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Abstract: In this study, Himawari-8 Advanced Himawari Imager (AHI) longwave channel data that 

is sensitive to clouds and absorption gas were used to improve the accuracy of the algorithm used 

to calculate outgoing longwave radiation (OLR) at the top of the atmosphere. A radiative transfer 

model with a variety of atmospheric conditions was run using Garand vertical profile data as input 

data. The results of the simulation showed that changes in AHI channels 8, 12, 15, and 16, which 

were used to calculate OLR, were sensitive to changes in cloud characteristics (cloud optical 

thickness and cloud height) and absorption gases (water vapor, O3, CO2, aerosol optical thickness) 

in the atmosphere. When compared to long-term analysis OLR data from 2017, as recorded by the 

Cloud and Earth’s Radiant Energy System (CERES), the OLR calculated in this study had an annual 

mean bias of 2.28 Wm−2 and a root mean square error (RMSE) of 11.03 Wm−2. The new calculation 

method mitigated the problem of overestimations in OLR in mostly cloudy and overcast regions 

and underestimated OLR in cloud-free desert regions. It is also an improvement over the result from 

the existing OLR calculation algorithm, which uses window and water vapor channels. 

Keywords: Himawari-8 Advanced Himawari Imager (AHI); multi-channel; outgoing longwave 

radiation at the top of the atmosphere (TOA OLR); radiative transfer model; algorithm 

improvement; Cloud and Earth’s Radiant Energy System (CERES) 

 

1. Introduction 

Outgoing longwave radiation at the top of the atmosphere (TOA OLR) is an indicator that can 

describe the overall state of the earth-atmosphere system [1–4]. Also, OLR is an important radiation 

budget when balanced with net shortwave radiation at the top of the atmosphere and used in climate 

studies related to energy balance [5–10]. OLR values change continually due to changes in surface 

temperature, the atmosphere, and clouds [11]. As changes in OLR are sensitive to the temperature 

emissions from land, ocean, and clouds, it has been used actively in several studies [12]. The lower 

OLR emitted from cloudy areas (i.e., 240 Wm−2 or less) is closely connected to convective activity and 

is very useful in the observation of tropical cyclones [13]. Changes in OLR also have a strong 

correlation with large-scale convection systems [10] such as El Niño [14], La Niña [15], the El Niño 

Southern Oscillation (ENSO) [16], and the Madden–Julian Oscillation (MJO) [17,18]. There is also a 

relationship between sea surface temperature (SST) and OLR, because medium-scale weather 

changes that occur over the ocean and in the atmosphere are very important for predicting monsoon 

periods [19]. Thus, OLR is also used in studies on predicting rainy seasons and rainfall amounts in 

equatorial regions where yearly rainfall is high, such as India (the Indian Ocean), Brazil, and parts of 

Africa [20–23]. Furthermore, daily changes in OLR can quantitatively show the state of the weather, 
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including surface temperature, cloud characteristics, and rainfall amounts, because it reflects overall 

changes in the earth–atmosphere system; it is also used to study a variety of weather phenomena 

[11,24,25]. In addition, OLR is also being used to predict typhoons and earthquakes based on 

differences in OLR emitted based on changes in surface temperature and cloud conditions [22,26,27]. 

The production and continuous monitoring of reliable, high-quality OLR data is very important 

for predictions of future climate change [28]. The OLR observed by broadband sensors on polar 

satellites (wavelength regions of 3–100 μm) is highly accurate, but its low spatiotemporal resolution 

is a drawback. Therefore, many past and current studies have been conducted using narrowband 

sensors on geostationary satellites that have a high spatiotemporal resolution [4]. The initial 

algorithm developed used a single window channel’s brightness temperature [29–31]; however, OLR 

calculated from this kind of data does not reflect varied information on the state of the atmosphere. 

Therefore, researchers then developed multi-spectral algorithms that included water vapor or other 

window channels [2,4,32,33]. These studies were based on the high correlation between the radiation 

measured by narrowband and broadband sensors [34]. Goldberg et al. [35], Doelling et al. [36,37], 

and Kim and Lee [38] performed studies on reducing the empirical calculation error for OLR 

calculated from narrowband sensors. 

There is a large difference between the OLR emitted from the earth’s surface (land and ocean) 

and from cloudy areas; therefore, it is possible to estimate this parameter using only a single infrared 

channel that can describe this difference well. However, to analyze and predict the radiation budget, 

weather, and climate change, OLR must react sensitively to absorption gases in the atmosphere in 

clear sky (cloud-free) condition. Water vapor is already known as a very important factor in reducing 

OLR [10,39]. CO2 also reduces OLR as its concentrations increase continually [40], and there are also 

studies on OLR reductions caused by O3 and aerosols [41–44]. However, these must use channels that 

are sensitive to absorption gases because there are regional patterns and long-term changes in this 

factor and increases in the concentration of absorption gases in the atmosphere reduce OLR [15]. The 

present study is an advanced study on the development of the radiation calculation algorithm used 

by the Geostationary Korea Multi-Purpose satellite 2A (GK-2A). It improves OLR calculation by 

adding channels that are sensitive to O3 and CO2 to the algorithm developed by Kim et al. [4], which 

is based on the window and water vapor channels that are part of the Himawari-8 Advanced 

Himawari Imager (AHI). The results of the new OLR algorithm were then compared to that from the 

Cloud and Earth’s Radiant Energy System (CERES) OLR [45,46]. 

