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Abstract: In this technical paper, the state-of-art of automated procedures to process thermal 

infrared (TIR) scenes acquired by a permanent ground-based surveillance system, is discussed. TIR 

scenes regard diffuse degassing areas at Campi Flegrei and Vesuvio in the Neapolitan volcanic 

district (Italy). The processing system was developed in-house by using the flexible and fast 

processing Matlab© environment. The multi-step procedure, starting from raw infrared (IR) frames, 

generates a final product consisting mainly of de-seasoned temperatures and heat fluxes time-series 

as well as maps of yearly rates of temperature change of the IR frames. Accurate descriptions of all 

operational phases and of the procedures of analysis are illustrated; a Matlab© code (Natick, 

Massachusetts, U.S.A.) is provided as supplementary material. This product is ordinarily addressed 

to study volcanic dynamics and improve the forecasting of the volcanic activity. Nevertheless, it can 

be a useful tool to investigate the surface temperature field of any areas subjected to thermal 

anomalies, both of natural and anthropic origin. 

Keywords: volcano monitoring; thermal imaging; time series; Seasonal-Trend Decomposition; heat 

flux 

 

1. Introduction 

Thermal infrared (TIR) ground-based observations are largely used in volcanology, both in 

research and in surveillance activities, to investigate volcanic plumes and gases, lava flows, lava lakes 

and fumarole fields [1–17]. Generally, the observations were made during a limited time span such 

as eruption phases or field campaigns with temporarily installed TIR stations or handheld cameras. 

In the last years the number of surveillance and research activities aimed to undertake TIR continuous 

observations of volcanic areas have increased [18,19,12–20]. Improvements in monitoring tools and 

analysis techniques of long TIR time-series of infrared (IR) scenes of volcanic areas are becoming 

matter of great interest since they give the opportunity to track changes of surface thermal anomalies 

that may reveal a renewal of eruptive activity. Several works identified thermal precursors before 

eruptions by using TIR observations [21–24] and these insightful results, also provided by field 

campaigns, have suggested planning permanent fixed installations of ground TIR stations at active 

volcanoes in the world.  

At present time, few commercial software packages, based on general-purpose procedures, are 

available to process TIR time-series and they are not aimed for a near real-time automated analysis 

of large dataset. Generally, they involve manual processing steps and cannot be used in daily 

continuous automated volcano monitoring activity. Recently, [20] introduced automated analysis 



Remote Sens. 2019, 11, 553 2 of 23 

 

techniques of long TIR time-series of images acquired inside the Campi Flegrei volcanic area and 

previously [19] discussed about analysis techniques applied to TIR scenes inside the Vesuvius crater. 

The studied zones of these works are diffuse degassing areas of quiescent volcanoes characterized by 

low temperatures of released gas fluxes. 

In this work, recent developments of processing methodologies of several-years long TIR time-

series of volcanic areas from a permanent surveillance network are discussed in detail. Additionally, 

the automation of the processes is discussed. Step-by step descriptions of all operational phases and 

of the theoretical basis are reported in order to provide a clear explanation of the applied procedures. 

The main final results are trends of temperatures, heat fluxes and yearly rate of temperature change 

of the studied areas. In particular, a detailed study with a focus on seasonal component removal and 

on pixel alignment of IR frames (co-registration) was carried out. The code of fully-automated 

Matlab© application (ASIRA, Automated System of InfraRed Analysis) used to process the IR data is 

provided as supplementary material.  

2. The Study Areas 

The TIR frames time-series, used to develop and test the methodologies described in this work, 

were acquired by stations of TIRNet (Thermel InfraRed Network), a surveillance network operated 

by the Osservatorio Vesuviano, section of National Institute of Geophysics and Volcanology (INGV), 

consisting of six permanent ground stations installed at Campi Flegrei caldera and Vesuvius crater 

(Figure 1). Campi Flegrei (CF) is an active volcanic field including part of the city of Napoli (Italy). 

Nowadays, although quiescent and the last eruption occurred in 1538 (Monte Nuovo; [25]), the CF 

area is affected by significant ground deformation (Bradyseism), low to moderate seismic activity, 

hot fumaroles fields and diffuse degassing zones. The target areas acquired by TIR cameras in the 

Solfatara crater and its surroundings are shown in (Figure 1a). The monitored area represents the 

main surface expression of the CF caldera hydrothermal system with gases emissions originated by 

interaction between fluids of magmatic and meteoric origin [26–28]. The Somma–Vesuvius volcanic 

complex, located east of the city of Naples, is one of most dangerous volcanoes in the world and the 

latest eruption occurred on 1944 [29]. The recent dynamic of the Vesuvius is characterized by low-

level shallow seismicity and by low temperature fumarolic activity mainly concentrated in the crater 

area [30–32]. TIR scenes are from low-temperatures surface thermal anomaly on the western inner 

slope of the Vesuvius crater (Figure 1b). 
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Figure 1. The Solfatara area (a) and Vesuvius crater (b) acquired by Thermel InfraRed Network 

(TIRnet) cameras. Red points are infrared (IR) stations locations and yellow regions represent the 

framed areas. 

