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Abstract: Parameterization schemes (bulk formulae) are widely used to estimate all-sky surface
downward longwave radiation (SDLR) due to the simple, readily available inputs and acceptable
accuracy from local to regional scales. Seven widely used bulk formulae are evaluated using the
ground measurements collected from 44 globally distributed flux measurement sites of five networks.
The Bayesian model averaging (BMA) method is introduced to integrate multiple bulk formulae
to obtain an estimate of cloudy-sky SDLR for the first time. The second multiple linear regression
model of Carmona et al. (2014) performs the best, with BIAS, RMSE, and R2 of zero, 20.13 W·m−2

and 0.87, respectively. The BMA method can achieve balanced results that are close to the accuracy
of the second multiple linear regression model of Carmona et al. (2014) and better than the average
accuracy of seven bulk formulae, with BIAS, RMSE, and R2 of −1.08 W·m−2, 21.99 W·m−2 and
0.87, respectively. In addition, the bulk formula of Crawford and Duchon (1999) is preferred if
there is insufficient data to calibrate the bulk formulae because it does not need local calibration
and has an acceptable accuracy, with BIAS, RMSE, and R2 of 0.96 W·m−2, 26.58 W·m−2 and 0.82,
respectively. The effects of climate type, land cover type, and surface elevation are also investigated
to fully assess the applicability of each bulk formula and BMA. In general, there is no cloudy-sky
bulk parametrization scheme that can be successfully applied everywhere.
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1. Introduction

The radiation budget at the Earth’s surface is an important factor that determines land surface
processes such as evapotranspiration, oceanic and atmospheric circulations [1,2]. Surface downward
longwave radiation (SDLR, 4–100 µm) is one of four components required to calculate the Earth’s
surface radiation budget [3–5]. Usually, a considerable part of the earth’s surface is covered by
clouds [6]. In cloudy sky, SDLR is emitted from clouds (aerosol, water droplets, and ice crystals)
and atmosphere columns (H2O, CO2, and O3 molecules) between the cloud base and the surface.
Numerous studies demonstrated that clouds have a nonneglectable contribution to SDLR, especially
in the thermal infrared atmosphere window [7–9], because clouds can simultaneously absorb solar
radiation and re-emit outgoing longwave radiation (OLR) to space and SDLR to the surface.

SDLR can be accurately measured using ground-based instruments (e.g., pyrgeometer). However,
this method is relatively expensive and sensitive and has spatially sparse coverage at the global
scale [10]. Therefore, many researchers have used remote sensing and meteorological data to estimate
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high spatial-temporal SDLR [11–14], and many SDLR retrieval algorithms have been proposed.
These algorithms can be classified into three categories: physical, parameterized, and statistical
methods [15,16]. Relatively simple parameterization schemes are highly praised in that they only
require a limited input set of atmospheric variables and have acceptable accuracy [17–19]. For example,
Wang and Liang [20] applied the bulk formulae of Brunt [21] and Brutsaert [22] to estimate all-sky
SDLR from global available meteorological observations to calculate the decadal variation in SDLR.
The general form of the parameterization scheme (also called the bulk formula) is expressed as

SDLR = σεe f f T4
e f f (1)

where εe f f is the effective emissivity of the atmosphere under all-sky conditions, Te is atmospheric
effective temperature, and σ is the Stefan-Boltzmann constant. Most of the bulk formulae are applicable
to clear-sky cases [12,21–24], and few derive all-sky SDLR [17,25–30]. Under cloudy-sky conditions,
the liquid water and ice absorb and emit longwave radiation more effectively than water in the vapor
phase. Thus, clouds increase SDLR significantly, and cloud cover is usually introduced to calculate
atmospheric effective emissivity [7,15,25].

Numerous studies have been conducted to analyze the advantages, shortcomings and applicability
of these bulk formulae. For example, Kjaersgaard et al. [31] evaluated the performance of 20 clear-sky
bulk formulae using long-term ground measurements at two sites in Demark. Their results suggested
that four bulk formulae, proposed by Swinbank [32], Brutsaert [22], and Prata [23] and the Food and
Agricultural Organization (1990) parameterization of the Brunt [21] model, have smaller discrepancies
than the other bulk formulae. Kjaersgaard et al. [31] combined the above four models with the
cloudy-sky bulk formulae of Korsgaard [33] and Crawford and Duchon [26] to evaluate the accuracy
of SDLR estimates. The mean bias errors of the two combinations ranged from −8 to 8 W·m−2, and
the root mean square errors (RMSEs) ranged from 23 to 30 W·m−2. Flerchinger et al. [34] investigated
the accuracy of 13 clear-sky SDLR bulk schemes at 21 sites across North America and China. Their
study indicated that the bulk schemes developed by Dilley et al. [35], Prata [23], and Angstrom [36]
are good at predicting surface SDLR. Flerchinger et al. [34] combined the cloud-correction methods
of Kimball and Idso [9], Unsworth and Monteith [37], and Crawford and Duchon [26] with the
clear-sky formulation of Dilley and O’Brien [35] to obtain estimates of the all-sky SDLR. The results
showed that the average root mean square deviation across all sites for three cloud corrections was
approximately 24 to 25 W·m−2 for 30-minute or hourly estimates. Zhu et al. [19] comprehensively
assessed all-sky atmospheric emissivity using 13 clear-sky bulk schemes combined with 10 cloud
corrections at five sites in high mountain regions of the Tibetan Plateau. The results showed that
the best all-sky parameterization scheme for the five sites was Dilley and O’Brien’s A model [35]
for clear-sky conditions combined with Sicart et al.’s A cloud correction [38], with a mean RMSE
of 26.3 W·m−2 and a mean MBE of zero. These clear-sky or all-sky bulk formulae have different
accuracies at local scales. If they were applied directly to different areas, the inversion accuracy would
be reduced and their applicability would be suppressed. Which bulk formula is best adapted to SDLR
estimate under a specific circumstance remains unclear. In addition, selection of a suitable bulk formula
lacks guidance.