2. Research Data and Methodology 

In this study, sensor data from the Himawari-8 AHI geostationary satellite was used to calculate 

OLR. The sensors consist of 6 shortwave channels and 10 longwave narrowband channels. A 

hemispheric region including the Pacific Ocean (with central coordinates of 0°N, 140.7°E) was 

observed at a spatial resolution of 2 km × 2 km and a temporal resolution of 10-min [47,48]. The 

longwave channel-specific characteristics of the AHI used in this study are shown in Table 1 [49,50]. 

The observed longwave channel data was converted into radiance and used to calculate the OLR. In 

this process, it was necessary to include a process that converted narrowband radiance into 

narrowband irradiance and one that converted narrowband irradiance into broadband irradiance 

(that is OLR; see Section 3). The OLR calculated in this study, hereafter “improved OLR algorithm”, 

was compared with that developed by Kim et al. [4] and CERES. 

The CERES OLR used in the comparative analysis came from the CERES Single Scanner 

Footprint (SSF) XTRK Edition4A installed on the Terra polar satellite. This data was constantly 

observed at a spatial resolution of 20 km × 20 km within CERES’ field of view. CERES provides 

radiation data calculated from highly accurate cloud detections and it is more accurate than other 

radiation data [9,27,51–53]. However, CERES observations use a different spatiotemporal resolution 

than AHI does; therefore, spatiotemporal resolution matching must be performed to compare the 

two OLR values. Ellingson et al. [54], Ba et al. [6], and Park et al. [55] performed a comparative 

analysis that assumed that the state of the atmosphere did not change within 30-min and averaged 

long-term data collected at a spatial resolution of 1° × 1°. However, in this case, the root mean square 
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error (RMSE) of the standard data decreased as the averaged area became larger and the quantity of 

data increased [12]. Furthermore, when high-resolution data is compared to low-resolution data, the 

difference in the radiation observed over cloud-free areas is not large; however, there is a large 

difference in cloudy areas, especially at the edge of the clouds. As such, the comparative analysis 

must be performed at a finer spatiotemporal resolution [4,56]. 

Table 1. Himawari-8 AHI channel-specific central wavelengths and primary purpose. 

Channel Descriptive Name 
Central 

Wavelength [μm] 
Primary Purpose 

7 Shortwave window 3.89 
Surface and cloud, fog at night, fire, 

and winds 

8 
Upper-level water 

vapor 
6.24 

High-level atmospheric water vapor, 

winds, and rainfall 

9 Mid-level water vapor 6.94 
Mid-level atmospheric water vapor, 

winds, and rainfall 

10 
Lower-level/ 

Mid-level water vapor 
7.35 

Lower-level atmospheric water vapor, 

winds, and SO2 

11 Cloud-top phase 8.59 
Total water for stability, cloud phase, 

dust, SO2, and rainfall 

12 O3 9.64 Total ozone, turbulence, and winds 

13 
Clean longwave 

window 
10.41 Surface and cloud 

14 Longwave window 11.24 
Imagery, sea surface temperature, 

clouds, and rainfall 

15 
Dirty longwave 

window 
12.38 

Total water, ash, and sea surface 

temperature 

16 CO2 13.28 
Air temperature, cloud heights and 

amounts 

This study followed the method performed by Kim et al. [4] and averaged the OLR from the 

AHI in a 20 km × 20 km area based on the coordinates and spatial resolution of the observed CERES 

data. The comparative analysis used the observed CERES OLR within ±5-min of the AHI observation. 

It also only used data that corresponded to an area with a viewing zenith angle (VZA) of less than 

70°, following the central coordinates of the AHI. In the example in Figure 1, the sample of AHI 

daytime OLR created at 0100 UTC was compared with the CERES OLR observed at 0055–0105 UTC. 

The data for 0110, 0120, and 0130 UTC was compared with that for 0105–0115, 0115–0125, and 0125–

0135 UTC. Similarly, AHI nighttime OLR observed at 1320, 1330, 1340, and 1350 UTC was compared 

to the CERES OLR observed from 1315–1325, 1325–1335, 1335–1345, and 1345–1355 UTC, 

respectively. 

The comparative analysis used daytime and nighttime data from CERES as it passed over the 

same observation area for a period of about 16 days between January and December 2017 (Table 2). 

