biomass production, such as the road having very low biomass compared to the surrounding area.
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2018 growing seasons (a–h). Also shown are elevation (i) and illumination condition (IC) maps (j).

A zonal statistical analysis was performed on Biomass-Slope and Biomass-Aspect to examine
interactions between topography and biomass. The model predicted higher biomass in flatter areas
(Figure 11a) while the steeper group had lower biomass than the other two groups in both years.
However, the model predicted similar biomass values for the flat and moderate groups in 2017
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(wetter year). The model predicted lower biomass on north-facing slopes than south-facing slopes
in 2017; however, an opposite effect was observed in 2018 (Figure 11b).Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 22 
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4. Discussion

In this pioneering study, we developed two remote sensing data-driven LUE models that
accurately predicted daily forage production at centimeter-scale resolution. We also streamlined
preprocessing and fusing approaches for raw sUAS data with high-resolution satellite remote
sensing data to obtain high-spatiotemporal data. We successfully implemented preprocessing and
fusing methods and frameworks (e.g., the C model for illumination correction and the simplified
STARFM) that were developed for satellite remote sensing data on the sUAS data. From the model
predicted forage production maps, we observed unique patterns in productivity related to different
environmental and climatic drivers. The following discussion section expands on additional findings
in sUAS data preprocessing (Section 4.1) and fusing with PlanetScope data (Section 4.2), and the
response of forage plants to precipitation (Section 4.3) and soil moisture and temperature (Section 4.4).

4.1. Variations in the Illumination Effect

This study demonstrated a successful application of the C model for correcting sUAS data for
illumination effects. Reflectance in visible bands was generally less affected by terrain than NIR and
red-edge bands. The same phenomenon was found for topographic illumination effects on Landsat
images [50]. The authors concluded that the lower correlation for visible bands was caused by their
lower reflectance rate and a more significant atmospheric scattering effect on visible bands than
longer-wavelength bands. From the temporal analysis, the topographic illumination effect intensity
was not consistent over the entire growing season for a given band, but rather diminished as the
growing season progressed. In addition to changes in vegetation density, the diminishing trend
is probably related to changes in sun angle. Since the study site is at 35.5N, the solar-noon sun
elevation angle increases from 31◦ in December to >80◦ in June. Therefore, the theoretical intensity of
illumination effects should decrease as the growing season progresses.

Notably, the R2 between red band surface reflectance and IC was very low (0.02) for the March
flight, and the corresponding corrected R2 (0.06) was higher than the original R2. Although both R2

values were small, this raises caution that applying the C model may lead to overcorrection when
the illumination effect is weak. Therefore, a test of the illumination effect intensity, for example,
a correlation analysis on the surface reflectance and IC, is recommended before applying illumination
correction to models. In this study, since the corrected red band surface reflectance-IC R2 value was
very low, we used the corrected red band reflectance to maintain temporal consistency among data.

4.2. Fusing Satellite and sUAS Data

We found that the PS NDVI values were generally lower than those from sUAS, especially when
NDVI was higher than 0.5. This results from PS NDVI being calculated from the Top of Atmosphere
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(TOA) reflectance while the sUAS NDVI is determined from the surface reflectance. Several studies
document a lower TOA NDVI compared to NDVI at the surface [70,71] due to the atmospheric
scattering effect. In the simplified STARFM, we used the temporal change of PS TOA NDVI, which
reduced the noise from TOA reflectance, while the absolute value relies heavily on the sUAS. Smaller
differences between December and February sUAS instantaneous NDVI and PS NDVI datasets may
result from the use of a sun light irradiance (SLR) sensor on sUAS flights after March 2017. We initially
relied on a white calibration panel for radiometric and atmospheric correction when preprocessing
data from the first two flights before installation of the SLR sensor.

Data fusion of sUAS and high spatial-resolution images has great potential to lower the cost of
operating frequent sUAS flights, especially given increasing availability of high-spatial resolution
data (e.g., RapidEye data and PS data by Planet and WorldView data by DigitalGlobe). However,
much of the high-spatial resolution satellite (including PS) data is only available in DN or TOA
due to the lack of shortwave NIR bands for atmospheric correction. Therefore, it is important to
develop robust data fusion methods that work on multi-source data with systematic differences.
Future release of atmospherically-corrected PS surface reflectance products, i.e., using the concurrent
MODIS data, will further reduce uncertainties in sUAS-satellite data fusion methods. Moreover, a more
sophisticated fusion method is needed to take into account the spatial details embedded in sUAS data
for the temporal interpolation of PS data.

4.3. LUE Parameterization

We observed improvements in model accuracy when including additional model terms. RMSEs
of forage production estimates from APAR-only, Model I, Model II, and Model III were 624 kg/ha,
567 kg/ha, 542 kg/ha, and 472 kg/ha, respectively. We selected Model II to map forage production
because it had the highest accuracy and does not require ground measured soil moisture and
temperature. Model III, which uses locally measured soil moisture and soil temperature, achieved
a higher accuracy than Model II, which uses estimated soil moisture and coarse-resolution air
temperature. We believe that the main source of error in Model II is from the use of a simple bucket
model for estimating soil moisture and/or the coarse resolution of air temperature.

