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Abstract: Fine-resolution population distribution mapping is necessary for many purposes, which
cannot be met by aggregated census data due to privacy. Many approaches utilize ancillary data
that are related to population density, such as nighttime light imagery and land use, to redistribute
the population from census to finer-scale units. However, most of the ancillary data used in the
previous studies of population modeling are environmental data, which can only provide a limited
capacity to aid population redistribution. Social sensing data with geographic information, such as
point-of-interest (POI), are emerging as a new type of ancillary data for urban studies. This study, as
a nascent attempt, combined POI and multisensor remote sensing data into new ancillary data to
aid population redistribution from census to grid cells at a resolution of 250 m in Zhejiang, China.
The accuracy of the results was assessed by comparing them with WorldPop. Results showed that our
approach redistributed the population with fewer errors than WorldPop, especially at the extremes
of population density. The approach developed in this study—incorporating POI with multisensor
remotely sensed data in redistributing the population onto finer-scale spatial units—possessed
considerable potential in the era of big data, where a substantial volume of social sensing data is
increasingly being collected and becoming available.

Keywords: point-of-interest; remote sensing; nighttime light; population modeling

1. Introduction

High-resolution population distribution data are essential in addressing a wide range of critical
issues, such as vulnerability assessment [1,2], urban planning [3,4], emergency management [5], and
public health [6,7]. In most countries worldwide, commonly available information on population
number and composition through the Census Bureau is aggregated over administrative units, such as
provinces, counties, townships, census tracts, and block groups. The usefulness of these census data
is limited due to the spatial heterogeneity of population distribution within administrative units [8].
Meanwhile, both the availability and quality of environmental data are increasing. Such an unmatched
development of demographic and socioeconomic data and natural science data, especially at the fine
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levels of granularity, has hindered the advancement of decision making in many aspects, such as
resource allocation [9] and disease prevention [10], and, more broadly, the integration of natural and
social sciences [11]. Therefore, the development of efficient methods for accurately modeling fine-scale
population distribution is urgently needed.

A number of approaches have been developed to disaggregate census population data, the
most reliable population data sources worldwide, onto fine-scale grids, with the value of each grid
representing the population number within that grid. Examples include areal weighting interpolation [12],
pycnophylactic interpolation [13], and dasymetric mapping [11,14] which outperforms previous
approaches by utilizing high-quality ancillary data to redistribute the population over space [15]. Remote
sensing data, such as land cover data, have been widely used as ancillary information on where people
may live in dasymetric mapping approaches for population redistribution [11,16].

Since the late 1990s, satellite-derived nighttime light (NTL) data have been proven to be a
reliable proxy for population distribution [17,18]. The NTL dataset from the US Air Force Defense
Meteorological Satellite Program Operational Linescan System (DMSP/OLS) is a widely used product
for dasymetric mapping [19–22]. Despite its benefits, the DMSP/OLS dataset has several limitations,
such as its single spectral band and coarse spatial resolution (2.7 km), saturation in urban centers,
and blooming effect [23–25]. For example, due to the blooming effect, the lit areas shown in the
DMSP/OLS dataset are generally larger than actual urban areas [26,27]. Several studies have been
conducted to overcome limitations above, such as combining NTL and land cover data to improve the
representation of population distribution [25,28–30]. Using such data fusion approaches, a pixel-based
elevation-adjusted human settlement index (EAHSI) has been produced on the basis of NTL, enhanced
vegetation index (EVI), and the digital elevation model (DEM). The EAHSI was used as ancillary
data to generate a population density map with the spatial resolution of 250 m for Zhejiang province,
China [31]. However, some industrial areas with a high EAHSI value are actually less populated than
expected, which has led to a considerable degree of population overestimation.