A few studies explored new ways to estimate all-sky SDLR by taking advantage of existing bulk
formulae with good performance. They found that the Bayesian model averaging (BMA) method is
effective to estimate clear-sky SDLR [39,40]. The estimation potential of BMA for all-sky SDLR and its
accuracy and applicability have not been determined. Thus, the purpose of this study is to investigate
the accuracy and applicability of widely used cloudy-sky bulk formulae and the utility of BMA in
estimating cloudy-sky SDLR. First, bulk formulae for cloudy-sky SDLR estimate are calibrated and
integrated using BMA. Then, the bulk formulae and BMA are validated using ground measurements.
Finally, the performance of the bulk formulae and BMA are assessed under the circumstances of
different climate types, land covers and surface elevations.
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2. Materials and Methods

2.1. Ground Measurements

The surface radiation network can provide long-term, accurate records of components of the
surface radiation budget and meteorological observations, which can be used to detect important
changes in the Earth’s radiation field at the Earth’s surface and support the validation and confirmation
of satellite and computer model estimates [20]. After filtering the poor-quality data using the built-in
quality control (QC) information, high quality ground-measured SDLR, surface downward shortwave
radiation and meteorological variables (air temperature and relative humidity) collected at 44 globally
distributed sites from 5 independent surface radiation networks, including 14 sites from the Baseline
Surface Radiation Network (BSRN) [41], 12 sites from AmeriFlux [42], 8 sites from AsiaFlux [42],
6 sites from SURFRAD [43], and 4 sites from the Coordinated Energy and Water Cycle Observations
Project (CEOP) [44] (Figure 1), are used in this study. These sites have a latitude span of 78◦W to 70◦E,
with elevations ranging from 4 m to 5038 m, and they cover a variety of land types, including bare
land, desert, cropland, grassland, and forest. The 44 sites represent different climate and ecosystem
conditions. Table 1 gives detailed descriptions of these sites.
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Table 1. Selected sites in the surface radiation networks.

NO. Short Name Full Name Latitude Longitude Elevation (m) Land Cover Climate
Type

Temporal
Resolution Time Period

1 Bondville1 Bondville, Illinois 40.05 −88.37 213 Cropland Dfa 3 min 2003–2005
2 Boulder1 Boulder, Colorado 40.13 −105.24 1689 Grassland BSk 3 min 2003–2005
3 Fort Peck1 Fort Peck, Montana 48.31 −105.10 634 Grassland BSk 3 min 2003–2005
4 Desert Rock1 Desert Rock, Nevada 36.63 −116.02 1007 Desert BWh 3 min 2003–2005
5 Penn State1 PennState, Pennsylvania 40.72 −77.93 376 Cropland Dfb 3 min 2003–2005
6 Sioux Falls1 Sioux Falls, South Dakota 43.73 −96.62 473 Cropland Dfa 3 min 2003–2005
7 US-Blk2 Black Hills 44.16 −103.65 1718 Evergreen needle leaf forest Dfb 30 min 2004–2006
8 US-Bo22 Bondville (companion site) 40.01 −88.29 219.3 Cropland Dfa 30 min 2004–2006
9 US-Bkg2 Brookings 44.35 −96.84 510 Grasslands Dfa 30 min 2004–2006

