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Abstract: We present a flexible methodology to identify forest loss in synthetic aperture radar (SAR)
L-band ALOS/PALSAR images. Instead of single pixel analysis, we generate spatial segments
(i.e., superpixels) based on local image statistics to track homogeneous patches of forest across a
time-series of ALOS/PALSAR images. Forest loss detection is performed using an ensemble of
Support Vector Machines (SVMs) trained on local radar backscatter features derived from superpixels.
This method is applied to time-series of ALOS-1 and ALOS-2 radar images over a boreal forest
within the Laurentides Wildlife Reserve in Québec, Canada. We evaluate four spatial arrangements
including (1) single pixels, (2) square grid cells, (3) superpixels based on segmentation of the radar
images, and (4) superpixels derived from ancillary optical Landsat imagery. Detection of forest loss
using superpixels outperforms single pixel and regular square grid cell approaches, especially when
superpixels are generated from ancillary optical imagery. Results are validated with official Québec
forestry data and Hansen et al. forest loss products. Our results indicate that this approach can
be applied to monitor forest loss across large study areas using L-band radar instruments such as
ALOS/PALSAR, particularly when combined with superpixels generated from ancillary optical data.

Keywords: change detection; forest disturbance; ALOS-1; ALOS-2; L-band SAR; microwave remote
sensing

1. Introduction

Accurate forest accounting is important for tracking the global carbon stock and ecological
modeling. JAXA illustrated global forest accounting with L-band imagery in [1]. There is continued
interest in L-band land cover and land use change analysis with the current ALOS-2 and SAOCOM
missions, and the forthcoming ALOS-4 and NISAR missions, which will provide high temporal and
spatial resolution imagery. An important NISAR objective is to monitor forest disturbances at the 1 ha
scale [2]. Indeed, L-band SAR images are not affected by clouds and aerosols, so SAR image stacks
may be used for long-term forest studies in regions that are difficult to monitor at a high temporal
resolution using optical sensors alone. However, SAR images are plagued with speckle noise and are
sensitive to dielectric changes in the target (e.g., moisture in biomass). Additionally, certain spectral
features useful for forest studies are not visible in the microwave spectrum. Even in the presence of
these obstacles, SAR images offer an invaluable tool for forest accounting [3].

We present a methodology for detecting forest disturbance from L-band SAR time-series. Given a
time-series of images (i.e., an image stack), our method identifies when and where forest disturbance
occurred. In determining when a change occurred, we consider a small window of images around a
particular date and extract a temporally averaged pair. Using this pair, we apply a two-part change
detection method. First, with a segmentation of our image, we derive backscatter features. Then,
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we use use a classifier to determine if a segment lost forest. We also present empirical uncertainties
associated with our change maps.

For our change analysis, we consider a simple pair of features: the initial backscatter and the
backscatter change. It is well known that a decrease in HV-polarized backscatter may indicate forest
loss [1,4,5]. We incorporate larger spatial scales into the analysis of these features with superpixels.
Superpixels refer to the segments that partition an image into small homogeneous areas. We frequently
interchange “segments”, “superpixels”, and “superpixel segments” to refer to these contiguous,
homogeneous areas.

Ren and Malik introduced the notion of superpixels in [6] as a way to prepare an image for
object detection. They assert that “(1) pixels are not natural entities; they are merely a consequence
of the discrete representation of images; and (2) the number of pixels is high even at moderate
resolution”. Indeed, the latter is particularly relevant for ALOS/PALSAR tiles that we investigate
here, which each have tens of millions of pixels. Within the remote sensing community, superpixel
analysis developed independently with the availability of the eCognition software suite [7] and has
typically been referred to as “object-based” analysis [8], with this nomenclature likely stemming from
the event that these small segments frequently enclose a single building or road in a given remotely
sensed image. Since the introductions of such analyses, there have been numerous algorithms to
determine such image segmentations [8–11]. We use Felzenszwalb and Huttenlocher’s method from [9]
implemented in an open-source python library [12]. We select this algorithm because the parameters of
the segmentation algorithm depend on the resolution of the image, not its dimensions, allowing us to
apply this segmentation to subsets of an image without adjusting the parameters to obtain comparable
segmentations. We aggregate segment statistics according to linear γ0.

Superpixel segmentation has become an important tool for a number of remote sensing tasks
including change detection [13–18], classification [19–22], and denoising [23,24]. Indeed, JAXA’s global
forest/non-forest maps employed segments derived from eCognition’s software suite [1]. Such analyses
have been adapted for regional forest studies [4,25,26] and for mangrove monitoring [27–29].

Our contribution with this work is to demonstrate that superpixel analysis can be applied directly
to time-series of ALOS/PALSAR HV images that have been radiometrically and terrain corrected
(RTC) [30]. We found adapting such techniques to ALOS/PALSAR time-series to be important where
JAXA time-series mosaics have errors related to merging tiles or geo-referencing [28]. Using RTC
images, we remove dependence on incidence angle and can apply a single model to the full extent of
the time-series. We obtain a change map at the 2 ha scale using superpixels and demonstrate these
change maps have better agreement with validated change products over our site than those produced
using individual pixels or square grid cells. Furthermore, we show that using segments derived from
auxiliary optical products can improve such agreement with our validation data further.

We use the mean backscatter within a segment to characterize a superpixel as a proxy for
individual pixel backscatter. We expect the use of mean backscatter to mitigate speckle effects because,
if a superpixel encloses a single target, the sample mean will approach the mean backscatter associated
with this target as more pixels of this target are sampled [20,24]; we will not formally investigate this
claim as it outside scope of this work. Superpixel-based analysis also speeds up our change analysis as
there are less superpixels to analyze than pixels.