The mean, bias, RMSE, and correlation coefficient of the OLR calculated in this study were analyzed 

and OLR was compared to CERES. It was also compared with the OLR originally developed by Kim 

et al. [4], particularly in terms of the differences resulting from the improvements made to the OLR 

in this study, including the improved accuracy. There was a large difference in the OLR given the 

presence and amount of clouds; therefore, the analysis was divided into cloud-free and cloudy areas. 

Following CERES’ clear sky fraction (0–100%), the cloud-free area was set at 95–100% and the cloudy 

area was categorized as partly cloudy (50–95%), mostly cloudy (5–50%), or overcast (0–5%). For the 

cloud-free area, the surface types used in CERES (1–20) were followed; the areas were categorized as 

ocean (17, 20) and land (1–16, 18, 19) [57]. 
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(a) (b) 

Figure 1. Daytime (a) and nighttime (b) examples of observation area according to observation time 

of Terra CERES (color bar) and Himawari-8 AHI. 

Table 2. Observation time used in the comparative analysis of CERES and AHI. 

Daytime Nighttime 

Date (Month/Day) Time (UTC) Date (Month/Day) 
Time 

(UTC) 

01/04 01/20 

0100, 0110, 

0120, 0130 

01/04 - 

1320, 1330, 

1340, 1350 

02/05 02/21 02/05 02/21 

03/09 03/25 03/09 03/25 

04/10 04/26 04/10 04/26 

05/12 05/28 05/12 05/28 

06/13 06/29 06/13 06/29 * 

07/15 * 07/31 07/15 07/31 

08/07 08/23 08/07 08/23 

09/08 09/29 09/08 09/29 

10/10 10/26 10/10 * 10/26 * 

11/11 11/27 11/11 * 11/27 

12/13 * 12/29 12/13 * 12/29 * 

* The daytime observation data from 07/15 0100 UTC and 12/13 0130 UTC, and the nighttime 

observation data from 06/29 1330–1350 UTC, 10/10 1340 UTC, 10/26 1320 UTC, 11/11 1320 UTC, 12/13 

1330, 1350 UTC, and 12/29 1340 UTC were excluded from the analysis of the AHI observation data.  

- Excluded from analysis because they were not present in the CERES data. 

3. TOA OLR Calculation Algorithm 

Figure 2 shows a flowchart of the algorithm used to calculate OLR. As this study used the AHI’s 

narrowband channel data for this task, it was necessary to include a process that converted the 

observed narrowband radiance of each channel into broadband irradiance (OLR; see Figure 2b) [58]. 

During this conversion process, the OLR was calculated using the regression coefficient based on the 

linear relationship between narrowband and broadband radiation calculated for various atmospheric 

conditions using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model [59] 

(see Section 3.1). SBDART has been used in many studies because it has high accuracy with less than 

3% error compared to the shortwave/longwave radiation spectrum measured by Atmospheric 
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Emitted Radiance Interferometer (AERI) [60,61], Precision Spectral Pyranometer (PSP), and Normal 

Incidence Pyrheliometer (NIP) [59], and it calculates various atmospheric conditions very quickly 

[3,4,38,55,62,63]. The relationship between the narrowband radiance and irradiance of each channel 

simulated in SBDART was used to create a regression coefficient that converted the radiance to 

irradiance (see Section 3.2). Finally, the relationship between the narrowband irradiance and the 3.3–

100 μm wavelength region’s broadband irradiance (OLR) of each channel was used to create the 

regression coefficient that converted the narrowband irradiance of each channel to OLR (see Section 

3.3). 

 

Figure 2. Flowchart of the algorithm used to calculate OLR using Himawari-8 AHI channel data and 

the algorithms used to calculate the regression coefficients (a) needed to convert between different 

types of radiation at different stages (b). L is the narrowband radiance and F is the narrowband 

irradiance. 

3.1. Radiative Transfer Model Sensitivity Test 

There is a large difference in the characteristics of TOA OLR emitted from the surface of the earth 

and from cloud. In cloud-free areas, the OLR is reduced by absorption gases in the atmosphere [15]. 

Therefore, it is necessary to simulate a variety of atmospheric conditions when using a radiative 

transfer model to estimate OLR [3,4,11,64]. When narrowband channel data such as that from AHI is 

used, the accuracy of the OLR produced can vary according to the channel used. A single channel 

algorithm that used window channel data of approximately 12.4 μm was able to describe 

approximately 97% of changes in OLR, but it was not sensitive in terms of reflecting reductions 

caused by absorption gases such as O3 or CO2. Channels in the vicinity of 6.9 μm, 9.6 μm, and 13.3 

μm, however, do include changes in OLR related to absorption gases in the atmosphere, and using 

these made it possible to improve the accuracy of the OLR calculation [6,10,54]. As the number of 

channel utilized increased, the accuracy improved; but when channels that had similar features 

around certain wavelengths were used, the improvement was not significant and similar trends were 

seen [64]. Therefore, in this study, tests of sensitivity for cloud optical thickness (COT) and absorption 

gases were performed as shown in Figure 3. AHI channels sensitive to O3 and CO2 were added to the 

algorithm developed by Kim et al. [4], which uses window and water vapor channels, as 

improvements. 