10 US-CaV2 Canaan Valley 39.06 −79.42 994 Grasslands Cfb 30 min 2004–2006
11 US-NR12 Niwot Ridge Forest 40.03 −105.55 3050 Evergreen needle leaf forest Dfc 30 min 2001–2003
12 US-FPe2 Fort Peck 48.31 −105.1 634 Grassland BSk 30 min 2003–2005
13 US-Goo2 Goodwin Creek 34.25 −89.87 87 Grasslands Cfa 30 min 2003–2005
14 US-MMS2 Morgan Monroe State Forest 39.32 −86.41 275 Deciduous broadleaf forest Cfa 30 min 2001–2003
15 US-WBW2 Walker Branch Watershed 35.96 −84.29 283 Deciduous broadleaf forest Cfa 30 min 2003–2005
16 US-Wrc 2 Wind River Crane Site 45.82 −121.95 371 Evergreen needleleaf forest Csb 30 min 2003–2005
17 US-WCr2 Willow Creek 45.81 −90.08 520 Deciduous broadleaf forest Dfb 30 min 2003–2005
18 US-MOz2 Missouri Ozark Site 38.74 −92.20 220 Deciduous broadleaf forest Cfa 30 min 2003–2005
19 QHB3 Qinghai Flux Research Site 37.61 101.33 3250 Grasslands BSk 15 min 2003–2004
20 MKL3 Mae Klong 14.58 98.84 231 Mix forest Am 15 min 2003–2004
21 TKY3 Takayama 36.15 137.42 1420 Deciduous broadleaf forest Dfb 15 min 2003–2005
22 TMK3 Tomakomai Flux 42.74 141.52 140 Deciduous needle leaf forest Dfb 15 min 2001–2003
23 BKS3 Bukit Soeharto −0.86 117.04 20 Evergreen broadleaf forest Af 15 min 2001–2002
24 FJY3 Fujiyoshida 35.45 138.76 1030 Deciduous needleleaf forest Cfa 15 min 2000
25 LSH3 Laoshan 45.28 127.58 340 Deciduous needleleaf forest Cfc 15 min 2002
26 SKR3 Sakaerat 14.49 101.92 543 Evergreen broadleaf forest Aw 15 min 2001–2003
27 Amdo4 AmdoTower 32.24 91.62 4695 Bare land ET 60 min 2002–2004
28 BJ4 BJTower 31.37 91.90 4509 Bare land ET 60 min 2002–2004
29 D1054 D105AWS 33.06 91.94 5038 Bare land ET 60 min 2002–2004
30 Gaize4 Gaize 32.30 84.05 4416 Bare land Dwb 60 min 2002–2004
31 BOU5 Boulder 40.05 −105.01 1577 Grasslands BSk 1 min 2003–2005
32 CAR5 Carpentras 44.08 5.06 100 Cultivated Csb 1 min 2003–2005
33 DAR5 Darwin −12.43 130.89 30 Grasslands Aw 1 min 2003–2005
34 LIN5 Lindenberg 52.21 14.12 125 Cultivated Dfb 1 min 2003–2005
35 MAN5 Momote −2.06 147.43 6 Grasslands Af 1 min 2003–2005
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Table 1. Cont.

NO. Short Name Full Name Latitude Longitude Elevation (m) Land Cover Climate
Type

Temporal
Resolution Time Period

36 NAU5 Nauru Island −0.52 166.92 7 Rock Af 1 min 2003–2005
37 NYA5 Ny-Ålesund 78.93 11.93 141 Tundra ET 1 min 2003–2005
38 PAY5 Payerne 46.82 6.94 491 Cultivated Dfb 1 min 2003–2005
39 REG5 Regina 50.21 −104.71 578 Cultivated Dfb 1 min 2003–2005
40 E135 Southern Great Plains 36.61 −97.49 318 Grasslands Cfa 5 min 2003–2005
41 TAT5 Tateno 36.05 140.13 25 Grasslands Cfa 1 min 2003–2005
42 DAA5 De Aar −30.7 23.99 1287 Desert BWk 5 min 2002–2004
43 GVN5 Georg von Neumayer −70.65 −8.25 42 Ice EF 1 min 2003–2005
44 SBO5 Sede Boqer 30.86 34.78 500 Desert BWk 1 min 2003–2005

Note: 1, 2, 3, 4, and 5 represent SURFRAD sites, AmeriFlux sites, AsiaFlux sites, CEOP sites, and BSRN sites, respectively.
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2.2. Methods

2.2.1. Cloudy-Sky Bulk Formulae

Cloudy sky is identified using the cloud fraction function c [26], which is defined as

c = 1− Sw ↓
Sw ↓ 0

(2)

where Sw ↓ is the observed downward shortwave radiation, Sw ↓ 0 is the theoretical value of
downward shortwave radiation; when c > 0.05, we define the situation as cloudy sky.

The equation of the selected cloudy-sky bulk formulae are shown in Table 2. Herein, we briefly
described these bulk formulae. More details please refer to their respective papers. The bulk formula
of Jacobs [29] is similar to that of Lhomme et al. [27], who proposed a cloudy-sky bulk formula by
combining the bulk formula of Brutsaert [22] and a correction for cloudiness using the measurements
obtained from two different sites on the Andean Altiplano, which is a vast plateau lying at an
average altitude of 4000 m. The bulk formula of Maykut and Church [45] was developed using the
five-year observations of the radiation climate near Point Barrow, Alaska. Konzelmann et al. [28]
developed the bulk formula to estimate cloudy-sky SDLR using the meteorological measurements
from various projects on West Greenland. Crawford and Duchon [26] developed an improved
parameterization scheme for estimating effective atmospheric emissivity by explicitly incorporating the
fractional cloudiness using the data from the Atmospheric Radiation Measurement (ARM) program.
Carmona et al. [25] proposed two multiple linear regression models to estimate SDLR for all sky
conditions over a sub-humid region in Argentina. Clearly, these bulk formulae are likely to be specific
to the atmospheric circumstances under which they were developed, and should be handled with care
when applying to other conditions.

According to the study of Guo et al. [40], the clear-sky bulk formula of Carmona et al. [25] has
good performance at global scale. Thus, we selected their bulk formula to calculate the clear-sky SDLR
in the cloudy-sky bulk formulae shown in Table 2. The clear sky bulk formula of Carmona et al. [25] is
expressed as

SDLRclr = (α + βTa + γRH)× σT4
a (3)

where α, β, and γ are coefficients, and Ta and RH are the air temperature and relative humidity at
screen level, respectively.

Table 2. Seven cloudy-sky bulk formulae for surface downward longwave radiation (SDLR) estimation.