In our analysis, we compare four different local spatial contexts for our change analysis:
superpixels derived from backscatter, superpixels derived from ancilliary optical products, square
cells derived from a regular grid, and individual pixels.

Superpixels pose some obstacles for our change analysis. Superpixels need not accurately capture
the boundary of forest disturbances and the precise shape and size of the irregular segments are difficult
to control. The parameters best suited for a particular image stack depend on the resolution, contrast,
and the scale of image features being studied in that stack. In this work, our focus is comparing the
four spatial contexts and we select sizes accordingly.
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Once features have been extracted from our superpixel segments, we apply a classifier to
determine if a disturbance has occurred. One can directly apply an unsupervised classifier as
in [31], a statistical test as in [32] or apply a Markov Random Field to further incorporate spatial
relationships [33,34]. We take a supervised approach and train an SVM similar to [35] so we can utilize
our validation data at our site for training.

Indeed, this work falls into the broader category of change detection methods of remote sensing
images. However, we do not compare our methodology to techniques of more general change detection
in part because we focus on a specific aspect of change detection in SAR images (i.e., forest loss) and
our validation data is less reliable on the full ALOS/PALSAR time series. Many of the state-of-the-art
techniques (in particular, deep learning [36]) require a sizeable corpus of accurate training samples for
transferring a particular image model to a new sensor [37]. Although we have validation data from the
Quebec government [38] and the Hansen et al. forest loss products, such data does not precisely align
with our ALOS/PALSAR time-series in that a change in a particular year may have occurred before
or after a particular image was retrieved. Furthermore, changes identified in such validation data
are derived from aerial photography or optical data and may not be detected in the ALOS/PALSAR
time-series. Similarly, changes detected in the ALOS/PALSAR time-series may not be present in
our validation data. Creating a suitable dataset for comparing these methods on ALOS/PALSAR
time-series is beyond the scope of this work.

We also note that superpixels are but one way to integrate higher-level spatial scales into
change analysis. We have only considered superpixels at one spatial scale in this study, but multiple
spatial scales can be analyzed to better model larger features for classification [21,22]. Furthermore,
Convolutional Neural Nets (CNNs) are a powerful tool that can integrate multiple spatial scales for
classification [39,40] and are able to learn more complicated image features not possible with just
superpixels. An active area of research is developing techniques to efficiently transfer CNNs to new
sensors and making models less dependent on the site where they are trained [36,40,41].

In what follows, we illustrate how to adapt superpixels to track changes in ALOS/PALSAR
time-series and demonstrate its benefit over other spatial contexts. We apply our method to ALOS-1
and ALOS-2 time-series demonstrating the benefit of superpixels over pixels and square grid cells
using Quebec forestry data [38] and Hansen et al. forest loss products [35]. We also show that using
superpixels derived from ancillary optical data can improve performance further.

In Section 2, we present the preprocessing, change detection, and empirical uncertainty
quantification associated with our methodology. In Section 3, we apply our methodology to
ALOS/PALSAR HV image stacks over the Laurentides Wildlife Reserve and validate our change maps
using Québec’s Ministry of Forests data [38] and Hansen et al. forest disturbance data [35] for ALOS-1
and ALOS-2, respectively. In Figure 1a, we show the extent of an ALOS-1 tile over the Laurentides
Wildlife Reserve, which we investigate in Section 3.
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(a) Laurentides Wildlife Reserve

(b) Training site (c) Detailed area

(d) Superpixels populated with means (e) Square grid cells populated with means

Figure 1. In the first row, the boundaries of the Laurentides Wildlife Reserve, an overlapping ALOS-1
tile, and the training site. In the second row, (b) is the HV backscatter over the training site and (c) is
a detailed area in the training site. Figures (b,c) are from ASF high resolution ALOS-1 RTC data [42]
(12.5 m resolution). The superpixels have mean size 31.34 pixels2 (0.49 ha). In the last row, the figure (e)
shows superpixels with mean backscatter value and (f) shows regular square grid cells with 5 pixel
spacing populated with mean backscatter.
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2. Methodology

We now describe our methodology for change detection on SAR image stacks to identify forest loss.
First, we discuss the preprocessing of an image stack. Then, we discuss our change detection methodology.
Finally, we introduce empirical uncertainty measures associated with the change methodology.

2.1. Preprocessing Our Image Stack

Preprocessing our image stack helps mitigate environmental and phenological effects such as rain
and snow cover that can significantly alter brightness in backscatter images. In this work, we consider
two different stacks: HV ALOS-1 image tiles radiometrically and terrain corrected (RTC) by the ASF [42]
and HV ALOS-2 image tiles RTC processed with [43]. RTC images allows us to apply a change model
to the full image extent without reference to incidence angle. We select images acquired from June
through September during peak biomass and to avoid snow cover that can impact backscatter returns.
We now describe our preprocessing pipeline, which is briefly summarized in Figure 2.

t
Coregistration

& Masking

Clipping the
Dynamic Range,

Lee Filtering
& TV Denoising

Normalizing
Statistics
Through
Segments

Figure 2. Preprocessing a SAR image stack for change detection.

Having a set of RTC images, we project all the images into the same coordinate reference system
and mask void pixels consistently through the stack so we ignore any pixel that has at least one void
area in the time-series. With a spatially coregistered and correctly masked stack, we perform channel
by channel preprocessing. First, we clip the dynamic range of our HV image to fall between −30 and
−5 dB. Then, we apply total variation (TV) denoising [44] in dB to remove noise. Although SAR noise
in dB is additive and γ-distributed [45], we used TV denoising in dB scale to remove speckle noise [46].
We used a weight parameter λ = 0.25 for ALOS-1 and λ = 0.5 for ALOS-2 (see [44] for parameter
description). We applied this denoising method instead of the Gaussian filter used in [9], as a Gaussian
filter is not appropriate for the statistical distribution of speckle in SAR imagery [45].