3. Materials and Methods 

3.1 The IR Sensors and Data Acquisition 

TIRNet stations were equipped with FLIR System, Inc. IR cameras, which acquire IR frames in 

the 7.5–13 μm waveband. The IR sensor installed at Campi Flegrei caldera is the FLIR SC655 and at 

Vesuvius is the FLIR A40 M, both with a focal plane array (FPA) uncooled microbolometer detector, 

of which the resolution was, respectively, 640 × 480 and 320 × 240 pixels. Accuracy was ±2 °C (SC655 

and A40 M) and thermal sensitivity at 50/60 Hz was <30 mK (SC655) and 80 mK @ +25°C (A40 M). 

All IR cameras were set to a −40° to 120 °C temperature range. The optics used depended both on the 

distance sensor-target and type of IR camera and varied from 24.6 mm (FoV 25° × 19°) of SC655 

camera to 36 mm (FoV 24° × 23.4°) of A40 M camera. The technical specifications of FLIR cameras and 

the features of target areas are reported in Table 1.  

The IR stations acquired three IR frames of the target area every day at night-time. As solar 

heating can drastically decrease the thermal contrast between fumarole anomaly and the heated 

surrounding rocks [33] and references therein], the acquisitions of TIR frames were carried out at 

night (00:00, 02:00, 04:00 AM) in order to minimize diurnal heating effects.  

After IR frames acquisition, WiFi radio or UMTS (Universal Mobile Telecommunications 

Service) modem transmits TIR data to the INGV-Osservatorio Vesuviano server of TIRNet in order 

to process them and to display the results in the surveillance room. 
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Table 1. Technical specifications of remote stations, FLIR infrared cameras and target areas details. 

Remote 

Station 

Camera 

Model 

Resolution 

(pixel) 
FoV 

Data 

Transmission 

Station UTM 

Coordinates 

(m) 

Sensor-

Target 

Average 

Distance (m) 

Average 

Pixel Size 

(cm) 

SF1 
FLIR 

A655SC 
640 × 480 25° × 19° WiFi 

X: 427.460 

Y: 4.520.154 
340 23.1 

SF2 
FLIR 

A645SC 
640 × 480 15° × 11.9° WiFi 

X: 427.460 

Y: 4.520.154 
114 4.6 

PS1 
FLIR 

A645SC 
640 × 480 15° × 11.9° UMTS 

X: 428.081 

Y: 4.520.117 
140 5.6 

OBN 
FLIR 

A645SC 
640 × 480 25° × 19° WiFi 

X: 427.695 

Y: 4.519.530 
65 2.9 ÷ 5.4 

SOB 
FLIR 

A655SC 
640 × 480 25° × 19° WiFi 

X: 427.810 

Y: 4.519.878 
90 5.5 ÷ 6.7 

VES 
FLIR 

A40 
320 × 240 24° × 18° WiFi 

X: 451.325 

Y: 4.519.281 
225 30 

As temperature values of TIR scenes are influenced by the atmospheric conditions (e.g., air 

temperature and humidity; [10]) and by the emissivity of target area, atmospheric correction was 

necessary. A probe of the IR station detected the values of air temperature and humidity and these 

values were transferred to the FLIR camera, which then applied the internal algorithm (LOWTRAN; 

[33]). This algorithm performed the atmospheric correction to the acquired IR frame in function of 

detector-target distance, emissivity of the target, air temperature and air relative humidity. The 

emissivity of the volcanic terrains (thermally altered pyroclasts), which characterize the target areas, 

was assumed to be 0.9 [34]).  

The accuracy of the temperature measurements also depended on the orientation of the field of 

view, which should be as parallel as possible to the target. Generally, despite the calibration and 

correction of camera parameters, the detected IR temperatures were underestimated due to extrinsic 

field conditions mainly influenced by the presence of condensed water in fumarole gases which can 

partially hide the hot areas [35–37]. Therefore, the measured IR temperatures are to be considered 

apparent temperatures values that can differ from the real surface temperatures of the target area 

[1,38]. 

The resolution of FLIR cameras and the small distances between sensors and target areas 

allowed to detect correctly small thermal anomalies, and moreover, to minimize the attenuation of 

radiated energy of those non-homogeneous pixels which integrate both hot and cold areas [33]. In 

addition, the limitations in the calculation of real temperature were deemed not critical when the 

purpose was to investigate relative spatio-temporal variations of surface temperature field in volcanic 

areas [39]. 

3.2. Data Processing Procedures 

The IR frames acquired by TIRNet stations were processed according to a multi-step procedure 

consisting of five main steps (Figure 2). The entire process is accomplished by the fully automated 

Matlab© software ASIRA (Natick, Massachusetts, U.S.A.), which was developed starting from the 

initial structure described by [19] and then by [20]. A detailed explanation of operative procedures is 

described in the following paragraphs. In the Appendix A, synthetic technical sheets of Matlab© code 

are reported. 
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Figure 2. Block diagram of IR images processing steps. 3D: three-dimensional. 