Figure 3 shows the changes in OLR at each wavelength according to the COT and aerosol optical 

thickness (AOT) and concentration of absorption gases (water vapor, O3, CO2) in the 3.3–20 μm 

wavelength region. The vertical profile used as input data in the radiative transfer model for the 

sensitivity tests was set to tropical. The characteristics of the aerosols and the cloud (with cloud ceiling 

height set to 6 km) were input only in the COT and AOT sensitivity tests. In the AOT sensitivity test, 
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rural, urban, oceanic, and tropospheric were entered as aerosol characteristics in the radiative transfer 

model, and the calculated results were averaged as shown in Figure 3 and Table 3. The CO2 

concentration was set at 400 ppm in the same way except in the CO2 sensitivity test. The sensitivity 

test results in Table 3 show the OLR changes integrated within the spectral response function of a 

channel according to the COT and AOT and concentration of the absorption gases in each AHI 

channel. OLR increases in proportion to the earth’s surface and the atmospheric temperature in the 

overall longwave area. However, when clouds were present, the OLR in the window channel 

decreased significantly and the OLR decreased due to an increase in COT (Figure 3a). Water vapor is 

the absorption gas that has the greatest effect on OLR reduction, and sensitive changes were seen in 

both the window and water vapor channels. The wavelength region was large in channel 15 and the 

OLR here was larger than in other channels. A large reduction of more than 2.7 Wm−2 was also seen 

following changes in COT and water vapor. Channels 13 and 14 showed similar characteristics, but 

their OLR was smaller than that in channel 15 and they were not as sensitive to water vapor. Similarly, 

channel 8 (the water vapor channel) showed the largest OLR and large changes in OLR according to 

water vapor. In contrast, O3 and CO2 in channels 12 and 16 showed clear differences from other 

channels near the 9.7 μm and 13.3 μm wavelengths. When CO2 was assumed to have a concentration 

of 800 ppm, which is twice the assumed concentration of 400 ppm, OLR was reduced by 

approximately 1 Wm−2. The global mean concentration of CO2 is increasing continually and must be 

taken into account because, like water vapor, it is a major absorption gas contributing to weather and 

climate change related to global warming [10,39]. The changes in OLR were not clear, in terms of 

AOT, compared to other absorption gases; however, a decreasing OLR trend was seen in the window 

channel. There was a 0.64 Wm−2 change in channel 15, which had the largest wavelength region, due 

to AOT. Urban aerosols showed the largest change, at 1.09 Wm−2, in their category; rural aerosols 

showed a small change of 0.39 Wm−2. This shows that channel 15 can reflect OLR changes not only 

due to COT and water vapor but also due to CO2 and AOT. However, because it is difficult to reflect 

various atmospheric states and reductions in absorption gases using channel 15 alone, channel 8 

(water vapor) and channels 12 and 16 (O3 and CO2, respectively) were used with the expectation that 

this would improve the accuracy of OLR calculations [10,15]. 

(a) COT 

 

(b) Water 

vapor 
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(c) O3 

 

(d) CO2 

 

(e) AOT 

 

Figure 3. Changes in OLR for different wavelengths based on (a) COT (blue: 2, green: 8, magenta: 32, 

and cyan: 128), concentration of the following absorption gases in the atmosphere (b) water vapor 

(blue: 0.5 g·cm−2, green: 1.0 g·cm−2, magenta: 2.0 g·cm−2, and cyan: 4.0 g·cm−2), (c) O3 (blue: 0.2 ATM-

CM, green: 0.3 ATM-CM, magenta: 0.4 ATM-CM, and cyan: 0.5 ATM-CM), and (d) CO2 (blue: 350 

ppm, green: 400 ppm, magenta: 450 ppm, and cyan: 800 ppm), and (e) AOT (blue: 0.02, green: 0.08, 

magenta: 0.32, and cyan: 1.28). The red line is the longwave radiation spectrum and the black line is 

the spectral response function for each channel of the Himawari-8 AHI. 

Table 3. Changes in OLR based on COT, AOT and concentration of absorption gases (water vapor, 

O3, and CO2) for each channel in the AHI. “Diff.” is the difference between the maximum and 

minimum radiation of the sensitivity test for each condition. 