To complete preprocessing, we adjust image statistics through large superpixels. Having images
normalized correctly helps ensure that a decrease in backscatter is an indicator of forest loss, rather than
an indicator of natural fluctuations in the dielectric properties of the vegetation, for example, changes in
vegetation water content as a result of precipitation. Specifically, we normalize a pixel’s backscatter p
at image index i according to

p̂i = (pi − µi)
σ0

σi
+ µ0, (1)

where µi, σi are the ith image’s mean and standard deviation, respectively, within the segment that
pixel p belongs to. For ALOS-1 time series, we use the superpixels shown in Figure 3. The mean
segment size of these superpixels is 9.4 × 104 ha, which is four orders of magnitude larger than the
minimum size forest loss of 2 ha that we wish to observe. Because ALOS/PALSAR tiles span such a
large area, a normalization using an entire image’s statistics does not ensure that statistics over smaller
image subsets have normalized statistics and indeed such a subset may have fluctuating brightness
over the course of a time series even if this subset is undisturbed. Such fluctuations of undisturbed
pixels can negatively impact a particular change detection model’s ability to generalize to an entire
ALOS/PALSAR time-series, especially if this model expects a backscatter decrease as an indicator of
forest loss. We illustrate this obstacle in Figure 4 using our training site as a subset (see Figure 3 for the
location of the training site). We consider consecutive image differences, which is Ij+1 − Ij for ALOS-1
time series I1, I2, . . . , In. We consider these consecutive differences from time-series that have been
normalized in two different ways: (1) using global image statistics and (2) using large superpixels.
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We determine undisturbed areas using the Québec forestry data [38] and remove water areas using a
−21 db threshold [47]. We expect that consecutive differences of undisturbed forest pixels over any
subset of an image to have approximately zero mean. As we can see in Figure 3, the consecutive means
of undisturbed areas in the training area fluctuate more significantly when normalized using global
image statistics. In particular, we can see from this figure that the tile retrieved on 2009-06-21 is brighter
than other images in the stack (likely due to frost or rain) causing the consecutive differences to skew.
We show the empirical difference densities of these two normalizations in Figure 4b,c to highlight this
skewing further.

Figure 3. Above, the large superpixels used to normalize backscatter statistics through the ALOS-1
time series. The superpixels have average area 9.4 × 104 ha.

2.2. Change Detection

We now describe the change detection methodology that we apply to a preprocessed image stack.
The final output of this change detection is a change map indicating regions that were disturbed
and the time at which these disturbances took place. For this discussion, we assume each region is
disturbed at most once. In this section, we will refer to a “change” region as a region that loses forest.

To determine if change occurred in a particular image Ij of our stack, we first select a window
around this image, specifically a subset of consecutive images containing Ij in our image stack. We call
Ij the focal image of our window. We specify a forward window size w f and backward window wb as
in Figure 5. The window sizes w f and wb determine the temporal scale we wish to consider. A longer
window size means the changes should be observable at longer time scales. For our analysis of
forest loss, we typically ensure that each window spans a few years (we used wb = w f = 2 for the
ALOS/PALSAR time-series considered here). Within a window, we average the images within the
forward and backward window, respectively, noting that the forward window includes the focal image
in our setup. We are left with an image pair to perform change detection. These first steps of our
change analysis are summarized in the first row of the flow chart in Figure 5.
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(a)

(b) (c)

Figure 4. This figure collects statistics of consecutive differences over ALOS-1 time series over
undisturbed forest pixels in our training area. Undisturbed pixels are determined with the Québec
forestry data [38]. We remove water pixels using a−21 db threshold as in [47]. In (a), we show the mean
of consecutive image differences of undisturbed pixels normalized in two different ways: with statistics
in large superpixels (see Figure 3) or with global image statistics from the full tile. Then, we consider
some consecutive differences with high variation (highlighted in gray in (a)) and display their empirical
densities separately. In (b), there are the differences from images normalized with large superpixels
and in (c), are those normalized with global image statistics.
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Figure 5. Schematic for change detection pipeline.

Next, we introduce superpixels [9] to our change analysis. We use Felzenszwalb and Huttenlocher’s
method [9] as its size parameters are independent of image dimensions if the resolution is fixed.
Furthermore, the algorithm [9] only enforces a minimum size on the final segments allowing for larger
segments if there are large homogeneous areas. The algorithm is feasible on large ALOS-1 tiles as its
runtime is O(n log(n)), where n is the number of pixels [9]. From these segments, we derive mean
backscatter and mean backscatter change between the forward and backward windows. We extract
these superpixels using the first and the last images in our original image stack.

We fix the minimum size m to be 10 pixels and scale κ to be 0.1 for ALOS-1 and ALOS-2 HV
backscatter images. These parameters produced segments with mean size 0.3 ha for ALOS-1 time
series and mean size 0.25 ha for ALOS-2 time series. We do not pursue parameter optimizations further
as our focus is on the viability of superpixels for the identification of forest loss within ALOS/PALSAR
time-series analysis. To highlight the difference between individual pixel analysis and superpixel
analysis, we ensure that each superpixel covers an area one order of magnitude larger than the area
covered by individual pixels with this selection of m. Parameter optimization and comparisons with
numerous other superpixel segmentations such as mean shift [11] and SLIC [10] as in [48,49] will
be explored in future work. Because the superpixels have mean size greater than 0.25 ha for both
ALOS time series, we only consider changes that are at least 2 ha scale. We found that a 1 ha size filter
typically produced an F1 score below 0.4 due to commission error.

With this segmentation, we derive features for each superpixel by aggregating backscatter values
of those pixels contained in a given superpixel. Here, we consider the mean backscatter obtained from
the forward window and the mean backscatter change from backward to forward windows.