3.2.1. Step 1—IR Files Conversion, Archiving and Image Quality Selection. 

The FLIR IR raw files (radiometric JPEG), transmitted by remote TIRNet stations to the 

acquisition server, were imported in the Matlab© environment, then saved in appropriate storage 

folders both as a single CSV file and in a Matlab© three-dimensional (3D) matrix (Matlab© function: 

‘step01.m’). Occasionally, the presence of wide blurred areas, due to the condensation of water vapor 

from the fumaroles plume and the occurrence of heavy rain, caused the homogenization of the IR 

temperatures [18–20] and generated low quality IR frames. With the aim of removing low quality 

data, only the IR scenes that satisfied the following condition were selected:  

σF�  >  mσ −  c ∗ σF� (1) 
where Fi is the Standard Deviation (SD) of the i-th IR frame, m  is the median of SD values of all IR 

frames of the station time-series, F  is the Standard Deviation of all Standard Deviations of IR frames 

of the station time-series, and c is a user-defined coefficient depending on the statistical distribution 

of data (Matlab© function: ‘step01.m’). We found c = 1 a suitable value to obtain a homogeneous data 

set by excluding very low-quality images. 

This step converted input data (FLIR radiometric JPEG, CSV or TXT IR matrix) into Matlab© 3D 

arrays [resY, resX, n], where (resY, resX) is the image resolution and n is the number of IR collected 

frames. 
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3.2.2. Step 2—IR Frames Co-registration 

The accurate alignment of all the IR frames related to a station time-series was necessary to 

proceed to further analysis. Since the IR framed area can vary in time, due to ground movements 

affecting volcanic areas or simply to maintenance services, a correction of IR frames position in 

respect of a reference IR frame was carried out (co-registration). This correction performed the 

alignment of the same pixels, of all IR frames belonging to the same station, by using the flow-based, 

image registration Matlab© algorithm, SIFT flow [40]. The SIFT flow algorithm matches pixel-to-pixel 

correspondences between two images and it is able to find dense scene correspondence despite 

substantial differences in spatial arrangement of compared images (Matlab© function: ‘step02.m’). 

3.2.3. Step 3—Seasonal Component Removal 

A simple plot of the time-series of temperature values evidenced a typical recurring pattern due 

to the seasonal influence over the surface temperatures (background raw maximum temperature plot 

in Figure 3). The temperature time-series of raw IR frames were representative of both exogenous 

(e.g., seasonal) and endogenous (thermal anomaly) components. Therefore, in order to highlight the 

possible spatio-temporal variation of thermal anomalies, it was necessary to remove the seasonal 

component in the raw temperature time-series (de-seasoned time-series). 

Different methods to remove seasonal component in time-series were previously tested to 

TIRNet data [18–20] and two methods demonstrated to be effective to perform seasonal adjustment: 

the background removal (BKGr) and the STL decomposition (STLd, Seasonal-Trend decomposition 

based on Loess) [41]. The effectiveness of these two different methodologies depends on the time-

length of the dataset. BKGr is applied on time-series shorter than two years that cannot be processed 

by STLd as it requires several-years-long time-series. The BKGr removes the seasonality only to 

maximum and average temperatures of IR time-series and does not perform the seasonal adjustment 

to all the pixels of IR frame. Diversely, STLd can remove the seasonal component to all the pixels of 

IR frame, allowing to perform deeper analysis to the IR dataset.  

3.2.3.1. The Background Removal Procedure (BKGr) 

The BKGr procedure [18–20] consisted of the removal of background temperature time-series to 

raw IR frames time-series. Background temperatures were detected in a background area of the IR 

scene not influenced by thermal anomaly. The procedure was based on the evidence that a linear 

correspondence is between maximum (or mean) temperature of background area (TmaxBKG) and 

maximum (or mean) temperature of IR scene (TmaxSc), as previously reported by [19,20] and 

illustrated in Figure 3 (TmaxSc vs TmaxBKG plot). This correspondence allows the application of the 

following equation: 

��� =  ������(�) − ����(�) (2) 

were dT(n) is the residual de-seasoned temperature value, TmaxSc(n) is the maximum temperature of 

the n IR scene and Tfit(n) is the value of TmaxSc(n) in correspondence of TmaxBKG(n) according to the 

linear fitting equation of the two variables (Figure 3; Matlab© function: ‘step03.m’). 
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Figure 3. Processing scheme of background removal procedure (BKGr). 

The accurate selection of the background area (BKG) was crucial as it strongly influenced the 

efficiency of this procedure. BKG had to be outside the region of the IR frame affected by thermal 

anomaly and also characterized by similar lithology of the anomaly area, without vegetation and any 

kind of anthropic object. An efficient way to test the quality of the chosen BKG was to perform a 

linear regression to time-series of average temperature values of BKG. A suitable BKG must have the 

slope of the linear regression equation near to zero (Figure 4a). 

The main advantage of BKGr method was the possibility to apply seasonal correction to short 

temperature time-series; nevertheless, the results are expressed in terms of temperature residuals and 

not as absolute temperatures (Figure 4b). 
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Figure 4. (a) Time-series of average temperature values of Pisciarelli background area (grey color) 

and linear regression fit (blue color); (b) the results of the background removal procedure applied to 

Pisciarelli station: RAW maximum temperature of IR scene (grey color) and residual temperature 

value dT (blue color). 