Social sensing data that are becoming extremely popular in the era of big data could be a potential
solution to improve the accuracy of the population products generated purely on the basis of the
environmental ancillary data. For example, the point-of-interest (POI) data are one of the most
commonly used social sensing datasets in urban studies. Each POI with geographic coordinates
generally represents a functionally built environmental feature. Certain POI types associated with
more human activities may indicate better livability and higher population density than other types [32].
Recently, POI data have been used as ancillary data to enhance population estimation over relatively
small areas [3,4]. However, these data have not been combined with other data sources in terms of
high-resolution population modeling.

Here, we incorporated POIs with multisource remote sensing data to further improve the accuracy
of the population modeling. The resulting population dataset was compared with a widely used global
population product. This study has introduced the field of high-resolution population modeling by
utilizing an innovative combination of remote sensing and social sensing data to refine population
distribution. With both types of sensing data increasingly becoming available, the approach proposed
in this study would lead to the development of better predictive tools for population estimation.

2. Methods

2.1. Study Area

The study area was Zhejiang, which is located in the southeastern coast of China (south of
Shanghai), with a total land area of approximately 101,800 km2 and a long (6484 km) coastline in the
eastern part (Figure 1a). With approximately 54.4 million permanent residents at the end of 2010 (the
latest census year in China), Zhejiang is the 10th most populated province and that with the 4th largest
gross domestic product in China. Hills and mountains cover 70.4% of the land in Zhejiang, with only
23.2% of the land covered by plains and basins. The majority of the population in Zhejiang resides in
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the northern plains and eastern coastal areas (Figure 1b). The hierarchy of the administrative units in
Zhejiang from coarse to fine includes 11 cities, 90 counties, and 1520 townships.
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Figure 1. Elevation (a) and nighttime light (b) in Zhejiang in 2010.

2.2. Data Sources and Preprocessing

The seven datasets used in this study were all produced in 2010 and obtained from different
sources (Table 1). The township-level (equivalent to level 4 of the Global Administrative Unit Layer
defined by the Food and Agriculture Organization) population data and administrative unit boundaries
were obtained and combined as the original population data source. For accuracy assessment, the
Zhejiang part of a global gridded population dataset, that is, the WorldPop with a spatial resolution of
100 m [33], was used.

Table 1. List of datasets (all produced in 2010) used in this study.

Data Set Format Source & Citation

Census data Table Zhejiang Bureau of Statistics in 2010, China
Administrative boundary Vector (polygon) Zhejiang Administration of Surveying Mapping and Geoinformation, China

Population Count, Revision 10. Palisades, NY: NASA Socioeconomic Data and Applications
Center (SEDAC).

https://doi.org/10.7927/H4PG1PPM.

WorldPop-China Raster (100 m) Dataset: CHN_ppp_v2c_2010.tif
http://www.worldpop.org.uk/data/summary/?doi=10.5258/SOTON/WP00055

Point-of-interest Vector (point) Baidu Inc., China

DMSP/OLS data Raster (1 km)
National Oceanic and Atmospheric Administration’s National Geophysical Data Center, USA

https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
Data set: F182010

MODIS EVI Raster (250 m) MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set].
NASA EOSDIS LP DAAC. doi: 10.5067/MODIS/MOD13Q1.006

GDEM Raster (30 m)
Land Processes Distributed Active Archive Center, USA

ASTER Global Digital Elevation Model V002,
DOI: 10.5067/ASTER/ASTGTM.002

The POI data including 386,178 POIs located in Zhejiang falling within 20 categories (Table 2)
were obtained from Baidu Map Services (http://map.baidu.com), which is the most widely used and
also largest web map service provider in China [3].