Next, we load a trained SVM with a radial basis function as our model’s kernel [50] to determine
where changes occur. We train our model on a pair of images over a small study area where there was
visible forest loss. In Figure 1, we show the extent of the training area. We trained our models using
available validated forestry data consistent with the ALOS/PALSAR time-series extent. Because there
are far more “no change” than “change” segments, we select a random sample of “no change” segments
to balance the classes for training. We ensemble 50 models together (each trained on a different
random sample) to remove sample dependence. We discuss the ensembling of SVM in more detail in
Appendix A. With a trained SVM, we identify change within a temporally averaged pair. To remove
regions of small, isolated changes, we apply a size filter, removing changed areas that are smaller than
2 ha. We summarize the entire change detection methodology in Figure 5. In Figure 6, we illustrate the
empirical probability density of our two superpixel features over an ALOS-1 pair over the training
region. Specifically, we show how the initial backscatter is distributed over change and unchanged
regions in Figure 6a,b. We show the decision boundary and the classification of our SVM in Figure 6.
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(a) (b) (c)
Figure 6. In (a) and (b), we compare the HV features of the Québec segment we use to determine
change. We compare the empirical probability densities over regions with and without forest loss
as labeled using Québec disturbance data [38]. The statistics are confined to the training site. In (c),
we illustrate how these two features are related and illustrate the Platt scaling used to quantify SVM
class certainty. The Platt scaling illustrates the model’s confidence in change with 1 being the highest
and 0, the lowest. We used parameters C = 50, γ = 50, and Cc = 20 for each SVM in our ensemble
(see Appendix A for a discussion of the parameters).

2.3. Empirical Uncertainty Measures

There are numerous sources of possible error in our change detection methodology. We will focus
on two important aspects: the superpixel segmentation and the SVM model. We define empirical
measures to evaluate our change map in each regard.

We first discuss the empirical certainty associated with segmentation boundaries of our
superpixels. A region of forest loss may poorly coincide with a superpixel’s boundaries. To quantify the
possible disagreement of segment changes with finer changes detected at the pixel level, we measure
the number of pixels that satisfy the change criterion as determined using our trained SVM within a
superpixel. Specifically, given a trained SVM, we can determine which pixels have changed using the
same features at the pixel level. Having labeled change at the pixel level, we determine the percentage
of pixels within a segment that is labeled as change to quantify our certainty that segment is labeled
correctly. Because this requires pixel analysis, such uncertainty analysis adds significant computational
overhead to our original change analysis. In Figure 7, we illustrate an uncertainty map derived from
the first window in our ALOS-1 stack within our training area. In fact, this product could be used for
change analysis as well, though we do not explore this further here.

To quantify the uncertainty associated with the SVM, we use the well-known Platt scaling [51].
This method fits a standard logistic function to the distances from the decision boundary of the training
samples. In our case, we ensemble the Platt Scaling output from all of our models to measure the
certainty of a given prediction. Because the parameters required for Platt scaling are determined
during training, this has a much lower computational overhead than the previous uncertainty measure.
In Figure 6, we illustrate the features we use for training over regions with forest loss and regions
that are undisturbed. Specifically, in Figure 6c, we have an ensemble of 50 SVMs and the associated
model certainty on the domain to illustrate the averaged Platt scaling. In the next section, we apply
our change methodology to ALOS-1 and ALOS-2 stacks.
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(a) (b)
Figure 7. (a) is a detailed change map from the first window of ALOS-1 time series (focal image is 16
June 2007); (b) is the associated empirical change certainty computed as the percentage of pixels that
are labeled as change by the trained SVM.

3. Applications

In this section, we apply our change methodology to an ALOS/PALSAR time series. We illustrate
two ALOS/PALSAR time-series in which superpixels outperform individual pixels and square grid
cells of comparable size. Our performance metrics are higher for the ALOS-1 time series because
the validation map is hand labelled from aerial photography [38], whereas the Hansen et al. [35]
forest loss products are statistically determined from Landsat mosaics and are thus negatively affected
by cloud cover and snow in this area. Furthermore, many of the changes in both optically derived
validation datasets are not visible to the ALOS/PALSAR imagery, and, conversely, the changes
seen in the ALOS/PALSAR images may not appear in the validation data. We also note that our
evaluation metrics are further hindered by the fact that our validation data is misaligned with our
ALOS/PALSAR time series in that changes noted in the data may have occurred before or after ALOS
images were retrieved.

For these comparisons, we consider a pair of images from ALOS-1 and ALOS-2 stacks trained on
a small subset of the extent with Québec forestry data [38] and Hansen et al. forest loss products [35].
We then validate each methodology on the full tile. After we discuss the performance of the
methodology using superpixels, square segments, and individual pixels, we apply the methodology
with the trained model to both full time-series to illustrate the proposed data product. The products
used for the time-series are summarized in Table 1 and contain basic topographic features of the
study area.

3.1. ALOS-1

We now apply our change methodology to an ASF-processed ALOS-1 stack [42]. We train and
validate our methodology using open Québec data [38] produced by the forestry service. We consider
only four types of forest disturbances: total cuts, cuts with protection of small or high merchantable
stems and soil, and cuts with regeneration protection (see [38]). These correspond to approximately
85% of all disturbances and are visible over the training area we selected. Because we apply a size
filter to our final change map, we remove changes within this dataset whose total area is below 2 ha.
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The Québec data, in addition to providing when and where disturbance occurred, also provides a
segmentation of the ALOS-1 tile, so we train our model using these segments directly. We also apply
our trained model to these segments as an additional point of comparison. Because the forest loss data
is based on the Québec segments, our methodology works best using these segments. These segments,
which were created using aerial photographs, allows us to incorporate optical image information
into SAR analysis. We note that the relative performance of the segmentations over the training
area actually changes when evaluating the performance over the full tile. Indeed, pixels perform
better than HV derived superpixels over the training area, but worse over the full tile as indicated in
Table 2. This suggests that superpixels help our change detection model generalize as it is applied
outside the training area. In Table 2, we compare changes tracked using superpixels, square segments,
and individual pixels on the full ALOS-1 tile. We show the F1 score (both over the training site and
the full tile), the producer accuracy (full tile), and user accuracy (full tile) using the forestry data as
ground truth. Superpixels derived from the radar data perform the best after the Québec segments.
The main source of mislabeling comes from false positives, including the expansion of Route 175 [52]
which required the cutting of trees along this highway, but these disturbances are not included in the
Québec forestry data.