3.2.3.2. The STL Decomposition Method (STLd) 

STL is a flexible, iterative non-parametric and robust method developed by [41] to decompose 

time-series into three components, according to an additive model:  

TSi = Ti + Si + Ri (3) 

where TSi is the time-series of i-th pixel of IR frame, Ti is the Trend, which represents a general 

tendency of data to move in a certain direction, Si is the Seasonality, which is a repetitive pattern over 

time due to exogenous causes, and Ri is the remainder, e.g., TSi removed of Trend and Seasonality 

components (Matlab© function: ‘step04.m’). 

The stl() function is available in the R statistical programming language [42]. STL is an acronym 

for “Seasonal and Trend decomposition using Loess”, where Loess is a method for estimating 

nonlinear relationships. The Loess (LOcal regrESSion) algorithm performs smooth estimate g(t) for 

temperature T at all times t, not just at time ti for which T has been observed. There are several 

parameters to set in the STL algorithm [41]. The main parameters are the number of observations n.p 

per seasonal cycle, the trend window (t.window) and the seasonal window (s.window). These last two 

parameters specify how quickly the trend and seasonal components can change. In different words, 

t.window is the number of consecutive observations to be used when estimating the trend; s.window 

is the number of consecutive years to be used in estimating each value in the seasonal component. 

The ‘standard’ use of STL function in R is: stl(time-series, s.window = ”periodic”). By using the 

setting s.window = "periodic", Loess smoothing is effectively replaced by the mean of the seasonal sub-

series. This way, STL assumes the same seasonal cycle for each year of the time-series; therefore, the 

seasonal component for January is simply the mean of all January values and similarly for the other 

months.  

STL can be set to be robust to outliers, so that occasional uncommon observations will not affect 

the trend and seasonal components, but only the remainder component. 

As the STL algorithm was developed in R language only, a specific script was created to integrate 

the STL function into the Matlab© processing procedure. The script (‘step04.m’) consisted of two 
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parts: a) Matlab© code which calls b) R code by using a Matlab toolbox (RunRcode, Matlab File 

Exchange). 

When calling the STL function (‘STLIR.R’), the s.window parameter was set to ‘periodic’ and the 

t.degree was set to 0. This last one parameter is the degree of locally-fitted polynomial in trend 

extraction. Moreover, it was important to set the periodicity when creating the temperature time-

series in R script. For TIRNet temperature data, the periodicity was set to 365. 

STL needs at least a two-year long, continuous time-series; otherwise, it does not process the 

dataset. If the dataset is not continuous, due to data lack in some periods, it has to be resampled daily. 

In case of shorter dataset, only BKGr method can be applied. 

The STLd procedure can be simply applied to statistical time-series (e.g., raw maximum 

temperatures time-series; Figure 5) or applied to time-series of all pixel temperatures of the IR frames 

by using the processing scheme reported in Figure 6. 

 

Figure 5. STL decomposition procedure applied to Pisciarelli station: RAW maximum temperature of 

IR scene (grey color) and de-seasoned maximum temperature of IR scene (blue color). 

The STLd procedure used to remove seasonal component of all pixels from IR time-series (Figure 

6) required, as a first step, the evaluation of the average temperatures time-series of BKG (TavBkgTS). 

The STL function was then applied to the TavBkgTS time-series to decompose it into three 

components:  

TavBkgTS = TrendBkgTS + SeasonBkgTS + RemBkgTS (4) 

where TrendBkgTS, SeasonBkgTS and RemBkgTS are, respectively, Trend, Seasonality and 

Remainder time-series of TavBkgTS. 

As the background area is not influenced by thermal anomaly, the SeasonBkgTS can be assumed 

to be representative of the seasonal component affecting all pixels of the frames acquired by an IR 

station. This assumption makes it possible to apply the following relation: 

TdesTSi = TiTS – SeasonBkgTS (5) 

where TdesTSi is the de-seasoned time-series of ith pixel of IR frame and TiTS is the time-series of raw 

temperatures of the same pixel.  
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Figure 6. Processing scheme used to remove seasonal component of TIRNet data by using R script 

including STL procedure (‘STLIR.R’) and Matlab code. 1) Evaluation of seasonal component (S) by 

applying STL to background area. 2) Removal of S to a pixel raw temperature in order to get the de-

seasoned values. 

In brief, STLd procedure removed the seasonal component to temperature time-series from all 

the pixels of IR frames, acquired by a IR station, by subtracting the seasonal component of BKG 

(SeasonBkgTS). Additionally, in the STLd method, the correct choice of the BKG is fundamental. A 

direct control of BKG quality is to plot the values of TrendBkgTS: they must be without significant 

variations (Trend plot in Figure 6). 

The final result is a Matlab© 3D array representative of IR frames with de-seasoned temperature 

values. These arrays are relevant to perform advanced pixel-to-pixel processing methods, needing 

de-seasoned IR data, which are reported in the next steps. 

Additional output of processing step 5 is a map showing locations of maximum temperatures 

values detected in all IR frames.  

3.2.4. Step 4—Radiative Heat Flux (Qrad) 

The estimation of radiative heat flux (Qrad) from an area of IR frame mainly characterized by 

thermal anomaly (Region of Anomaly, RoA) is a newly proposed processing technique that can offer 

an interesting contribution to the investigation of possible variations of radiative thermal emissions.  