Comparing the stressing scalars in Model II and III, the W scalar functions have very similar
controls on LUE; however, the T scalar behaves quite differently. In Model II, the T scalar is driven
by air temperature and is more sensitive to deviations from optimal air temperature. The estimated
LUE0 across the three models showed large discrepancies, ranging from 0.32 to 1.8 g/MJ APAR with
Model I having the highest LUE0 and Model II the lowest. Over the years, maximal LUE has been
estimated using different methods for different biomes [72]. However, maximal LUE used in existing
LUE models varies a lot [31] because researchers used different methods to estimate this metric [72].
In addition, maximal LUE also varies across scales. Currently, the number of LUE studies at the
watershed scale is very limited. We expect to see increasingly more relevant studies on LUE modeling
with advances in sUAS technology.

Using measured soil temperature and moisture in Model III achieved the highest accuracy among
the three models, but this model cannot be applied to directly generate biomass maps because it
requires point measurement data to parameterize input variables. As of now, daily soil moisture
maps at high spatial resolution are not available, but with the continuous expanding constellations of
satellites, new remote sensing products are being produced that could provide daily spatial patterns for
soil moisture. For example, a past study demonstrated the potential for retrieving soil moisture from
C-band synthetic aperture radar (SAR) data [73]. Additional studies have developed algorithms for
mapping high-resolution (<1 km) soil moisture locally using the sentinel-1 C-band SAR data at a 10-m
resolution [74,75]. Therefore, inclusion of near real-time soil moisture estimates may be forthcoming as
new remote sensing technologies emerge.
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4.4. Response of Forage Production and Plant Phenology to Moisture

Moisture is the primary controlling factor of forage production in Mediterranean annual range
systems [6,31,76]. The different precipitation regimes in the 2017 and 2018 growing seasons triggered
very different biomass-aspect relationships. South-facing slopes were expected to have a lower peak
biomass than north-facing slopes because of increased temperatures leading to higher ET and lower
soil moisture on south-facing slopes. However, we observed a higher peak biomass on south-facing
slopes in the 2017 growing season (Figure 10b). This resulted from the high precipitation (287 mm) that
was well distributed throughout the 2017 growing season. With sufficient precipitation to maintain
soil moisture content (Figure S6), plants experienced little water deficit. With sufficient water supply,
PAR became the primary limiting factor. Therefore, south-facing slopes, where more solar radiation is
received, were able to produce higher peak biomass than north-facing slopes. In contrast, the 2018
growing season received only 108 mm of precipitation with large gaps between rainfall events.
The majority of the precipitation was received in January, March and early April resulting in an
extremely dry February (Figures S5 and S6). This precipitation distribution hindered plant growth on
the radiation-rich south-facing slopes by intensifying the soil moisture deficit. Therefore, a lower peak
biomass was observed on south-facing slopes in the 2018 growing season.

Time series biomass maps provided insights on plant phenology changes in response to different
precipitation regimes during the 2017 and 2018 growing seasons. Germination and growth can be very
different interannually in annual range systems. Peak growth is highly dependent on the amount and
timing of precipitation. The November 2017 rainfall resulted in germination (11/11/2016) of the plants
about 2 months earlier than the 2018 growing season (1/1/2018) (Figures 5 and 12). The predicted
germination dates are close to actual gemination dates (11/6/2016 and 1/13/2018) captured by the time
lapse camera. Although the two growing seasons had a 1.5-month difference in their germination date,
they both had peak growth in April. We predicted 4/6/2017 and 4/14/2018 as the peak growth dates
for the 2017 and 2018 growing season, which were close to the camera observed peak growth dates
(4/12/2017 and 4/25/2018). In addition to having a longer growing season, plants also accumulated
biomass faster in 2017 than in 2018 (Figure 9). This higher biomass accumulation rate is largely
due to the higher and more evenly distributed precipitation pattern during 2017. Plant growth on
south-facing slopes was very sensitive to soil moisture availability. During the 2017 growing season
and in January 2018, when moisture was sufficient, plants on south-facing slopes accumulated biomass
faster than those on north-facing slopes. However, when soil moisture became limiting, for example,
starting in February 2018, biomass accumulation on south-facing slopes was distinctly lower than
north-facing slopes.

Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 22 

 

slopes in the 2017 growing season (Figure 10b). This resulted from the high precipitation (287 mm) 573 
that was well distributed throughout the 2017 growing season. With sufficient precipitation to 574 
maintain soil moisture content (Figure S6), plants experienced little water deficit. With sufficient 575 
water supply, PAR became the primary limiting factor. Therefore, south-facing slopes, where more 576 
solar radiation is received, were able to produce higher peak biomass than north-facing slopes. In 577 
contrast, the 2018 growing season received only 108 mm of precipitation with large gaps between 578 
rainfall events. The majority of the precipitation was received in January, March and early April 579 
resulting in an extremely dry February (Figure S6 & 5). This precipitation distribution hindered plant 580 
growth on the radiation-rich south-facing slopes by intensifying the soil moisture deficit. Therefore, 581 
a lower peak biomass was observed on south-facing slopes in the 2018 growing season. 582 