Table 1. Available dates for ALOS-1 obtained through the ASF [42] and for ALOS-2 obtained through
the ALOS/ALOS-2 user interface gateway [53]. We include the sensor’s mode, topographic data, and
image descriptors for reference. We note that we only discuss the upper bounds of the elevation and
slope as there are zero elevation areas and flat terrain in both extents.

Sensor Mode

Available Dates
Italicized Are Used
in Time Series and

Underlined Are Used
for SVM Training

and Validation

Resolution
(m)

Elevation
µ/max

(m)

Slope
µ/µ+3σ
(degrees)

Total Area
(ha)

ALOS-1
Fine Beam

Dual

2007-06-16, 2007-08-01,
2008-09-18, 2009-06-21,
2009-08-06, 2010-06-24,
2010-08-09, 2010-09-24

12.5 801/1148 8.44/28.13 3.67× 105

ALOS-2
Strip Map
(10 meter)

2014-11-22, 2014-12-20,
2015-02-28, 2015-07-04,
2015-08-01, 2016-06-18,
2016-07-02, 2016-11-19,
2017-07-01, 2017-12-16

10 796/1161 8.90/28.79 4.54× 105

Using our trained ensemble of models, we identify disturbance in the full ALOS-1 stack illustrated
in Figure 8. We see the expansion of Route 175 [52] at the bottom of the image.

Table 2. Results of change detection performed on the ALOS-1 pair using various segmentations.

Segments F1 (Training Site) F1 (Full Tile) Producer Accuracy (Full Tile) User Accuracy (Full Tile)

Quebec Segments 0.922 0.7719 0.6871 0.8806

Superpixels 0.704 0.597 0.5377 0.6709

Pixels 0.722 0.571 0.5131 0.6436

Squares 0.708 0.567 0.5044 0.6473
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Figure 8. A detailed area of the ALOS-1 change map product, including the expansion of route 175 [52]
in the bottom of the image.

3.2. ALOS-2

We now describe our change analysis on an ALOS-2 stack over the same area. We use Hansen
et al. forest disturbance data [35] to train our model as Québec forestry data does not go past 2014.
We performed radiometric terrain correction with [43]. We modify the original Hansen et al. forest loss
map so training is done on segments rather than pixels, mitigating speckle and improving efficiency.
First, we extracted superpixels from Hansen et al.’s 2017 landsat mosaic. Then, with the changes that
aligned with our ALOS-2 retrieval dates, we labeled a segment as change if a majority of pixels within
the extracted segments were changed. This ensured that segments with a high volume of forest loss
were trained correctly. Since regions labeled as undisturbed are randomly sampled during training,
we expect false negatives to be of minor impact during training. However, when validating our model
on the full ALOS-2 tile, we used the original Hansen et al. change map with losses smaller than
2 ha filtered out. We proceed with the same change analysis as in Section 3.2. Table 3 compares the
change methodology on the Landsat segments, superpixels, square segments, and individual pixels,
illustrating that the superpixels derived from Landsat data produce the most accurate change detection
product. As before, we note that, even though the model performs better using pixels than superpixels
over the training site, the opposite is true over the full tile. Figure 9 has a detailed area of the ALOS-2
change map product produced using the backscatter derived superpixels.
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Table 3. Results of change detection performed on the ALOS-2 pair using various segmentations.

Segments F1 (Training Site) F1 (Full Tile) Producer Accuracy (Full Tile) User Accuracy (Full Tile)

Landsat Segments 0.831 0.5169 0.5329 0.5019

Superpixels 0.712 0.4841 0.5098 0.4609

Pixels 0.716 0.4668 0.4672 0.4665

Squares 0.71 0.458 0.4371 0.481

Figure 9. A detailed area of the ALOS-2 change map product. The bright white pixels are void data
from the RTC correction [43].

4. Conclusions

We have introduced a flexible change detection methodology for identifying forest loss in
ALOS/PALSAR images and validate the methodology with official Québec forestry data [38] and
Hansen et al. forest loss products [35]. Our methodology uses simple features so that this change
method can be adapted for other forest sites and other L-band image stacks. We have demonstrated
the use of superpixel segmentation in our change analysis to improve computational efficiency
and incorporate optical information. We compared superpixel segmentation within our change
methodology favorably to segments generated by square grid cells and individual pixels. Furthermore,
we illustrated how spatial segmentation can be used to incorporate optical data into the SAR change
analysis to improve change detection accuracy. In future work, we plan to compare more spatial
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segmentation methods, expand our methodology for larger study areas, and analyze image stacks
with higher temporal sampling.
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Abbreviations

The following abbreviations are used in this manuscript:

ALOS-1/-2 Advanced Land Observing Satellite-1/-2
ASF Alaska Satellite Facility
NISAR NASA-ISRO Synthetic Aperture Radar
PALSAR Phased Array type L-band Synthetic Aperture Radar
RTC Radiometrically and Terrain Corrected
SAOCOM Satellites for Observation and Communications
SAR Synthetic Aperture Radar
SVM Support Vector Machine
TV Denoising Total Variation Denoising