In order to estimate Qrad, which is the thermal energy emitted per unity of area in a unity of time, 

the RoA has to include pixels whose temperatures are representative of the main thermal anomaly. 

Nevertheless, the RoA is usually not homogeneous and it is characterized by the presence of both 

high temperature sources (fumaroles) and low temperature sources (surrounding emission-free 
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rocks). In addition, when sensor-target distance is more than approximately 10 meters, the pixels of 

RoA can be several centimeters large, and therefore, some temperatures are underestimated if their 

pixels integrate both high and low temperatures [43,44]. Consequently, the variations trend of Qrad 

can be sensibly flattened. A solution to this problem is to calculate the Standard Deviation (SD) of 

pixels’ temperatures of a specific RoA and then to use only temperature values (TROAH) greater than 

2SD to estimate Qrad.  

Finally, the Qrad of a specific RoA (W/m2) is calculated by using the Stefan-Boltzmann equation:  

������� = � � ��(������)
�

�

���

 (6) 

where  is the Stefan-Boltzmann constant,  is the emissivity (for pyroclastic rocks is assumed to be 

0.9) and A is the investigated area size (m2) obtained by multiplying pixel area and length n of TROAH 

time-series.  

The detection of any possible change of Qrad trends, even though related to a specific RoA, allows 

to better characterize thermal behavior of the studied area if RoA is representative of the main thermal 

anomaly. 

The use of de-seasoned time-series of temperature values (TdesTS) is essential in order to evaluate 

Qrad changes due to endogenous sources only. This means that only the dataset processed with STLd 

can be used. 

The Matlab© code performing Qrad (‘step04.m’) is available as supplementary material and its 

functionalities are illustrated in the Appendix A. 

3.2.5. Step 5—Yearly Rate of Temperatures Change (YRTC) 

The thermal variations, in a defined time interval, of every single pixels of IR frame, can be 

evidenced by evaluating the yearly rate of temperatures change (YRTC). This kind of elaboration 

produces a map of the IR frame, according to a color scale, of yearly rate of change of pixels’ 

temperature. The yearly rate of temperatures change is represented by the values of slope coefficients 

of the linear fit of time-series temperatures of every pixel. On the other hand, the selected time 

interval has to be characterized by a progressive increase or decrease of maximum temperatures of 

IR frame, according to a correspondence as linear as possible. This needs a preliminary investigation 

of the temperatures trend over time.  

The YRTC map is created by overlapping the values of slope coefficients on a picture (in the 

visible range) of the framed area. In order to show the yearly rate of change values of pixels whose 

temperature time-series best fit a linear model, a mask was applied. This mask allowed the display 

of values related to pixels whose linear regressions of temperature time-series had coefficients of 

determination (R2) higher than a user-defined threshold value. 

The YRTC map gives the opportunity to evidence possible connections between temperature 

increase/decrease and geological features of the monitored site (Figure 7).  
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Figure 7. Yearly rate of temperature change maps of SF1 in the period 2016.02.01–2016.11.30. Map (a) 

has R2 threshold value = 0.2. Map (b) has and R2 threshold value = 0.45. In this time-interval SF1 

maximum temperatures decreased of about 10 °C as evidenced by the color map. 

The Matlab© code performing YRTC data (‘step06.m’) is available as supplementary material 

and its functionalities are illustrated in the Appendix A. 

3.3. System Automation and Graphic Interface 

The above-described methodologies were performed as steps by Matlab© functions, which can 

be executed with a command line or managed by a user-friendly graphic interface (GUI). Settings can 

be saved in user-defined configuration files. Due to the modular structure of the processing steps, 

they can be performed singularly or grouped in an automated sequence in order to execute the whole 

procedure at defined time by using the GUI that integrates the automation code. Automation is 

necessary if IR data processing is aimed to surveillance purposes.  

The GUI Matlab code (asira_gui.m) is available as supplementary material and its functionalities 

are illustrated in the Appendix A. 

4. Results and Discussion 

In order to discuss the advantages and the limits of the above presented processing 

methodology, the results obtained by applying the five processing steps are reported. Two datasets 

were processed: 1) the first consisted of 2.901 IR JPEG frames acquired in the period 2016.01.27–

2019.01.13 at Solfatara 1 (SF1) station; 2) the second consisted of 5.850 IR JPEG frames acquired in the 

period 2013.03.26–2019.01.13 at Pisciarelli (PS1) station. 

4.1. Data Quality Selection 

The relation (1), discussed in §3.2.1, was used to remove low-quality IR frames before starting 

the analysis of data. The efficiency of this procedure depended on the choice of the coefficient c which 

was influenced by the statistical distribution of data. Low values of Standard Deviation of IR frames 

temperatures were an indicator of low quality data and the lower the coefficient c, the higher the 

number of IR frames discarded as low quality ones. The analysis of data acquired by SF1 suggested 

c = 1 as an appropriate value (Figure 8), as the visual inspection of discarded frames (about 11% of 

total frames) confirmed that they were mainly low-quality ones. This kind of preliminary analysis 

had to be made to every dataset from different stations as the coefficient c can be different depending 

on the physical and geometrical characteristics of framed area and IR sensor. 
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Figure 8. Frequency distribution of Standard Deviation values of IR frames temperatures ( F) 

acquired at SF1 station. The line ‘Lower Threshold’, which is defined by the relation (1) with c 

parameter equal to 1, splits good-quality frames (on the right of the line) and low-quality frames (on 

the left of the line). 