The Moderate Resolution Imaging Spectroradiometer EVI products (MOD13Q1) at a spatial
resolution of 250 m, which was available every 16 days in 2010, were downloaded from the US
Geological Survey. Compared with the normalized difference vegetation index, which is a well-known
conventional vegetation index, EVI is responsive to canopy structural variations [34]; therefore, it
is likely to avoid saturation in the southern and western areas of Zhejiang with extremely dense

https://doi.org/10.7927/H4PG1PPM
http://www.worldpop.org.uk/data/summary/?doi=10.5258/SOTON/WP00055
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://map.baidu.com
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vegetation. To remove the cloud effects, the annual maximum EVI (EVImax) was produced for each
grid cell by implementing raster math calculations on 23 EVI images over a year [31]. The NTL data in
2010 was obtained from a DMSP/OLS stable light image composite at a spatial resolution of 1 km,
which is produced by the National Oceanic and Atmospheric Administration’s National Centers for
Environmental Information. The digital number (DN) values in an NTL image varying from 0 to 63
represent the average brightness of NTL in 2010, except for 63, which was assigned to saturated pixels.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM version 2 at a
spatial resolution of 30 m was downloaded from the US Land Processes Distributed Active Archive
Center. Both NTL and DEM data were resampled to 250 m through bilinear interpolation to spatially
match the EVI data. All three remote sensing images above were reprojected to the Albers Conical
Equal Area Projection and then clipped by the Zhejiang boundary.

2.3. Methodology

The objective of our study was to spatially disaggregate census data by the township level into
each pixel to produce a population distribution map with a fine spatial resolution (i.e., 250 m × 250 m).
We adopted an improved linear regression-based method that combined the multisource remote
sensing images and POIs. The major steps of this improved method are shown by the flowchart
(Figure 2).
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2.3.1. Generating an EAHSI Image

An EAHSI image covering Zhejiang for the year 2010, with a spatial resolution of 250m, was
generated based on the EVImax value and resampled NTL and DEM layers, as follows:

EAHSI =
(1 − EVImax) + NTLnor

(1 − NTLnor) + EVImax + NTLnor × EVImax
× e−0.003DEM (1)
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where e is approximately equal to 2.71828, and NTLnor is the normalized DN value of the NTL image,
which was calculated as follows:

NTLnor = (NTL − NTLmin)/(NTLmax − NTLmin) (2)

where NTLmax and NTLmin are the maximum and minimum NTL values in the study area,
respectively. Detailed information about EAHSI can be found in a previous study [31].

2.3.2. Generating a POI Density Layer

Spearman’s correlation analysis was adopted to examine the relationship between the number of
each POI category and the population at the township level (Table 2).

Table 2. Spearman’s correlation coefficients between each point-of-interest (POI) category and census
population at the township level (ranked in descending order).

POI Category Correlation Coefficient POI Count

Education facility 0.904 * 16,173
Hospital and clinic facility 0.880 * 24,173
Public service facility 0.872 * 26,887
Retail 0.871 * 89,192
Bank 0.869 * 19,596
Restaurant and entertainment 0.868 * 55,406
Company 0.863 * 75,233
Government agency 0.795 * 20,737
Residential communities 0.767 * 10,174
Factory 0.766 * 13,400
Auto service 0.765 * 11,675
Hotel 0.747 * 13,972
Gas station 0.727 * 2768
Commercial building 0.644 * 3426
Public transport station 0.417 * 450
Park 0.381 * 931
Service zone of Highway 0.315 * 1144
Toll station 0.312 * 764
Railway station 0.205 * 46
Airport 0.092 * 31

Kernel density estimation (KDE) is a well-established method in analyzing the first-order
properties of a point event distribution [35–37] and identifying hot spots [38–40]. KDE was used
to convert each category of discrete POIs into a smooth and continuous density surface. Previous
studies showed that the statistical results are insignificantly affected by the choice of the kernel
function; hence, bandwidth is the main parameter for KDE [35,36]. The planar KDE with a quartic
kernel function, which is one of the most commonly used functions [41], was implemented in this
study. The township level boundary map was used to summarize each category of POI density to level
4 and train the linear correlation between the sum value of POI density and the population counts. We
tested different bandwidths ranging from 500 m to 8000 m at an interval of 100 m. There was a slight
fluctuation when the bandwidth was between 2000 m and 5000 m, and the correlation coefficients
were relatively high. Finally, we determined a reasonable bandwidth for all categories of POI at a 3000
m bandwidth when the POI densities of most categories had the largest correlation coefficients with
the population. Thus, we selected 3000 m as the bandwidth of the KDEs.