Model Bulk Formulae Equation

1 Jacobs [29] SDLR = SDLRclr(1 + a1c)
2 Lhomme et al. [27] SDLR = SDLRclr(a2 + b2c)
3 Maykut and Church [45] SDLR = SDLRclr(1 + a3cb3 )
4 Konzelmann et al. [28] SDLR = SDLRclr(1− a4cb4 ) + d4ce4 σT4

5 Crawford and Duchon [26] SDLR = SDLRclr(1− c) + cσT4

6 Carmona1 [25] SDLR = [(a6 + b6T + d6RH)(1− c) + c]σT4

7 Carmona2 [25] SDLR = (a7 + b7T + d7RH + e7c)σT4

Note: Carmona1 and Carmona2 denote the first and second multiple linear regression models of Carmona et al.
(2014), respectively. The selected seven bulk formulae are abbreviated as Jacobs, Lhomme, MC, Konzelmann,
Crawford, Carmona1 and Carmona2, respectively. a, b, d, and e are the coefficients, SDLRclr is the clear-sky SDLR,
T is the screen-level temperature (unit: K), σ is the Stephen–Boltzmann constant (5.67·10−8 W·m−2·K−4), RH is the
relative humidity (%), and c is the cloud fraction.

2.2.2. Bayesian Model Averaging

In this study, the Bayesian Model Averaging (BMA) method is introduced to integrate selected
bulk formulae for predicting SDLR under all-sky condition for the first time. The BMA method uses
the posterior probability as the weight to conduct a weighted average of the possible individual



Remote Sens. 2019, 11, 528 7 of 18

models [46,47]. The posterior probability reflects the models’ predictive performance and can be
derived in the training period [46].

We employ SDLRp and SDLRo to denote the predicted and observed SDLRs at a given time,
respectively f1, f1, · · · fn is an ensemble of n bulk formulae (Table 2) used to predict SDLRp. According
to the total probability formula, the predictive probability density function (PDF) of SDLRp based on
the multi-bulk formulae ensemble can be calculated as

p
(
SDLRp

∣∣ f1, f1, · · · fn
)
=

n

∑
i=1

p
(
SDLRp

∣∣ fi
)
p( fi|SDLRo) (4)

where p( fi|SDLRo) is the forecast PDF of bulk formula fi alone, and p( fi|SDLRo) is the posterior
probability of bulk formula fi, which can reflect how well the bulk formula fi fits the observations.
The PDF of BMA is a weighted average of the conditional PDFs of each individual bulk formula,
weighted by their posterior model probabilities. The posterior probabilities of all single bulk formulae
add up to one, i.e., ∑n

i=1 p( fi|SDLRo) = 1, and they can be viewed as weights wi. Equation (4) can be
rearranged as:

p
(
SDLRp

∣∣ f1, f1, · · · fn
)
=

n

∑
i=1

wip
(
SDLRp

∣∣ fi
)

(5)

Assuming the conditional PDF of SDLRp is normally distributed with mean value of E, and
variance σ2. Denote the g(·) to represent the associated Gaussian PDF of each bulk formula.

p
(
SDLRp

∣∣ fi
)
= g

(
SDLRp

∣∣∣{Ei, σ2
i }
)

(6)

p
(
SDLRp

∣∣ f1, f1, · · · fn
)
=

n

∑
i=1

wig
(

SDLRp

∣∣∣{Ei, σ2
i }
)

(7)

The optimal estimation of SDLR by the BMA method is to derive the conditional expected value
of SDLRp, which can be written as follows:

E
(
SDLRp

∣∣ f1, f1, · · · fn
)
=

n

∑
i=1

wiEi (8)

As a result, the key problem is obtaining the posterior probabilities wi of each model, which
makes the estimated SDLRp closest to the measurement SDLRo. The wi can be estimated by maximum
likelihood from the training data [48]. The EM algorithm is iterative and alternates between the
Expectation (or E) step and the Maximization (or M) step to find the maximum likelihood value [49].
Firstly, we assume that all the bulk formulae have the same weight, then the Expectation step can be
written as:

zi,t =
wig
(
SDLRo,t

∣∣{Ei,t, σ2
i }
)

∑n
i=1 wig

(
SDLRo,t

∣∣{Ei,t, σ2
i }
) (9)

where the zi,t denotes the probability that the bulk formula i to be the best forecaster at training data t.
The M step will estimate the wi using the zi,t calculated in E step:

wi =
1
N ∑

t
zi,t (10)

σ2
i =

1
N ∑

t

n

∑
i=1

zi,t(Ei,t − SDLRo,t)
2 (11)

where N is the number of observations in the training dataset, n is the number of bulk formulae. The E
and M steps are iterated to convergence, and then the wi for each bulk formula is obtained.
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3. Results and Discussion

3.1. Calibration and Validation

Three indicators, the mean bias error (BIAS, Equation (12)), root-mean-square error (RMSE,
Equation (13)) and determination coefficient (R2, Equation (14)), are used to evaluate the performance
of cloudy-sky bulk formulae.

BIAS =
1
n

n

∑
i=1

(SDLRe,i − SDLRo,i)
2 (12)

RMSE =

√
1

n− 1

n

∑
i=1

(SDLRe,i − SDLRo,i)
2 (13)

R2 = 1−
1
n ∑n

i=1(SDLRe,i − SDLRo,i)
2

∑n
i=1
(
SDLRo,i − SDLRo,i

)2 (14)

where SDLRe,i is the estimated SDLR, SDLRo,i is the observed SDLR, SDLRo,i is the mean SDLRo,i,
and n is the number of samples.