Appendix A. Ensembling Support Vector Machines for Identifying Forest Loss

Figure A1. Above, a comparison of the distrubution of F1 scores as the number of models in the SVM
ensemble increases. We obtain the above statistics using 1000 different ensembles such that each SVM
has parameters C = γ = 50 and Cc = 20.
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In this appendix, we review the ensembling of Support Vector Machine (SVM) that we use to
identify forest loss. An SVM determines a decision boundary from so-called support vectors w,
which are solutions to the minimization problem:

w = arg min
w,w0

||w||2 + C
n

∑
i=1

max(0, 1− yi(w · ϕ(xi)− w0)), (A1)

where C > 0, xi are the training feature vectors, ϕ is our feature embedding, and yi are the class labels
such that yi ∈ {1,−1}. Let yi = 1 indicate forest loss and yi = −1 an undisturbed area. The support
vector w determines if a data point x is in a particular class according to the sign of w · ϕ(x)− w0.
Using the so-called “kernel trick” [50], we can nonlinearly embed our features with ϕ without adding
significant computational overhead so long as we can specify the kernel k(xi, xj) = ϕ(xi) · ϕ(xj).
We select the radial basis function as our kernel: k(xi, xj) = exp(γ||xi − xj||). To deal with the
imbalance problem (there are far fewer regions that have forest loss than areas that do not), we employ
two strategies. First, we adjust the weights for the two classes according to a multiplicative constant
Cc(i), namely,

w = arg min
w,w0

||w||2 + C
n

∑
i=1

Cc(i)max(0, 1− yi(w · ϕ(xi)− w0)), (A2)

where Cc(i) = 1 if yi = 1 and Cc(i) = c > 0 is a scaling factor for yi = −1. We refer to Cc by the value c
it takes on undisturbed regions. Second, we train our SVM on a random sample of unchanged regions
so that the number of disturbed and undisturbed areas are equal. Because a model’s output depends
on this random sample, we then assemble the SVM models together classifying each point based on the
majority [54]. This strategy also helps with the fact that our data has a decent amount of false negatives,
namely regions with forest loss, but that are not labeled as such. In Figure A1, we illustrate the results
of training an increasing number of models in our ensemble at the training site of ALOS-1 data. As
the number of ensembles increases past 40, the F1 scores of the ensemble SVM level off and remain
concentrated around the mean. When selecting parameters γ, C, and Cc, we perform a grid search
using our ensemble method to determine the parameters with optimal F1 score on our training area.

References

1. Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global
Forest/Non-Forest Maps from ALOS PALSAR Data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31.
[CrossRef]

2. NISAR Science Team. NASA-ISRO SAR Mission Science Users Handbook. 2019. Available online:
https://nisar.jpl.nasa.gov/files/nisar/NISAR_Science_Users_Handbook.pdf (accessed on 14 January 2019).

3. Chambers, J.Q.; Asner, G.P.; Morton, D.C.; Anderson, L.O.; Saatchi, S.S.; Espírito-Santo, F.D.; Palace, M.;
Souza, C., Jr. Regional Ecosystem Structure and Function: Ecological Insights from Remote Sensing of
Tropical Forests. Trends Ecol. Evol. 2007, 22, 414–423. [CrossRef] [PubMed]

4. Avtar, R.; Sawada, H.; Takeuchi, W.; Singh, G. Characterization of Forests and Deforestation in Cambodia
using ALOS/PALSAR Observation. Geocarto Int. 2012, 27, 119–137. [CrossRef]

5. Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and Drivers of Global
Mangrove Forest Change, 1996–2010. PLoS ONE 2017, 12, e0179302. [CrossRef] [PubMed]

6. Ren, X.; Malik, J. Learning a Classification Model for Segmentation. In Proceedings of the Ninth IEEE
International Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 10–17.

7. Flanders, D.; Hall-Beyer, M.; Pereverzoff, J. Preliminary Evaluation of eCognition Object-based Software for
Cut Block Delineation and Feature Extraction. Can. J. Remote Sens. 2003, 29, 441–452. [CrossRef]

8. Meinel, G.; Neubert, M. A Comparison of Segmentation Programs for High Resolution Remote Sensing
Data. Int. Arch. Photogramm. Remote Sens. 2004, 35, 1097–1105.

9. Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient Graph-based Image Segmentation. Int. J. Comput. Vis. 2004,
59, 167–181. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2014.04.014
https://nisar.jpl.nasa.gov/files/nisar/NISAR_Science_Users_Handbook.pdf
http://dx.doi.org/10.1016/j.tree.2007.05.001
http://www.ncbi.nlm.nih.gov/pubmed/17493704
http://dx.doi.org/10.1080/10106049.2011.626081
http://dx.doi.org/10.1371/journal.pone.0179302
http://www.ncbi.nlm.nih.gov/pubmed/28594908
http://dx.doi.org/10.5589/m03-006
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77


Remote Sens. 2019, 11, 556 16 of 18

10. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to
State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]
[PubMed]

11. Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 2002, pp. 603–619. [CrossRef]

12. Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T.
Scikit-image: Image Processing in Python. PeerJ 2014, 2, e453. [CrossRef] [PubMed]

13. Lv, N.; Chen, C.; Qiu, T.; Sangaiah, A.K. Deep Learning and Superpixel Feature Extraction based on
Contractive Autoencoder for Change Detection in SAR Images. IEEE Trans. Ind. Inform. 2018, 14, 5530–5538.
[CrossRef]

14. Gong, M.; Zhan, T.; Zhang, P.; Miao, Q. Superpixel-Based Difference Representation Learning for Change
Detection in Multispectral Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2658–2673.
[CrossRef]

15. Zhou, L.; Cao, G.; Li, Y.; Shang, Y. Change Detection Based on Conditional Random Field with Region
Connection Constraints in High-Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2016, 9, 3478–3488. [CrossRef]

16. Huang, X.; Yang, W.; Xia, G.; Liao, M. Superpixel-based Change Detection in High Resolution SAR Images
using Region Covariance Features. In Proceedings of the 8th International Workshop on the Analysis of
Multitemporal Remote Sensing Images, Annecy, France, 22–24 July 2015; pp. 1–4.