  AHI Longwave Channels 

  7 8 9 10 11 12 13 14 15 16 

COT 

2 0.33 1.97 2.03 1.36 5.72 5.05 9.03 12.48 17.53 6.72 

8 0.37 1.96 1.99 1.25 4.03 3.95 6.78 9.96 15.06 6.19 

32 0.36 1.96 1.97 1.22 3.81 3.80 6.46 9.67 14.80 6.13 

128 0.36 1.95 1.96 1.21 3.78 3.78 6.42 9.62 14.75 6.11 

Diff. −0.03 0.02 0.07 0.15 1.93 1.28 2.61 2.86 2.78 0.61 

Water vapor 

(g·cm−2) 

0.5 0.27 4.18 3.41 2.36 9.88 7.03 14.08 19.86 27.98 9.02 

1.0 0.26 3.53 2.90 2.07 9.71 7.01 14.00 19.73 27.66 8.97 

2.0 0.26 2.97 2.47 1.79 9.42 6.95 13.77 19.33 26.89 8.84 

4.0 0.25 2.50 2.10 1.55 8.89 6.77 13.17 18.34 25.29 8.51 

Diff. 0.02 1.68 1.31 0.81 0.99 0.27 0.91 1.52 2.70 0.51 

O3 

(ATM-CM) 

0.2 0.25 1.98 2.08 1.54 8.89 7.20 13.15 18.28 25.21 8.50 

0.3 0.25 1.98 2.08 1.54 8.84 6.43 13.11 18.28 25.18 8.49 

0.4 0.25 1.98 2.08 1.54 8.79 5.86 13.08 18.28 25.15 8.49 
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0.5 0.25 1.98 2.08 1.54 8.75 5.44 13.05 18.28 25.12 8.48 

Diff. 0.00 0.00 0.00 0.00 0.13 1.77 0.11 0.00 0.09 0.02 

CO2 

(ppm) 

350 0.25 1.98 2.08 1.54 8.86 6.75 13.13 18.28 25.21 8.53 

400 0.25 1.98 2.08 1.54 8.86 6.75 13.12 18.28 25.15 8.35 

450 0.25 1.98 2.08 1.54 8.86 6.75 13.10 18.27 25.09 8.19 

800 0.25 1.98 2.08 1.54 8.86 6.74 13.00 18.25 24.75 7.35 

Diff. 0.00 0.00 0.00 0.00 0.00 0.02 0.14 0.02 0.46 1.18 

AOT 

0.02 0.16 1.72 1.82 1.34 7.06 4.97 10.75 15.29 21.64 7.57 

0.08 0.16 1.72 1.81 1.34 7.05 4.97 10.73 15.27 21.60 7.56 

0.32 0.16 1.72 1.81 1.33 6.98 4.95 10.66 15.18 21.47 7.53 

1.28 0.19 1.70 1.79 1.32 6.76 4.87 10.41 14.86 21.00 7.41 

Diff. −0.03 0.02 0.02 0.02 0.30 0.10 0.34 0.44 0.64 0.16 

This study used 42 kinds of vertical profile data from Garand et al. [65] as inputs to simulate the 

radiative transfer model under various atmospheric conditions. This data includes vertical profile 

data for six standard atmospheres (tropical, mid-latitude summer and winter, subarctic summer and 

winter, and U.S. standard; profiles 1–6, respectively) and a variety of changes in atmospheric 

temperature (profiles 7–18), amount of water vapor (19–30), and amount of ozone (31–42) [65]. Other 

options in the radiative transfer model are shown in Table 4. As clouds cause the largest reduction 

effect, the simulation was performed in detail based on cloud height and optical thickness. Water 

vapor and O3 data were entered differently based on the vertical profiles. The CO2 concentration 

entered was 400 ppm and default values were used for trace gases [59]. 

Table 4. Radiative transfer model setting options used to calculate OLR. 

Parameter Values N 

Spectral band [μm] 
5.44–7.03 (Ch.08), 9.33–9.93 (Ch.12), 11.18–13.65 (Ch.15), 

12.86–13.76 (Ch.16), 3.3–100 (broadband) 
5 

Spectral resolution [μm] 0.005  

Atmospheric profile Garand profiles 42 

VZA [°] 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85 18 

COT 2, 4, 8, 16, 32, 64, 128 7 

Cloud height [km] 0, 2, 4, 6, 8, 10, 12, 14, 16 9 

Surface temperature, 

water vapor, O3, etc. 
Garand profiles  

CO2 400 ppm  

3.2. Converting Radiance to Irradiance 

If the radiation emitted from the atmosphere was isotropic, F = πL could be established. 

However, because this radiation is actually anisotropic, the radiance observed from the satellite’s 

VZA must be converted to irradiance [1]. Therefore, the equation given below is used to convert the 

narrowband radiance observed on the AHI channel into narrowband irradiance (Equations (1)–(3)). 