The collected samples in Section 2.1 were used to calibrate and validate the selected cloudy-sky
bulk formulae and validate the results integrated by BMA. We randomly divided the collected samples
into two parts: two-thirds of samples were used to calibrate the bulk formulae to remove the potential
error caused by the local coefficients; the remaining one-third of samples were used to validate the
calibrated bulk formulae. To examine the performance of calibration, the bulk formulae with original
coefficients were also validated using the same data.

Table 3 shows the variation of coefficients among six bulk formulae. The bulk formula of Crawford
and Duchon [26] is not considered. This is due to fact that Crawford and Duchon [26] is a special case
of Konzelmann [4], and the corresponding model coefficients are all one. Table 3 shows that the relative
variation of the bulk formula coefficients is greater than 30% except for that of Lhomme [27], and more
than half of the bulk formula coefficients are greater than 50%. This demonstrates the necessity of
calibrating the bulk formulae.

Table 3. Variation of coefficient values for six cloudy-sky bulk formulae before and after calibration.

Bulk Formula Coefficients Original
Coefficients

Adjusted
Coefficients

Relative
Difference (%)

Jacobs [29] a1 0.26 0.17 −0.36

MC [45]
a2 0.22 0.12 −0.44
b2 2.75 0.30 −0.89

Lhomme [27]
a3 1.03 1.06 0.03
b3 0.34 0.07 −0.80

Konzelmann [28]

a4 1 0.29 −0.71
b4 4 0.23 −0.94
d4 0.952 0.34 −0.64
e4 4 0.27 −0.93

Carmona1 [25]
a6 −0.88 0.33 −1.38
b6 5.2·10−3 8.05·10−4 −0.85
d6 2.02·10−3 3.90·10−3 0.93

Carmona2 [25]

a7 −0.34 0.55 −2.61
b7 3.36·10−3 5.05·10−4 −0.85
d7 1.94·10−3 2.57·10−3 0.32
e7 0.213 5.6·10−2 −0.74
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The validation results are shown in Figure 2. Most of the samples are distributed around the
1:1 line except a small number of samples that have larger deviations. The statistical performance
is shown in Table 4. The BIAS values of the calibrated bulk formulae range from −6.91 W·m−2 to
4.44 W·m−2, with an average of 2.77 W·m−2, whereas those of the original bulk formulae are between
−25.55 W·m−2 and 29.76 W·m−2, with an average of 14.40 W·m−2. The RMSE of the calibrated bulk
formulae range from 20.13 W·m−2 to 26.58 W·m−2, with an average of 24.27 W·m−2, whereas those of
the original bulk formulae are between 26.58 W·m−2 and 47.15 W·m−2, with a mean of 33.30 W·m−2.
The R2 are slightly improved after calibration. The bulk formula of Carmona2 performs the best, with
the lowest zero BIAS and RMSE of 20.13 W·m−2 and second highest R2 of 0.87.

Table 4. Validation results of seven calibrated cloudy-sky bulk formulae and the BMA method. The
results for the original cloudy-sky bulk formulae and BMA method are also provided.

Bulk Formula
Original Calibrated

BIAS RMSE R2 BIAS RMSE R2

Jacobs [29] 7.63 31.25 0.85 −6.91 26.36 0.86
MC [45] −16.78 31.68 0.85 −2.70 24.62 0.87

Lhomme [27] 29.76 47.15 0.83 −2.69 24.65 0.87
Konzelmann [28] −25.55 34.68 0.86 −1.69 23.32 0.87

Crawford [45] 0.96 26.58 0.82 0.96 26.58 0.82
Carmona1 [25] −8.80 31.72 0.79 4.44 24.21 0.83
Carmona2 [25] −11.33 30.01 0.83 0.00 20.13 0.87

BMA −5.47 27.28 0.85 −1.08 21.99 0.88

The BMA yields balanced results, and its accuracy is only slightly worse than the bulk formula
of Carmona2 and better than the other bulk formulae, with the highest R2 of 0.88, second-lowest
RMSE of 21.99 W·m−2, and a relatively lower BIAS of −1.08 W·m−2. The balance indicates that
the three indicators of BMA are better than the average of those for seven selected bulk formulae.
The performances of other bulk formulae are also acceptable, with BIAS ranges from −6.91 W·m−2 to
4.44 W·m−2, RMSE ranges from 23.32 W·m−2 to 26.58 W·m−2, and R2 around 0.85. The coefficients of
bulk formulae of Carmona are tunable during the calibration, whereas the SDLRclr in other bulk
formulae is provided as a priori and only the coefficients related to cloud fraction are tunable.
This partly explains the good performance of Carmona2. Note the bulk formula of Crawford and
Duchon [26] do not need calibration. The accuracy is acceptable, with a BIAS, RMSE and R2 of
0.96 W·m−2, 26.58 W·m−2 and 0.82, respectively. Therefore, it is a good choice if sufficient data to
calibrate the bulk formulae are lacking.
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3.2. Effects of Climate Type

Bulk formulae mainly depend on the screen-level air temperature, relative humidity and cloud
properties (e.g., cloud fraction) [15,18,26]. The primary criteria for climatic type classification are
temperature and precipitation. As a result, we divided the sites as nine groups according to the Koppen
climate classification system, including Af (tropical rainforest climate, 3 sites), Am (tropical monsoon
climate, 1 site), Aw (tropical wet and dry or savanna climate, 2 sites), BS (semiarid, 5 sites), BW (desert
climate, 3 sites), Cf (temperate or subtropical hot summer climates, 9 sites), Cs (Mediterranean
climates, 2 sites), Df (warm summer continental climates, 13 sites), and ET (tundra climate, 5 sites).
The performance of the cloudy-sky bulk formulae and BMA method were investigated considering
different climate types.