17. Ertürk, A.; Ertürk, S.; Plaza, A. Unmixing with SLIC Superpixels for Hyperspectral Change Detection.
In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China,
10–15 July 2016; pp. 3370–3373.

18. Clewley, D.; Bunting, P.; Shepherd, J.; Gillingham, S.; Flood, N.; Dymond, J.; Lucas, R.; Armston, J.;
Moghaddam, M. A Python-based Open Source System for Geographic Object-based Image Analysis
(GEOBIA) Utilizing Raster Attribute Tables. Remote Sens. 2014, 6, 6111–6135. [CrossRef]

19. Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, W. Superpixel-based Classification with an Adaptive
Number of Classes for Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 907–924.
[CrossRef]

20. Thompson, D.R.; Mandrake, L.; Gilmore, M.S.; Castano, R. Superpixel Endmember Detection. IEEE Trans.
Geosci. Remote Sens. 2010, 48, 4023–4033. [CrossRef]

21. Zhang, S.; Li, S.; Fu, W.; Fang, L. Multiscale Superpixel-based Sparse Representation for Hyperspectral
Image Classification. Remote Sens. 2017, 9, 139. [CrossRef]

22. Audebert, N.; Saux, B.L.; Lefevre, S. How Useful is Region-based Classification of Remote Sensing Images in
a Deep Learning Framework? arXiv 2016, arXiv:1609.06861.

23. Fan, F.; Ma, Y.; Li, C.; Mei, X.; Huang, J.; Ma, J. Hyperspectral Image Denoising with Superpixel Segmentation
and Low-rank Representation. Inf. Sci. 2017, 397, 48–68. [CrossRef]

24. Liu, X.; Jia, H.; Cao, L.; Wang, C.; Li, J.; Cheng, M. Superpixel-based Coastline Extraction in SAR Images
with Speckle Noise Removal. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Beijing, China, 10–15 July 2016; pp. 1034–1037.

25. Dupuy, S.; Herbreteau, V.; Feyfant, T.; Morand, S.; Tran, A. Land-cover Dynamics in Southeast
Asia: Contribution of Object-oriented techniques for Change Detection. In Proceedings of the 4th
International Conference on GEographic Object-Based Image Analysis (GEOBIA 2012), Rio de Janeiro,
Brazil, 7–9 May 2012.

26. Dingle Robertson, L.; King, D.J. Comparison of Pixel and Object-based Classification in Land Cover Change
Mapping. Int. J. Remote Sens. 2011, 32, 1505–1529. [CrossRef]

27. Myint, S.W.; Giri, C.P.; Wang, L.; Zhu, Z.; Gillette, S.C. Identifying Mangrove Species and Their Surrounding
Land Use and Land Cover Classes using an Object-Oriented Approach with a Lacunarity Spatial Measure.
GISci. Remote Sens. 2008, 45, 188–208. [CrossRef]

28. Thomas, N.; Bunting, P.; Lucas, R.; Hardy, A.; Rosenqvist, A.; Fatoyinbo, T. Mapping Mangrove Extent and
Change: A Globally Applicable Approach. Remote Sens. 2018, 10, 1466. [CrossRef]

29. Kamal, M.; Phinn, S. Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-based and
Object-based Approach. Remote Sens. 2011, 3, 2222–2242. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706
http://dx.doi.org/10.1109/34.1000236
http://dx.doi.org/10.7717/peerj.453
http://www.ncbi.nlm.nih.gov/pubmed/25024921
http://dx.doi.org/10.1109/TII.2018.2873492
http://dx.doi.org/10.1109/TGRS.2017.2650198
http://dx.doi.org/10.1109/JSTARS.2016.2514610
http://dx.doi.org/10.3390/rs6076111
http://dx.doi.org/10.1109/TGRS.2012.2203358
http://dx.doi.org/10.1109/TGRS.2010.2070802
http://dx.doi.org/10.3390/rs9020139
http://dx.doi.org/10.1016/j.ins.2017.02.044
http://dx.doi.org/10.1080/01431160903571791
http://dx.doi.org/10.2747/1548-1603.45.2.188
http://dx.doi.org/10.3390/rs10091466
http://dx.doi.org/10.3390/rs3102222


Remote Sens. 2019, 11, 556 17 of 18

30. Small, D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Trans. Geosci. Remote
Sens. 2011, 49, 3081–3093. [CrossRef]

31. Celik, T. Unsupervised Change Detection in Satellite Images using Principal Component Analysis and
k-means Clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [CrossRef]

32. Nielsen, A.A. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and
Hyper-Spectral Data. IEEE Trans. Image Process. 2007, 16, 463–478. [CrossRef] [PubMed]

33. Li, S.; Jia, X.; Zhang, B. Superpixel-based Markov Random Field for Classification of Hyperspectral Images.
In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne,
Australia, 21–26 July 2013; pp. 3491–3494.

34. Bruzzone, L.; Prieto, D.F. Automatic Analysis of the Difference Image for Unsupervised Change Detection.
IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [CrossRef]

35. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.A.; Tyukavina, A.; Thau, D.;
Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution Global Maps of 21st Century Forest
Cover Change. Science 2013, 342, 850–853. [CrossRef] [PubMed]

36. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing:
A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

37. Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of
the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]

38. Ministry of Forests, Wildlife and Parks. Ecoforest Map with Distrubances. 2018. Quebec Data Portal.
Available online: https://www.donneesquebec.ca/recherche/fr/dataset/carte-ecoforestiere-avec-perturbations
(accessed on 14 January 2019).