4.2. Seasonal Component Removal  

Two different methodologies of seasonal component removal are used in order to process IR 

datasets having different time-length. The background removal procedure (BKGr), previously 

proposed to seasonal correction [19,20], is suitable to very short datasets even though it has some 

limitations in the final output. The main limit was that the removal of seasonal component produces 

only residuals of maximum or median values of temperatures instead of absolute temperature values. 

Although this kind of analysis does not take full advantage of all the intrinsic information contained 

inside the IR frames, the BKGr method generated trends of temperature residuals which provide 

adequate information to characterize the thermal behavior of studied area. 

The STL decomposition method (STLd), proposed for the first time in this work to remove 

seasonality to IR temperature time-series, needed a nearly two-year long datasets due to the statistical 

approach of the robust and widely applied algorithm. By using STLd method, it was possible to 

estimate the Seasonality as a separate component of temperature time-series. This feature allows the 

removal of seasonality to all pixels of IR frames, giving the opportunity to apply further analysis 

methods (e.g., radiative Heat Flux estimate), which needed the whole frame to be de-seasoned. In 

Figure 9, the background area boundaries (Figure 9a) inside the SF1 IR frame and the plot of Trend 

component of background area, obtained by applying STLd method are reported (Figure 9b). The 

constant and flat temperature values of background Trend confirmed the appropriate choice of this 

area. 
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Figure 9. Background area boundaries inside the SF1 IR frame (a) and plot of Trend component of 

background area which is obtained by applying STLd method (b). Trend values varie between 14.35 

and 14.7 °C. 

The Trend component evaluated by the STLd method was useful to estimate the long-term 

thermal behavior of the studied area even though it was not suitable for short-term observations. In 

order to describe short-term thermal behavior, aimed to surveillance purpose, it was necessary to 

merge both Trend and Reminder components to obtain T + R plots (Figure 10, blue line plot). 

Despite the reported limits of BKGr method, the comparison between temperature residuals 

plots with the BKGr method and T+R plots by STLd method of SF1 IR frames (Figure 10) showed a 

close similarity of data trends. This similarity confirms the effectiveness of the BKGr method to 

process datasets shorter than two years. 

 

Figure 10. Plots of temperatures acquired at SF1 station removed of seasonal component. Red line = 

temperature residuals obtained by applying BKGr method; blue line = Trend+Reminder values 

obtained by applying STLd method. 
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4.3. Radiative Heat Flux Estimate 

The computation of radiative heat flux was available on IR frames where seasonality was 

removed by applying the STLd method. In order to obtain the correct trend of radiative heat flux of 

a definite area, a correct selection of area boundaries was necessary. The heat flux computation 

strongly depended on the Hpix BKGpix ratio of the selected area, where Hpix is the number of pixels 

related to thermal anomaly and BKGpix is the number of pixels related to emission-free rocks. The 

higher this ratio is, the more accurate the radiative heat flux estimation. This way, the choice of 

boundaries of processed areas had to be made in order to include as many Hpix as possible. The 

solution to attenuate the underestimate the heat flux due to the presence of BKGpix, proposed in the 

§3.2.4, was to select pixels whose temperatures were greater than 2  of the frequency distribution of 

temperatures from selected area. The plots reported in Figure 11 show how efficient this kind of 

solution was. In this figure, plot a) reports heat flux time-series of Areas 1, 2 and 3 evaluated by 

selecting all the pixels inside each area; plot b) reports heat flux time series of the same areas, 

evaluated by applying the selection of pixels greater than 2  of temperatures frequency distribution. 

The blue line plot is from Area 1, which only includes the major thermal anomaly of the SF1 frame, 

characterized by the higher Hpix BKGpix ratio. Red line plots of Area 2 and black line plots of Area 

3 are representative of lower Hpix BKGpix ratios due to higher number of BKGpix included in the 

selected areas.  

The comparison between Figure 11a and Figure 11b evidences an underestimate of heat flux 

values when the computation includes all the pixels inside the selected areas (Figure 11a). Figure 11b 

was obtained selecting only the pixels whose temperatures values were greater than 2 and showed 

a remarkable decrease of heat flux underestimate, better evidencing trend variations. 

 

Figure 11. Heat flux plots of selected areas inside SF1 frames. Area 1 (c) includes the mayor thermal 

anomaly, Area 2 and 3 (c) include emission-free rocks. Plot a) = heat flux trends (smoothed with 

window = 29) of Areas 1, 2 and 3 evaluated by selecting all the pixels inside each area. Plot b) = heat 

flux trends (smoothed with window = 29) of Areas 1, 2 and 3 evaluated by applying the selection of 

pixels greater than 2 s of temperatures frequency distribution. 