F = A(θ)L(θ) + B(θ) (1) 

A(θ) = k� + k�(secθ − 1) + k�(secθ − 1)� (2) 

B(θ) = k� + k�(secθ − 1) + k�(secθ − 1)� (3) 

Here, θ is the VZA, L is the narrowband radiance (Wm−2μm−1sr−1), F is the narrowband irradiance 

(Wm−2μm−1), k1–6 are the L-F regression coefficients, and A and B are the empirical limb darkening 

functions [11,66]. The L-F regression coefficients used in this study are shown in Table 5. The 

narrowband irradiance, which was converted when the VZA was 70° or less, showed %RMSEs (= 

RMSE/mean×100%) of 0.09%, 0.20%, 0.14%, and 0.07%, respectively for the mean narrowband 
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irradiances of 1.20 Wm−2, 2.87 Wm−2, 10.79 Wm−2, and 4.65 Wm−2 simulated for each channel in the 

radiative transfer model. 

Table 5. The regression coefficient for each channel, used to convert narrowband radiance to 

narrowband irradiance. 

Channel k1 k2 k3 k4 k5 k6 

8 2.670 × 10� 7.084 × 10�� −4.046 × 10�� 9.869 × 10�� −1.424 × 10�� 8.770 × 10�� 

12 2.425 × 10� 1.138 × 10� −9.878 × 10�� 4.941 × 10�� −7.435 × 10�� 6.409 × 10�� 

15 3.017 × 10� 1.125 × 10�� −5.046 × 10�� 5.252 × 10�� 9.457 × 10�� −1.095 × 10�� 

16 2.791 × 10� 4.747 × 10�� −1.817 × 10�� 3.331 × 10�� −4.345 × 10�� 1.454 × 10�� 

3.3. Converting Irradiance to TOA OLR 

To convert the narrowband irradiance calculated in Section 3.2 into the broadband irradiance 

that is OLR, the process in Equation (4) using AHI channels 8, 12, 15, and 16 was followed. 

OLR��� = a� + a�F�.� + a�F�.�
� + a�F�.� + a�F�.�

� + a� ln(F��.�) + a�ln (F��.�)� + a�F��.�

+ a�F��.�
�  

(4) 

Here, F6.2, F9.6, F12.4, and F13.3 are the narrowband irradiances for each channel and a0–8 are the F-

OLR regression coefficients. The F-OLR regression coefficients derived are shown in Table 6. 

Table 6. Regression coefficients for converting narrowband irradiance to OLR. 

a0 a1 a2 a3 a4 a5 a6 a7 a8 

90.257 1.474 0.0174 1.743 0.00213 −44.823 28.208 1.612 0.00952 

The OLR4ch that was converted to OLR, and the OLR3.3–100 that was simulated in the radiative 

transfer model and integrated by 3.3–100 μm wavelength region are shown in the scatter diagram in 

Figure 4. The two OLR values were very similar with a correlation coefficient of 0.998, and the RMSE 

of 2.85 Wm−2 resulted in a %RMSE of 1.87%. This is a smaller difference than the %RMSE of 2–2.2% 

between the results of the OLR developed by Schmetz and Liu [11], Clerbaux et al. [3], and Kim et al. 

[4] and the radiative transfer model. 

 

Figure 4. Scatter diagram of OLR4ch and the results of the radiative transfer model simulation 

integrated by 3.3–100 μm wavelength region (OLR3.3–100). The 1:1 line is in red and the regression line 

is in blue. 

4. Results 

OLR1ch, which was calculated using only the window channel as developed by Kim et al. [4], and 

OLR2ch, which was calculated using the window and water vapor channels, were different from 
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OLR4ch, which was calculated using the improvements made in this study, as shown in Figure 5. This 

figure shows the difference between CERES and OLR4ch results using 4 January 2017, as a 

daytime/nighttime case. This was compared to the results of the OLR1ch and OLR2ch calculations. In 

the daytime/nighttime case, the OLR was larger in cloud-free areas where the temperature was 

relatively high compared to the cloudy areas. In the daytime case, the largest OLR distribution was 

around the Australian desert. Here, the bias between OLR4ch and CERES OLR was 2.38 Wm−2, which 

was a difference of 0.99% against the mean OLR. The cloudy areas had a difference of 2.72 Wm−2 

(1.15%) while the cloud-free areas showed a difference of −0.18 Wm−2 (−0.07%). This difference was 

smaller than the difference with OLR1ch (all cases: 4.78 Wm−2 (2.00%), cloudy cases: 5.66 Wm−2 (2.40%), 

and cloud-free cases: −1.80 Wm−2 (−0.66%)) and OLR2ch (all cases: 4.79 Wm−2 (2.00%), cloudy cases: 

5.58 Wm−2 (2.37%), and cloud-free cases: −1.11 Wm−2 (−0.41%)), which had a larger bias than the 

CERES OLR. The RMSEs (%RMSE) of OLR1ch, OLR2ch, and OLR4ch with CERES OLR were 12.38 Wm−2 

(5.16%), 11.68 Wm−2 (4.87%), and 10.86 Wm−2 (4.53%), respectively, indicating that OLR4ch had the 

smallest difference. The correlation coefficients of the OLR values calculated in this study and the 

CERES OLR were similar, ranging between 0.97 and 0.99. 