39. Mou, L.; Bruzzone, L.; Zhu, X.X. Learning Spectral-Spatial-Temporal features via a Recurrent Convolutional
Neural Network for Change Detection in Multispectral Imagery. IEEE Trans. Geosci. Remote Sens. 2019,
57, 924–935. [CrossRef]

40. Audebert, N.; Le Saux, B.; Lefèvre, S. Semantic Segmentation of Earth Observation Data using Multimodal
and Multi-Scale Deep Networks. In Proceedings of the Asian Conference on Computer Vision, Taipei,
Taiwan, 20–24 November 2016; pp. 180–196.

41. Lyu, H.; Lu, H.; Mou, L. Learning a Transferable Change Rule from a Recurrent Neural Network for Land
Cover Change Detection. Remote Sens. 2016, 8, 506. [CrossRef]

42. Alaska Satellite Facility. ASF DAAC 2015; Includes Material c©JAXA/METI 2007. Available online: http:
//dx.doi.org/10.5067/Z97HFCNKR6VA (accessed on 14 January 2019).

43. Simard, M.; Riel, B.V.; Denbina, M.; Hensley, S. Radiometric Correction of Airborne Radar Images over
Forested Terrain with Topography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4488–4500. [CrossRef]

44. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear Total Variation Based Noise Removal Algorithms. Phys. D
Nonlinear Phenom. 1992, 60, 259–268. [CrossRef]

45. Bioucas-Dias, J.M.; Figueiredo, M.A.T. Multiplicative Noise Removal Using Variable Splitting and
Constrained Optimization. IEEE Trans. Image Process. 2010, 19, 1720–1730. [CrossRef] [PubMed]

46. Zhao, Y.; Liu, J.G.; Zhang, B.; Hong, W.; Wu, Y.R. Adaptive Total Variation Regularization based SAR Image
Despeckling and Despeckling Evaluation Index. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2765–2774.
[CrossRef]

47. Martinis, S.; Kuenzer, C.; Wendleder, A.; Huth, J.; Twele, A.; Roth, A.; Dech, S. Comparing Four Operational
SAR-based Water and Flood Detection Approaches. Int. J. Remote Sens. 2015, 36, 3519–3543. [CrossRef]

48. Wang, M.; Liu, X.; Gao, Y.; Ma, X.; Soomro, N.Q. Superpixel Segmentation: A Benchmark. Signal Process.
Image Commun. 2017, 56, 28–39. [CrossRef]

49. Stutz, D.; Hermans, A.; Leibe, B. Superpixels: An Evaluation of the State-of-the-Art. Comput. Vis. Image
Underst. 2018, 166, 1–27. [CrossRef]

50. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings
of the 5th Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992;
pp. 144–152.

51. Platt, J. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood
Methods. Adv. Large Margin Classif. 1999, 10, 61–74.

http://dx.doi.org/10.1109/TGRS.2011.2120616
http://dx.doi.org/10.1109/LGRS.2009.2025059
http://dx.doi.org/10.1109/TIP.2006.888195
http://www.ncbi.nlm.nih.gov/pubmed/17269639
http://dx.doi.org/10.1109/36.843009
http://dx.doi.org/10.1126/science.1244693
http://www.ncbi.nlm.nih.gov/pubmed/24233722
http://dx.doi.org/10.1109/MGRS.2017.2762307
http://dx.doi.org/10.1109/MGRS.2016.2540798
https://www.donneesquebec.ca/recherche/fr/dataset/carte-ecoforestiere-avec-perturbations
http://dx.doi.org/10.1109/TGRS.2018.2863224
http://dx.doi.org/10.3390/rs8060506
http://dx.doi.org/10.5067/Z97HFCNKR6VA
http://dx.doi.org/10.5067/Z97HFCNKR6VA
http://dx.doi.org/10.1109/TGRS.2016.2543142
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1109/TIP.2010.2045029
http://www.ncbi.nlm.nih.gov/pubmed/20215071
http://dx.doi.org/10.1109/TGRS.2014.2364525
http://dx.doi.org/10.1080/01431161.2015.1060647
http://dx.doi.org/10.1016/j.image.2017.04.007
http://dx.doi.org/10.1016/j.cviu.2017.03.007


Remote Sens. 2019, 11, 556 18 of 18

52. Quebec Transportation. Route 73/175 Project. 2008. Available online: https://web.archive.org/web/
20110716214657/http://www.mtq.gouv.qc.ca/portal/page/portal/grands_projets/trouver_grand_
projet/axe_routier_73_175 (accessed on 14 December 2018).

53. JAXA. ALOS/ALOS-2 User Interface Gateway. Available online: https://auig2.jaxa.jp/ips/home (accessed
on 14 December 2018).

54. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://web.archive.org/web/20110716214657/http://www.mtq.gouv.qc.ca/portal/page/portal/grands_projets/trouver_grand_projet/axe_routier_73_175
https://web.archive.org/web/20110716214657/http://www.mtq.gouv.qc.ca/portal/page/portal/grands_projets/trouver_grand_projet/axe_routier_73_175
https://web.archive.org/web/20110716214657/http://www.mtq.gouv.qc.ca/portal/page/portal/grands_projets/trouver_grand_projet/axe_routier_73_175
https://auig2.jaxa.jp/ips/home
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Preprocessing Our Image Stack
	Change Detection
	Empirical Uncertainty Measures

	Applications
	ALOS-1
	ALOS-2

	Conclusions
	Ensembling Support Vector Machines for Identifying Forest Loss
	References