4.4. Yearly Rate of Temperature Change Estimate 

As reported in §3.2.5, the final product of this processing step was a color scale map of the yearly 

rate of temperature change (YRTC) values overlapped to a picture (in the visible range) of the framed 
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area. YRTC data were filtered according to a threshold value of the coefficient of determination (R2) 

of the linear regressions of pixels’ temperature time-series. Two different examples of yearly 

temperature rate of change maps of PS1 area in the same time-interval (2016.03.10–2016.07.10) are 

reported in Figure 12. In this time-interval the PS1 temperatures were subjected to an increase of 

about 10 °C. The maps of Figure 12 only differ in the choice of R2 threshold value; hence, a correct 

choice of these parameter is critical to produce a map that is easy to comprehend. Map b (R2 = 0.7) 

shows better evidence of pixels whose temperatures rate of change time-series values best fit a linear 

model than map a (R2 = 0.5). The ASIRA code allows the user to select both color scale limits and 

different values of R2 threshold by using a user-friendly GUI in order to achieve the right balance 

between optimal visual result and reliability of data visualized. 

 

Figure 12. Yearly rate of temperature change maps of PS1 in the period 2016.03.10–2016.07.10. Map 

(a) has R2 threshold value = 0.5. Map (b) has and R2 threshold value = 0.7. 

5. Conclusions 

Relevant contribution to the surveillance of volcanic areas affected by thermal anomalies can be 

provided by monitoring the spatio-temporal evolution of surface temperatures field. The acquisition 

of IR image data by ground-based monitoring network is an effective tool to perform this task. 

However, the analysis of IR data time-series is not easy to accomplish due to the influence over IR 

temperatures of both exogenous and endogenous processes.  

In this paper, we have presented a unique operational processing chain developed in Matlab© 

environment which allows the detection and quantification of possible changes in time and space of 

the ground-surface thermal features. This application (ASIRA, Automated System of InfraRed 

Analysis) performed a multi-step procedure that generated both trends of temperatures and heat 

fluxes as well as maps of yearly rate of temperatures change. The procedure implemented new 

algorithms based on improvements of previously proposed methods and also original techniques 

aimed to effectively remove seasonal component of IR temperature time-series and to evaluate 

radiative heat fluxes of thermal anomaly areas. 

ASIRA can be performed as separate steps or executed in a fully-automated way by using a user-

friendly graphic interface. The Matlab© code of ASIRA and the Operative Manual are included as 

supplementary material. 

The ASIRA code was applied to process IR data acquired by stations of TIRNet surveillance 

network operated by the Osservatorio Vesuviano, section of National Institute of Geophysics and 

Volcanology (INGV) at Campi Flegrei volcanic area (Italy). The results show the effectiveness of this 

method to provide a valuable contribution to the continuous monitoring of thermal anomalies related 

to studied areas. 

This operative tool has been conceived for volcanic surveillance of diffuse degassing areas and 

low-temperature fumarole fields which variations may precede significant phases of volcanic unrest. 

Notwithstanding, the procedure can be applied to monitor different volcanic scenarios (i.e., lava-
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flows, active volcanic vents and eruptive fractures) but also different natural and environmental 

hazards (fires, waste-disposal sites, pollution discharges, landslides, etc.).  

Supplementary Materials: the Matlab© code of A.S.I.R.A. (Automated System of InfraRed Analysis) which is 

described in Appendix A), and the Operative Manual (pdf file) are provided at the following link: 

www.mdpicom/xxx/si 

Author Contributions: F.S. was responsible for the ASIRA design and implementation in the Matlab© software, 

data acquisition and analysis, and writing the manuscript. G.V. was responsible for the research design, data 

analysis and writing the manuscript. Both authors contributed to the software validation. 

Funding: TIRNet monitoring network was partially funded by the 2000–2006 National Operating Program 

(NOP) and by SISTEMA project, which has been developed in the framework of the Campania Regional 

Operating Program (ROP) FESR 2007-2013. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

The Matlab application ASIRA: operational structure and technical notes. 

ASIRA is an acronym of Automated System of InfraRed Analysis and consists of Matlab© code 

subdivided into five independent processing steps (step01.m, step02.m, step03.m, step04.m, 

step05.m) that can be easily managed by a graphic user interface (asira_gui.m). Moreover, additional 

Matlab© scripts and libraries are needed to ASIRA functionalities. Figure A.1 shows screen-captures 

of different tabs of the graphics interface representative of five processing steps and automation 

settings.  
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Figure A1. Tabs of the Automated System of InfraRed Analysis (ASIRA) graphics interface 

representative of five processing steps and automation settings. Numbers inside the red circles are 

the IDs reported in the technical sheets of Appendix A. 

Below are reported synthetic technical sheets of functionalities and type of input and output 

data of the different processing steps and of the graphic user interface. 

  



Remote Sens. 2019, 11, 553 19 of 23 

 

Table A1. Technical specifications of functionality and input/output data type of graphic interface. 

Script Name   

asira_gui.m  

Functionality   

Graphic user interface (GUI) with management of configuration file  

Inputs description Inputs type ID 

New configuration file 
File name in common dialog window by 

pressing toolbar button 
1 

Open configuration file 
File name in common dialog window by 

pressing toolbar button 
2 

Save current configuration file Toolbar button 3 

Open Operative Guide Toolbar button 4 

Site name (study area) String inserted by edit window 5 

Output folder of processed data (common to all 

steps) 
Folder path inserted by common dialog window 6 

Automation button (activate/deactivate 

automation) 
Button 7 

Enable/disable automation of processing step Check box selection 36 

Time to start automation process Text boxes to input Hour and Minutes 37 

Save automation settings Button 38 

Outputs description Output type ID 

Log window showing processing messages Text displayed in box area 8 

Table A2. Technical specifications of functionality and input/output data type of STEP 1. 