The OLR4ch calculated had a relatively large difference (%bias of 1.43%) compared to the CERES 

OLR in overcast areas (partly cloudy cases: 0.76% and mostly cloudy cases: 1.06%). This difference 

occurred because the OLR difference was high in areas at the edge of the clouds due to errors that 

occurred because the spatiotemporal resolutions of the two OLR values compared was different 

[4,67]. The OLR1ch and OLR2ch calculation algorithms had difficulties calculating values that were 

smaller than the CERES OLR values in hot dry regions such as deserts in the daytime. As shown in 

Figure 5i,j, the improved OLR4ch obtained in this study ameliorated the problem of the calculated 

OLR being greater than the CERES OLR in cloudy regions and less than the CERES OLR in regions 

with a large OLR in daytime; this was a problem in the OLR1ch and OLR2ch calculations. Therefore, the 

bias (%bias) and RMSE (%RMSE) of OLR4ch and CERES OLR in the cloud-free region around the 

Australian desert in the daytime case were 1.14 Wm−2 (0.35%) and 6.73 Wm−2 (2.05%), respectively. 

This difference was smaller than those of OLR1ch (−7.36 Wm−2 (−2.24%) and 10.61 Wm−2 (3.23%)) and 

OLR2ch (−6.11 Wm−2 (−1.86%) and 8.92 Wm−2 (2.71%)). The Australian desert was classified according 

to the desert (7) and savannah (9) surface type data provided in CERES, which is based on the 

International Geosphere-Biosphere Programme classifications (IGBP) [57]. 

Daytime Nighttime 

(a) CERES OLR (b) OLR4ch (c) CERES OLR (d) OLR4ch 

    

(e) OLR4ch−CERES (f) %Diff. (g) OLR4ch−CERES (h) %Diff. 
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(i) OLR4ch−OLR1ch (j) OLR4ch−OLR2ch (k) OLR4ch−OLR1ch (l) OLR4ch−OLR2ch 

    

(m) cloud mask (n) land/ocean mask (o) cloud mask (p) land/ocean mask 

    

Figure 5. CERES OLR and OLR4ch for the daytime (left)/nighttime (right) case of January 4, 2017 

(a,b,c,d), the difference between these two OLR values (e,f,g,h), and the distribution of the differences 

among OLR1ch, OLR2ch, and OLR4ch (i,j,k,l). The cloud mask and land/ocean mask for each case are 

shown in figure (m,n,o,p). “%Diff.” is (OLR4ch−CERES)/CERES × 100%. 

Figure 6 shows the results of a long-term comparative analysis of the cases selected in this study. 

Figure 6a shows the monthly bias and RMSEs of OLR1ch, OLR2ch, and OLR4ch for all the cases and the 

number of data analyzed for each month. The comparative analysis results of the annual means in 

Figure 6a were categorized in detail according to the clouds and earth surface characteristics in Table 

7. Compared to OLR1ch and OLR2ch, the monthly bias and RMSE of OLR4ch versus CERES OLR were 

small at approximately 3 Wm−2 and 1 Wm−2, respectively. This difference was similar to the trend in 

the change for the cloudy case in Figure 6b. This kind of trend was seen because several clouds were 

distributed within the region set by this study, and there were more than five times the number of 

cloudy cases than cloud-free cases [68]. The difference in the calculated OLR and the CERES OLR 

was generally similar in partly cloudy cases, but the difference with the CERES OLR was reduced in 

cases with many clouds, such as mostly cloudy and overcast cases at more than 3 Wm−2 and 5 Wm−2. 

In contrast, there was a clear difference in the RMSE of OLR values calculated for cloud-free cases 

and the CERES OLR values in the southern hemisphere summer. In the northern hemisphere summer 

(June, July, and August in Figure 6), OLR4ch and CERES OLR had a bias and RMSE of −0.31 Wm−2 and 

6.23 Wm−2, respectively, which is an improvement of approximately 1 Wm−2 compared to the existing 

algorithm. However, in the southern hemisphere summer (January, February, and December in 

Figure 6), the bias and RMSE were −0.26 Wm−2 and 6.05 Wm−2, which was an improvement of more 

than 2 Wm−2. During the southern hemisphere summer, the bias and RMSE of OLR4ch and CERES 

OLR for the area around the Australian desert were 0.37 Wm−2 and 6.52 Wm−2, which was a decrease 

7.46 Wm−2 and 3.73 Wm−2 compared to the difference in the single-channel OLR1ch and CERES OLR. 

In regions like the Australian desert, which are dry and have a high surface temperature, changes in 

OLR are sensitive to absorption gas in the atmosphere [10,41–44]; therefore, the OLR calculation 

algorithm must be built using channel information that can properly reflect these changes. 
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(a) All case 

 

(b) Cloudy case 

 

(c) Cloud-free case 

 

Figure 6. Bias and RMSE of calculated AHI OLR and CERES OLR for each monthly case in 2017 and 

the number of cases analyzed. 
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Table 7. Mean of bias, RMSE, and correlation coefficient (R) for the CERES OLR and AHI OLR 

calculated for all cases in 2017 and the number of analysis cases. The unit for bias and RMSE is Wm−2. 