Principal component analysis, which is one of the most commonly used dimension-reducing
techniques that can reduce a large number of correlated variables to a small number of uncorrelated
ones [42], was adopted to combine multiple POI kernel density maps into one composite POI
density layer.



Remote Sens. 2019, 11, 574 6 of 14

2.3.3. Mapping Population

Given that both POI density and EAHSI values linearly correlate to the population count at the
township level (graphical abstract), a multiple linear regression model was built, as follows:

POP = a × POI + b × EAHSI (3)

where POP represents the estimated population counts at township level, and the coefficients “a” and
“b” are the average values of the 10 repeated trials of 10-fold cross-validation. A 10-fold cross-validation
was adapted for randomly dividing township census data into 10 groups, and repeated 10 trials to
determine steady coefficients “a” and “b”. Specifically, census data of nine groups of the townships
were used to train the model, and the census data in the remaining group were used to evaluate the
multiple linear regression model. To show the advantage of fusing POIs for population estimation,
we also conducted similar cross-validations to build a linear regression model by using only EAHSI.
Table 3 shows a summary of 100 groups’ repeated trials for EAHSI and POI-EAHSI. Finally, the
gridded EAHSI and POI were used to disaggregate POP at the township level to predict pixel-level
population counts.

Table 3. Summary of 10 repeated trials of 10-fold cross-validations for EAHSI and POI–EAHSI.

EAHSI POI–EAHSI

Training Group Testing Group Training Group Testing Group

a R2 %RMSE MRE (%) a b R2 %RMSE MRE (%)

Mean 83.29 0.55 73.58 67.34 52.61 25.61 0.78 48.85 30.46

Standard Error 0.680 0.004 0.72 1.03 0.693 0.661 0.004 0.76 0.55

2.3.4. Accuracy Assessment

To highlight the fact that the use of POI data can significantly increase the accuracy of population
mapping, we compared our population map produced by POI and EAHSI (referred to as the
POI–EAHSI population map) with the map produced only by EAHSI and the WorldPop gridded
population products. For accuracy assessment, an average estimate of out-of-sample prediction was
generalized for POI–EAHSI and EAHSI data sets and WorldPop population data was aggregated
by townships and then compared with census data to evaluate the accuracy. Summary statistics,
including the root mean square error (RMSE), the RMSE divided by the mean township population
count (%RMSE), the mean absolute error, and mean relative error (MRE), were calculated for the
three methods.

3. Results

3.1. Population Density

Table 2 shows that all categories of POIs were positively related to population counts.
We combined 20 kernel POI density maps to one composite POI density layer. Only the first principal
component image (Figure 3) was used because its contributing rate of the cumulative sums of squares
reached 88.07%.
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Table 3 shows the summary of 10 repeated trials of 10-fold cross-validation, which indicated that
the multiple linear regression model on the basis of fused POIs and EAHSI was credible to estimate
population distribution, with a mean value of the coefficient of determination (R2) of 0.78, while
the mean R2 of using only EAHSI was 0.55. The %RMSE and MRE of incorporating POIs were also
significantly smaller than using only EAHSI.

According to Equation (1) with the a and b values of 52.61 and 25.61, respectively, the gridded
population map in Zhejiang for 2010 at a spatial resolution of 250 m was generated. Most of the
population lived in the urban agglomerations around Hangzhou Bay, Wenzhou–Taizhou coastal region,
and Jinhua–Quzhou basin. The Hangzhou and Ningbo regions in northern Zhejiang were the most
heavily populated regions (Figure 4). The spatial distribution of predicted population for Zhejiang
was generally consistent with the results of a previous study [31]. However, population distribution in
the present study revealed apparent spatial heterogeneity and rich information in urban centers due to
the combination of POIs. The population density map can be widely used in numerous activities, such
as demographic studies, decision making, spatial planning, and emergency response in Zhejiang.
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3.2. Accuracy Assessment