Script Name   

step01.m  

Functionality   

IR files conversion, archiving and quality selection (tab ‘Step 1’ in GUI)  

Inputs description Inputs type ID 

Type of input file ‘.jpg/.csv/.txt’ inserted by drop-down menu 9 

Data input folder 
Folder path in common dialog window by pressing 

button 
10 

Output folder of CSV files1 
Folder path in common dialog window by pressing 

button 
11 

Temperature scale ‘Celsius/Fahrenheit’ inserted by drop-down menu 12 

Quality selection parameter ‘05/1/1.5/2’ inserted by drop-down menu 13 

Data delimiter of csv/txt input files1 ‘,/;/TAB/SPACE’ inserted by drop-down menu 14 

Row number to begin reading data in csv/txt 

file 
Integer inserted by drop-down menu 15 

Outputs description Output type ID 

Log window showing processing messages Text displayed in box area 8 

CSV files of quality selected IR frames Matrix CSV files of temperature values from IR scenes  

Arrays of quality selected IR data, yearly 

split 
Matlab (.mat) archives in output folder  

Table A3. Technical specifications of functionality and input/output data type of STEP 2. 

Script Name   

step02.m  

Functionality   

IR frames co-registration (tab ‘Step 2’ in GUI)  

Inputs description Inputs type ID 

Data input folder (containing .mat archives of 

Step 1) 

Folder path in common dialog window by pressing 

button 
16 

Reference IR frame 
File name & path in common dialog window by 

pressing button 
17 
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Outputs description Output type ID 

Log window showing processing messages Text displayed in box area 8 

Arrays of co-registered IR data, yearly split Matlab (.mat) archives in output folder  

Table A4. Technical specifications of functionality and input/output data type of STEP 3. 

Script Name   

step03.m  

Functionality   

Seasonal correction with BKGr and STLd methods (tab ‘Step 3’ in GUI)  

Inputs description Inputs type ID 

Load background area 
File name & path in common dialog window by pressing 

button 
18 

New background area 
File name & path in common dialog window by pressing 

button and selection of area over IR image 
19 

Daily time range of IR frames Integers (hours) in text boxes 20 

Installation folder of R statistical 

package (STL) 
Folder path in common dialog window by pressing button 21 

Outputs description Output type ID 

Log window showing processing 

messages 
Text displayed in box area 8 

Show background area image JPEG image of background area 22 

Test background area image Plots of Tmax and STL Trend of background area (by choice) 23 

Array of de-seasoned IR data Matlab (.mat) archive in output folder  

Data sheets of processed 

temperatures of IR frames 
Excel file in output folder  

Table A5. Technical specifications of functionality and input/output data type of STEP 4. 

Script Name   

step04.m  

Functionality   

Radiative heat flux estimation (tab ‘Step 4’ in GUI)  

Inputs description Inputs type ID 

New heat flux areas (Area 1, 2, 3) 
Selection of heat flux area over IR image by pressing 

button 
24 

Enable/disable heat flux areas to process (Area 

2, 3)  
Check box selection 25 

Pixel size of heat flux areas (Area 1, 2, 3) Numeric values in text box 26 

Emissivity of heat flux areas (Area 1, 2, 3) Numeric values in text box 27 

Outputs description Output type ID 

Log window showing processing messages Text displayed in box area 8 

Show heat flux areas (areas 1, 2, 3) JPEG images by pressing button 28 

Arrays of heat flux data Matlab (.mat) archive in output folder  

Data sheets of heat fluxes of IR frames Excel file in output folder  

Table A6. Technical specifications of functionality and input/output data type of STEP 5. 

Script Name   

step05.m  

Functionality   

Temperature rate of change during selected time-period (tab ‘Step 5’ in GUI)  

Inputs description Inputs type ID 

Data input folder (containing .mat output files of 

previous Steps) 

Folder path in common dialog window by 

pressing button 
29 

Time interval of analysis  Dates picked over calendar 30 

Photo of studied area to use in data overlay 
File name & path in common dialog window 

by pressing button 
31 
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Threshold value of R2 extracted from linear 

regressions of pixels time-series 
Numeric values in text box 32 

Limits of color scale to use in temperature rate of 

change map 
Numeric values in text box 33 

Enable/disable data overlay on photo of studied area Check box selection 34 

Outputs description Output type ID 

Log window showing processing messages Text displayed in box area 8 

Show map of temperature rate of change JPEG image by pressing button 35 

Arrays of temperature rate of change data Matlab (.mat) archive in output folder  

Data sheets of temperature rate of change data Excel file in output folder  

Although the processing steps can be managed separately, the processing chain needs data to 

be analyzed by the first three steps in sequential way. The Operative Manual of ASIRA is available 

as supplementary material together with Matlab© scripts and Open Source Toolboxes and functions. 

Matlab© scripts code is widely commented in order to understand the features and the functionality. 
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