As shown in Figure 3, there are large fluctuations in the BIAS and RMSE plots. At first glance,
we cannot determine which bulk scheme is the best. Table 5 shows that all methods overestimate
SDLR when the climate type is Cf and underestimate SDLR for the Cs and ET climate types. That
bulk formulae appear to overestimate SDLR under hot and warm climates and underestimate SDLR
when the atmosphere is dry and cold. The absolute value of the BIAS of Carmona1 is the lowest
when the climate type is Af, Aw, Cs, and ET; the RMSE of Carmona2 is the lowest except when the
climate type is Am, BS and BW. BMA achieves a balanced BIAS and RMSE between the best and
worst model for each climate type and has a good performance in the R2. The BIAS, RMSE and R2

of Carmona1 range from −8.85 to 14.65 W·m−2, 13.02 to 37.68 W·m−2, and 0.19 to 0.73, respectively.
The BIAS, RMSE, and R2 of Carmona2 range from −10.02 to 7.56 W·m−2, 10.69 to 28.91 W·m−2, and
0.18 to 0.79, respectively. The BIAS, RMSE, and R2 of BMA range from −13.49 to 7.57 W·m−2, 12.23
to 30.96 W·m−2, and 0.20 to 0.81, respectively. Based on the BIAS values in Table 5, we can identify
the best bulk formula for each climatic type. Carmona1 performs the best over Af, Aw, Cs, and ET,
Carmona2 performs better over BW and DF, Lhomme performs better over Am, MC performs better
over BS, and Jacobs performs well over Cf. The performance of Carmona1 and Carmona2 are generally
relatively better than the other methods. Due to the scarcity of the ground measured SDLR, the number
of sites for each climate type are different. We did not find a clear relationship between the number of
sites and the performance of bulk formulae over each climate type. We will explore this relationship
once we accumulate abundant data.
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Table 5. Statistical results of seven cloudy-sky bulk formulae and the BMA method over different
climate types. Af: tropical rainforest climate; Am: tropical monsoon climate; Aw: tropical wet and
dry or savanna climate; BS: semiarid; BW: desert climate; Cf: temperate or subtropical hot summer
climates; Cs: Mediterranean climates; Df: warm summer continental climates; and ET tundra climate.

Climate Type
BIAS (W/m2)

Jacobs MC Lhomme Konzelmann Crawford Carmona1 Carmona2 BMA

Af 10.87 16.35 16.29 7.11 2.59 1.00 −1.55 4.71
Am 5.15 1.97 1.83 −4.42 −8.55 −8.75 −10.02 −3.40
Aw 9.71 15.82 15.75 9.09 5.70 0.40 −3.16 5.76
BS −5.61 −2.05 −2.06 6.16 14.08 13.88 5.97 3.51
BW −7.11 −1.72 −1.73 6.79 12.69 6.59 −0.52 1.05
Cf 5.28 5.81 6.21 5.40 11.46 14.65 7.56 7.57
Cs −16.36 −11.90 −11.88 −10.17 −7.48 −4.45 −8.18 −9.57
Df −10.89 −7.27 −7.27 −5.37 −1.63 4.54 0.26 −3.54
ET −27.66 −21.53 −21.59 −20.65 −21.37 −6.02 −6.52 −13.49

Climate Type
RMSE (W/m2)

Jacobs MC Lhomme Konzelmann Crawford Carmona1 Carmona2 BMA

Af 19.07 19.84 19.68 13.29 12.79 13.02 10.69 12.23
Am 21.03 16.26 16.18 16.00 20.26 24.59 22.07 17.48
Aw 22.84 23.39 23.28 18.28 18.42 18.78 15.22 17.16
BS 27.05 27.45 27.43 27.97 32.95 31.32 25.76 25.74
BW 24.94 24.56 24.62 24.96 30.20 29.75 24.12 23.15
Cf 34.79 30.31 30.89 29.29 37.72 37.68 28.91 30.96
Cs 24.77 21.05 21.09 19.10 20.26 19.33 18.04 18.52
Df 26.54 24.39 24.47 23.63 26.63 24.13 20.01 22.24
ET 31.79 25.84 25.89 25.10 27.49 15.84 15.40 19.56

Climate Type
R2

Jacobs MC Lhomme Konzelmann Crawford Carmona1 Carmona2 BMA

Af 0.19 0.16 0.17 0.15 0.18 0.19 0.18 0.20
Am 0.52 0.74 0.75 0.81 0.62 0.39 0.62 0.70
Aw 0.34 0.32 0.32 0.31 0.31 0.32 0.33 0.35
BS 0.76 0.73 0.73 0.73 0.72 0.71 0.74 0.75
BW 0.74 0.72 0.72 0.73 0.70 0.64 0.71 0.74
Cf 0.66 0.73 0.72 0.71 0.58 0.57 0.70 0.69
Cs 0.79 0.80 0.80 0.81 0.78 0.73 0.79 0.81
Df 0.78 0.79 0.79 0.77 0.71 0.73 0.79 0.78
ET 0.73 0.75 0.75 0.74 0.67 0.73 0.75 0.75