Figure 5 shows the relationship between estimated and census population counts at the township
level for Zhejiang. Each point represented an estimated and actual population count within a township
unit. The relationship between the predicted gridded estimates and the census population totals was
substantially more linear for the POI–EAHSI method than the WorldPop method. The POI–EAHSI
method also showed the highest correlation between estimated and census values (R2 = 0.88) compared
with the WorldPop (R2 = 0.79) dataset. A significant decrease in MRE (30.46%) and RMSE (1.78) were
attained to confirm the improved performance of our proposed method.
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We compared the distribution of the residuals of population estimation by POI–EAHSI (Figure 6a)
and EAHSI methods (Figure 6b). Population residual was calculated by subtracting the census data
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from the predicted population of out-of-samples. A negative residual implied that the predicted
value was an underestimation, and a positive residual indicated an overestimation. A same-color
bar was adopted to compare the distribution of errors easily. In general, EAHSI caused population
overestimation in most regions of Zhejiang (Figure 6b). The POI–EAHSI method can significantly
decrease the errors and improve the model precision over the entire province, especially in the northern
part of Zhejiang (Figure 6a). In the southeast coastal regions of Zhejiang, significant population
underestimation was observed (Figure 6a,b). Extensive land reclamation in the coastal areas of
Taizhou and Wenzhou for real estate development caused a mismatch between satellite images and
administrative boundaries, thereby influencing the results of zonal statistics. The long coastline
and the numerous islands in the southeastern coastal regions resulted in the discarding of pixels
in zonal statistics, thereby contributing to population underestimation. Compared with WorldPop
data, the improvement of the POI–EAHSI method was also apparent across most township units in
Zhejiang (Figure 6a,c). A previous study suggested that the WorldPop mainland China dataset has
high accuracy [43]. Therefore, we further compared the POI–EAHSI results with the WorldPop dataset.
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Figure 7 shows the model fit between the predicted population density of each township unit
compared with the original census population density at the same census unit level for 2010 for
POI–EAHSI results and the WorldPop dataset. According to the census population density, all the
township units in Zhejiang were classified into three groups, namely, top 20%, medium 60%, and
low 20% (red, green, and blue dots, respectively, in Figure 7). There was a good fit at medium
population densities for both POI–EAHSI and WorldPop with a similar variable explanation (R2 = 0.72
vs. R2 = 0.65). However, there were larger errors at extreme population densities (Figure 7).
At high population density, an underestimation of the original census data was observed, whereas
significant overestimation was observed at extremely low population density, especially for WorldPop.
These types of errors were also observed in previous dasymetric modeling studies [44–46]. However,
POI–EAHSI showed significantly higher accuracy than WorldPop in both tails of population density,
especially for the low tail (R2 = 0.57 vs. R2 = 0.15).
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with a large population density for the top 20%, and blue points are units with low population density
for low 20% tails. The comparison of the validation unit counts divided by unit area (population
density) on an ln–ln scale with those estimated from maps produced using county census units.

4. Discussion

Spatially accurate data on human population distributions are vital for many applied and
theoretical studies. Dasymetric mapping techniques using NTL data as the ancillary information
have been increasingly used to disaggregate census population to a finer spatial level. However,
the uncertainties in the relationships between NTL and human population distribution should be
recognized. NTL emissions depend on affluence, culture, and economic structure [17,47]. In many cities
of developed countries, commercial advertising, sports facilities, and security lighting often represent
additional sources of NTL emissions. Therefore, NTL brightness does not directly or consistently
reflect population distribution. A number of experiments demonstrated that remote sensing data, such
as land use and NTL data, cannot be used to conduct accurate population estimation at a fine scale,
especially in a complex urban environment [4]. The underestimation in high-population-density areas
and the overestimation in low-population-density areas due to spatial nonstationarity is a frequently
recurring problem in dasymetric mapping studies [44–46]. The derivation of global parameters in this
method imposes an averaging effect on the disaggregation of the population that masks the intrinsic
heterogeneity in population distribution characteristics [46].