Time series biomass maps provided insights on plant phenology changes in response to different 583 
precipitation regimes during the 2017 and 2018 growing seasons. Germination and growth can be 584 
very different interannually in annual range systems. Peak growth is highly dependent on the 585 
amount and timing of precipitation. The November 2017 rainfall resulted in germination (11/11/2016) 586 
of the plants about 2 months earlier than the 2018 growing season (1/1/2018) (Figure 12 & 5). The 587 
predicted germination dates are close to actual gemination dates (11/6/2016 and 1/13/2018) captured 588 
by the time lapse camera. Although the two growing seasons had a 1.5-month difference in their 589 
germination date, they both had peak growth in April. We predicted 4/6/2017 and 4/14/2018 as the 590 
peak growth dates for the 2017 and 2018 growing season, which were close to the camera observed 591 
peak growth dates (4/12/2017 and 4/25/2018). In addition to having a longer growing season, plants 592 
also accumulated biomass faster in 2017 than in 2018 (Figure 9). This higher biomass accumulation 593 
rate is largely due to the higher and more evenly distributed precipitation pattern during 2017. Plant 594 
growth on south-facing slopes was very sensitive to soil moisture availability. During the 2017 595 
growing season and in January 2018, when moisture was sufficient, plants on south-facing slopes 596 
accumulated biomass faster than those on north-facing slopes. However, when soil moisture became 597 
limiting, for example, starting in February 2018, biomass accumulation on south-facing slopes was 598 
distinctly lower than north-facing slopes.  599 

 600 
Figure 12. Daily average biomass time series of biomass averaged over 500 randomly selected pure 601 
forage pixels (at 30cm resolution) in the study area during 2017-2018 growing season. The time series 602 
shows a different phenology for plants growing on south- and north-facing slopes. 603 

5. Conclusions 604 
This pilot study demonstrates the synergistic use of complementary sUAS and satellite remote 605 

sensing technology to map daily forage production at 30-cm resolution on a delayed grazing 606 
rangeland. Remote sensing-based APAR estimates were the primary driver for both LUE-based 607 
models developed here. LUE was optimized as a function of elevation and illumination conditions 608 
in Model I, achieving an R2 of 0.70 and an RMSE of 567 kg/ha when comparing predicted forage 609 
production with measured forage biomass. By further incorporating moisture and temperature stress 610 

Figure 12. Daily average biomass time series of biomass averaged over 500 randomly selected pure
forage pixels (at 30cm resolution) in the study area during 2017-2018 growing season. The time series
shows a different phenology for plants growing on south- and north-facing slopes.
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5. Conclusions

This pilot study demonstrates the synergistic use of complementary sUAS and satellite remote
sensing technology to map daily forage production at 30-cm resolution on a delayed grazing rangeland.
Remote sensing-based APAR estimates were the primary driver for both LUE-based models developed
here. LUE was optimized as a function of elevation and illumination conditions in Model I, achieving
an R2 of 0.70 and an RMSE of 567 kg/ha when comparing predicted forage production with
measured forage biomass. By further incorporating moisture and temperature stress terms to the LUE
parameterization (Model II), Model II predicted forage production with higher accuracy (R2 = 0.81)
and lower RMSE (542 kg/ha). Both LUE approaches showed improved prediction accuracy compared
to the univariate linear regression with cumulative APAR. Finally, the inclusion of measured soil
moisture and soil temperature into the LUE model (Model III) achieved the lowest RMSE (472 kg/ha)
with a similar R2 of 0.77.

The fusion of high spatial resolution sUAS data and high temporal PlanetScope satellite imagery
enabled us to generate daily forage production maps at a 30-cm resolution. The maps allowed
the analysis of landscape-derived zonal statistics to assess (a) interactions between topography and
biomass and (b) the response of forage production and plant phenology to changing precipitation
regimes. Our analysis showed higher forage production and biomass accumulation rates in landscape
positions experiencing less environmental stress (e.g., soil water deficit), with several differences
occurring between wet and dry years. The forage production maps can be implemented in decision
support tools to help ranchers better anticipate weather-driven changes in forage production and
optimize their decisions on proactive practices, such as stocking conservatively, resting pasture,
and incorporating yearling cattle. This study provides basic tools that can be further developed
and scaled to statewide regions to provide near real time forage availability delivered to users via
internet apps.
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Figure S1: sUAS flight plan; Figure S2: (a) Observed and (b) predicted NDVI image on 4/6/2017, and the
(c) corresponding difference image; Figure S3: Scatter plot (N = 10000) of (a) observed and predicted NDVI
on 4/6/2017 and scatter plot of (b) observed NDVI on 4/6/2017 and 4/30/2017; Figure S4: Scatterplots of
instantaneous sUAS NDVI and measured biomass on the eight flight days. Each data point represents a single
ground sampling point on a specific day; Figure S5: Scatterplot of the Model III predicted biomass versus
measured biomass; Figure S6: Calibrated soil moisture time series for the 2017 and 2018 growing seasons.
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