3.3. Effects of Land Cover Type

The land cover type is another factor that regulates Earth-atmosphere interactions. We divided
the sites into five types, i.e., desert (3 sites), bare land (4 sites), cropland (4 sites), grass (12 sites), and
forest (14 sites), to investigate the accuracy of the bulk formula and the BMA method. The evaluation
results are shown in Figure 4. Similar to Figure 3, there are larger spread in the BIAS and RMSE.
Considering the BIAS and RMSE of each bulk formulae and the BMA over all land cover types, it is
difficult to conclude which one performs the best or the worst as a whole. The statistical results in
Table 6 show that all methods underestimate the SDLR over bare land and forest, with BIAS ranging
from −27.66 to −2.65 W·m−2, and overestimate the SDLR over Grassland, with BIAS ranging from
2.89 to 10.63 W·m−2. The R2 of all methods are larger than 0.64. The RMSE of Carmona2 is better
than that of the other methods under most conditions. According to the BIAS values, Jacobs performs
the best over grassland, Carmona1 performs well over bare land and forest, and Carmona2 performs
well over desert and cropland. BMA achieves a balanced BIAS and RMSE between the best and worst
model for each land cover type.
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Figure 4. Validation results of seven bulk formulae and the BMA method over different land
cover types.

Table 6. Statistical results of seven parameterization schemes and the BMA method over different land
cover types.

Land Cover
Type

BIAS (W/m2)

Jacobs MC Lhomme Konzelmann Crawford Carmona1 Carmona2 BMA

Desert −7.11 −1.72 −1.73 6.79 12.69 6.59 −0.52 1.05
Bare land −27.66 −21.53 −21.59 −20.65 −21.37 −6.02 −6.52 −13.49
Cropland −11.46 −7.74 −7.73 −5.87 −2.21 3.46 −0.85 −4.25
Grassland 2.89 6.72 6.74 7.53 10.63 9.79 3.87 6.62

Forest −14.16 −9.59 −9.58 −9.28 −7.83 −2.65 −4.71 −7.86

Land Cover
Type

RMSE (W/m2)

Jacobs MC Lhomme Konzelmann Crawford Carmona1 Carmona2 BMA

Desert 24.94 24.56 24.62 24.96 30.20 29.75 24.12 23.15
Bare land 31.79 25.84 25.89 25.10 27.49 15.84 15.40 19.56
Cropland 26.10 23.74 23.81 22.88 25.77 23.49 19.60 21.63
Grassland 25.72 25.66 25.69 23.89 27.84 26.88 21.68 22.82

Forest 28.66 25.99 26.06 24.70 26.20 24.50 22.38 23.80

Land Cover
Type

R2

Jacobs MC Lhomme Konzelmann Crawford Carmona1 Carmona2 BMA

Desert 0.74 0.72 0.72 0.73 0.70 0.64 0.71 0.74
Bare land 0.73 0.75 0.75 0.74 0.67 0.73 0.75 0.75
Cropland 0.78 0.79 0.79 0.78 0.72 0.73 0.79 0.79
Grassland 0.90 0.90 0.90 0.90 0.86 0.86 0.90 0.90

Forest 0.85 0.86 0.86 0.85 0.81 0.82 0.85 0.85

3.4. Effects of Surface Elevation

The vertical zonality is an important component of the rule of territorial differentiation. The
driving factors behind the vertical zonality are water vapor and temperature, and elevation is a direct
quantitative index of vertical zonality. We divided the sites into four categories according to the
elevation range (≤500 m (23 sites), 500–1000 m (8 sites), 1000–3000 m (7 sites), and ≥3000 m (6 sites))
and assessed the cloudy-sky bulk formulae and BMA method. Figure 5 shows a trend that the absolute
values of the BIAS and the RMSE increase with surface elevation. Table 7 shows that the cloudy-sky
bulk formulae perform best when the surface elevation is less than 500 m. The BIAS ranges from −7.25
to 0.56 W·m−2, the RMSE ranges from 16.91 to 25.21 W·m−2, and R2 is approximately 0.9. The bulk
formulae perform the worst when the surface elevation is higher than 3000 m. The bulk formulae
underestimate the SDLR when the elevation is higher than 3000 m. The BIAS ranges from −45.72 to
−14.88 W·m−2, the RMSE ranges from 38.85 to 59.41 W·m−2, and R2 is approximately 0.6. The BMA
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achieves a balanced BIAS and RMSE between the best and worst model for each climate type. This is
consistent with the climate and surface type evaluation results.
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Table 7. Statistical results of the seven bulk formulae and the BMA method over different
surface elevations.