Recently, social sensing data proved to be useful in population estimation. Previous studies used
mobile phone data [48], Twitter [49], or OpenStreetMap data [50] to improve population mapping.
However, volunteered geographic information (VGI)-based data such as OpenStreetMap data in China
is far from being complete [51]. Mobile phone data is difficult to obtain for a large study area. Twitter
cannot be used in China. Few studies started to use POIs to estimate population distributions at
a fine spatial resolution on a small scale, such as a single city [4] or urban districts [3]. This study
built a population model to disaggregate census data and obtained a high-precision population map
at a fine spatial resolution of 250 m by fusing multisource remote sensing data and POIs. A case
study for Zhejiang, China has been conducted. KDE and principal component analysis were used
to generate a POI density map, which highly relates to human daily life and population distribution
in urbanized areas. The results showed that POIs can be considered as useful ancillary data for
population estimation even at the regional scale. Compared with WorldPop global population datasets,
the method in this study that fuses information from multisource remote sensing data and POI data
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can generate improved estimation performance in revealing the actual population distribution at a
fine scale, especially in urbanized areas.

Human settlement index on the basis of NTL and vegetation index can effectively map human
settlements [52] and impervious surface [53] while distinguishing commercial, residential, and
industrial areas is difficult. POIs can supplement information to identify urban functional zones [54–57].
Compared with EAHSI, POIs that are mainly located in urban areas and are highly related to human
daily life can represent an area with high population density and exclude industrial regions [58].
In addition, POI data possessed a simple data structure compared with other multidimensional data.
Therefore, POIs can be easily used to refine population estimation, especially in urbanized areas.
The incorporation of POIs facilitated the decrease in the weight in commercial and industrial areas,
which certainly improved the population prediction.

The quality and the appropriateness of the ancillary data used influenced the accuracy of the
population estimation. One of the uncertainties of our method is the quality of POI data because POI
descriptions are generally provided by volunteers, and inaccurate descriptions are likely to occur.
However, our POI data were obtained from a commercial navigation database and were collected by
trained persons and subject to strict inspection. In addition, these POI data are used in the Baidu Map
and navigation app. Therefore, the positional and thematic accuracy of Baidu POI data is reliable.
Most POIs concentrate in urban areas, which most likely limits the improvement of population
estimation of our method to urban regions. In rural areas and urban fringe areas, many POIs are
unreported, and POI density is relatively low. Therefore, POI data may not be an effective measure of
population density in non-urban areas. Moreover, the correlations between some categories of POI
and population density may vary in different cities, since urban fabric patterns vary across regions. In
this regard, reproductions of this study in other geographic areas/countries need to investigate spatial
patterns of POIs that reflect population distribution. Finally, although POIs can identify the footprints
of human activities, they cannot provide the extent of these activities. The lack of information on the
volume of buildings may lead to population underestimation or overestimation [44].

5. Conclusions

Social sensing data, such as POI, directly reflect human activities and contain rich information
on place semantics, and have significantly complemented traditional remote sensing data in the
context of population estimation. Considering that social sensing and remote sensing data capture
different aspects of human activities, integrating these two types of data is a promising research topic.
Our approach took advantage of the information from POIs and multisource remote sensing data to
obtain the detailed and accurate characteristics of the population distribution and subsequently
improve population estimation. The POI–EAHSI model incorporating POI data overcame the
systematic overestimation and underestimation issues in previous studies and produced the most
accurate results, especially at the extremes of the population density. This paper provided a new
approach for the rapid and accurate estimation of the human population at the regional scale. The
integrated approach for population estimation has the potential to adopt more remote sensing data and
new types of social sensing big data to estimate population in more flexible ways in the future, such as
age-specific population estimation [59]. The values of multisource social sensing data in population
estimation will be explored in future studies to further improve the accuracy of population mapping.
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