  

All 

Cloudy Cloud-free 

  Total Partly Mostly Overcast Total Ocean 
Land 

(Desert) 

OLR1ch 

Bias 5.81 7.05 3.86 6.89 8.26 −1.02 0.72 −1.58 (−4.43) 

RMSE 12.51 13.18 8.94 12.34 14.70 7.95 7.16 8.22 (8.26) 

R 0.97 0.97 0.95 0.91 0.96 0.97 0.95 0.97 (0.94) 

OLR2ch 

Bias 5.64 6.74 3.96 6.71 7.74 −0.43 1.12 −0.93 (−3.38) 

RMSE 11.91 12.62 8.21 11.76 14.18 6.84 6.21 7.07 (6.90) 

R 0.97 0.97 0.96 0.92 0.96 0.98 0.97 0.98 (0.95) 

OLR4ch 

Bias 2.28 2.70 3.07 3.68 2.13 0.05 0.88 −0.25 (−0.03) 

RMSE 11.03 11.69 7.57 11.15 13.06 6.02 5.51 6.22 (6.61) 

R 0.97 0.97 0.95 0.92 0.96 0.97 0.95 0.98 (0.95) 

N 2,377,853 2,007,514 4,019,34 482,414 1,123,166 370,339 115,372 
254,967 

(155,604) 

5. Summary and Conclusions 

This study improved the accuracy of calculating OLR by adding different channel data to the 

calculation algorithm in Kim et al. [4], which used the Himawari-8 AHI’s window and water vapor 

channels. The OLR results calculated were classified according to cloud and surface characteristics 

and compared to CERES OLR. One algorithm that uses the window channel, which properly reflects 

OLR changes according to the cloud and surface characteristics (OLR1ch), and another that uses data 

on water vapor, which is the absorption gas with the largest effect on OLR changes (OLR2ch), were 

developed. However, when geostationary satellite narrowband channel data was used to calculate 

OLR, the changes in OLR due to clouds and absorption gas were not adequately reflected due to the 

channel data that was used [4,10,15]. Therefore, in this study, tests were performed on the OLR 

sensitivity of each channel based on the COT, AOT, and atmospheric concentration of absorption 

gases, as detailed in Section 3.1. As a result, an OLR calculation algorithm that uses O3 and CO2 

channels instead of just window and water vapor channels (OLR4ch) was developed and 

improvements in OLR calculation accuracy were expected. Furthermore, because CO2 has a great 

effect on global climate change, and CO2 concentrations and increases in radiative forcing due to 

increases in its concentrations have an important effect on future weather and climate change 

predictions [69–71], it is desirable to use channel information that is related to this. 

The L-F and F-OLR conversion processes given in Sections 3.2 and 3.3, respectively, were 

performed to calculate OLR4ch using AHI narrowband data. The narrowband irradiance of each 

channel that was converted in the L-F conversion process showed a %RMSE of less than 0.20% with 

the narrowband irradiance simulated in the radiative transfer model. The OLR4ch calculated in the F-

OLR conversion process showed a %RMSE of 1.87% with the OLR3.3–100 simulated in the radiative 

transfer model. The Garand vertical profile data [65] were used as inputs in the radiative transfer 

model to perform simulations of various atmospheric conditions. The OLR4ch calculated in this 

process showed a 2017 yearly averaged bias of 2.28 Wm−2 and an RMSE of 11.03 Wm−2 with the CERES 

OLR. This was 3.36 Wm−2 and 0.88 Wm−2 less than the bias and RMSE of OLR1ch, OLR2ch, and CERES 

OLR. This is because the calculation results of OLR4ch, which used data from various channels, largely 

improved upon the differences with CERES OLR in mostly cloudy and overcast areas in the cloudy 

areas category, and desert areas among cloud-free areas (see Table 7). 

OLR has a close relationship with cloud-related rainfall and global warming [72] and has an 

important role in atmospheric and oceanic circulation [73]. As it is an important factor that determines 

changes in climate and weather, it must be monitored in real time [74]. OLR can also be calculated in 

global-scale climate models; however, uncertainty is high for cloud characteristics and weather data 

used as inputs in these models [75], and the data the latter provide do not have detailed 

spatiotemporal resolutions [9]. Therefore, their ability to predict regional climate is limited and they 

include systematic errors [76]. It is thus very important to use geostationary satellites to produce 
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highly accurate OLR data with a high spatiotemporal resolution. There must be further developments 

in and improvements to OLR calculation algorithms based on geostationary satellites [4,38]. 
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