Elevation
BIAS (W/m2)

Jacobs MC Lhomme Konzelmann Crawford Carmona1 Carmona2 BMA

H < 500 −7.24 −2.66 −2.66 −4.45 −4.07 0.56 −2.31 −2.92
500 < H < 1000 −5.38 −2.04 −1.93 1.66 7.42 11.97 5.36 2.04
1000 < H < 3000 −3.57 −0.05 −0.08 8.26 16.60 15.07 6.34 4.36

H > 3000 −45.72 −41.96 −41.90 −24.92 −15.01 −14.88 −20.03 −25.27

Elevation
RMSE (W/m2)

Jacobs MC Lhomme Konzelmann Crawford Carmona1 Carmona2 BMA

H < 500 25.21 22.89 22.92 20.52 21.93 19.01 16.91 19.05
500 < H < 1000 29.99 27.93 28.06 28.21 35.14 32.96 24.75 27.26
1000 < H < 3000 23.34 24.16 24.13 26.82 33.15 31.24 24.38 23.50

H > 3000 59.41 56.67 56.71 42.33 38.85 41.08 42.11 43.09

Elevation
R2

Jacobs MC Lhomme Konzelmann Crawford Carmona1 Carmona2 BMA

H < 500 0.91 0.92 0.92 0.91 0.89 0.89 0.92 0.91
500 < H < 1000 0.70 0.72 0.72 0.69 0.60 0.61 0.72 0.70
1000 < H < 3000 0.80 0.77 0.78 0.75 0.73 0.72 0.79 0.79

H > 3000 0.60 0.59 0.59 0.65 0.65 0.59 0.59 0.64

The air temperature, relative humidity and cloud fraction are used to predict cloudy-sky SDLR in
the selected bulk formulae. The uncertainties of the input variables propagate into the predicted
SDLR and cause unpredictability [50]. Even most of the clear-sky SDLR is emitted within the
lowest layer of the atmosphere, air temperature and relative humidity at screen level cannot fully
reflect the variability of the upper level temperature and water content. The accuracy of predicted
SDLR is improved by incorporating the total precipitable water (TPW) [50,51]. Other factors, such
as uncertainties in the cloud fraction, aerosol loads, heatwaves in hot summers, and temperature
inversions in the lower atmospheric levels during cold winter night, also affect the predictability of
the bulk formulae [27,34,50,52]. The positive BIAS over climate types Af and Cf might result from
strong unstable air temperatures with high humidifies, and negative BIAS over climate type ET might
relate to dry atmospheric conditions and strong inversions; In addition, the negative BIAS over land
cover type bare land may be incurred by strong atmospheric inversions. Furthermore, the method
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of estimating cloud fraction with Equation (2) cannot account perfectly for cloudiness. For example,
thin cloud types like cirrus have higher solar transmissivity, and resulting in an underestimating of
cloud cover as well as SDLR. This partly explains the negative BIAS in SDLR when surface elevation is
higher than 3000 m. Another possible explanation may be that other atmospheric constituents (e.g.,
ozone and CO2) have relatively large contributions to the SDLR, but this contribution is not considered
by the bulk formulae [4,15].

According to the investigation results on the impacts of climate type, land cover type and surface
elevation, it did not provide a clear guidance on how to identify an optimal bulk formula under certain
circumstances (climate type, land cover type, and surface elevation). For example, we may have
three different bulk formulae to calculate SDLR for a specific site because this site belongs to certain
climate type, land cover type and surface elevation at the same time. We can select the one with the
best performance. Meanwhile, it is also advisable to integrate the bulk formulae via BMA, whose
performance has been verified in Section 3. The BMA method conducts a weighted average of the
individual bulk formula. The weight of each bulk formula is derived from the calibration results, and
can reflect the predictive performance of each bulk formula. Therefore, the performance of the BMA
is close to bulk formula that performs best, and better than the arithmetic average of those for seven
selected bulk formulae.

4. Conclusions

SDLR is one of the four components required to calculate the Earth’s surface radiation budget.
Bulk formulae are widely used to estimate all-sky SDLR due to the simple, readily available inputs and
acceptable accuracy from local to regional scales. The accuracy and applicability of seven widely used
bulk formulae were investigated using ground measurements collected from 44 globally distributed
flux measurement sites in five networks. The BMA method was introduced to integrate multiple bulk
formulae to obtain an estimate of cloudy-sky SDLR for the first time. The accuracy and applicability of
the BMA method were also investigated using the same data. The following conclusions can be drawn
from this study:

It is vital to calibrate cloudy-sky bulk formulae before use. If representative data to calibrate the
bulk formulae are lacking, the bulk formula of Crawford and Duchon [26] is a good choice because it
can achieve acceptable accuracy as a whole without local calibration.

Overall, the bulk formula of Carmona2 (i.e., the second multiple linear regression model of
Carmona et al. [25]) performs the best, with a BIAS of zero, an RMSE of 20.13 W·m−2, and an R2 of 0.87.

The BMA method conducts a weighted average of the individual bulk formula. The weight of
each bulk formula is derived from the calibration results, and can reflect the predictive performance of
each bulk formula. Therefore, the BMA method can achieve balanced results that are close to those of
Carmona2 and better than the arithmetic average of those for seven selected bulk formulae, with a
BIAS, RMSE and R2 of −1.08 W·m−2, 21.99 W·m−2 and 0.87, respectively.

The investigation results on the impacts of climate type, land cover type and surface elevation
did not provide a clear guidance on how to identify the bulk formula with an optimal performance at
certain circumstances (climate type, land cover type and surface elevation). For example, we may have
three different bulk formulae to calculate SDLR for a specific site because this site belongs to certain
climate type, land cover type and surface elevation at the same time. We can select the one with the
best performance or integrate the bulk formulae via BMA.

To summary, a bulk formula that can be successfully applied everywhere does not exist. The best
and worst methods may differ under different climate types, land cover types and surface elevations.
Thus, the best bulk formula should be site-specific.
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