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Abstract: Latest remote sensing sensors are capable of acquiring high spatial and spectral Satellite
Image Time Series (SITS) of the world. These image series are a key component of classification
systems that aim at obtaining up-to-date and accurate land cover maps of the Earth’s surfaces. More
specifically, current SITS combine high temporal, spectral and spatial resolutions, which makes it
possible to closely monitor vegetation dynamics. Although traditional classification algorithms,
such as Random Forest (RF), have been successfully applied to create land cover maps from
SITS, these algorithms do not make the most of the temporal domain. This paper proposes a
comprehensive study of Temporal Convolutional Neural Networks (TempCNNs), a deep learning
approach which applies convolutions in the temporal dimension in order to automatically learn
temporal (and spectral) features. The goal of this paper is to quantitatively and qualitatively evaluate
the contribution of TempCNNs for SITS classification, as compared to RF and Recurrent Neural
Networks (RNNs) —a standard deep learning approach that is particularly suited to temporal data.
We carry out experiments on Formosat-2 scene with 46 images and one million labelled time series.
The experimental results show that TempCNNs are more accurate than the current state of the art
for SITS classification. We provide some general guidelines on the network architecture, common
regularization mechanisms, and hyper-parameter values such as batch size; we also draw out some
differences with standard results in computer vision (e.g., about pooling layers). Finally, we assess
the visual quality of the land cover maps produced by TempCNNs.

Keywords: time series; Temporal Convolutional Neural Network (TempCNN); satellite images;
remote sensing; classification; land cover mapping

1. Introduction

The biophysical cover of Earth’s surfaces—land cover—has been declared as one of Essential
Climate Variables [1]. Accurate knowledge about land cover is indeed key to environmental research,
to the monitoring of the effects of climate change, to resources management, as well as to assist in
disaster prevention. Accurate and up-to-date land cover maps are critical as both inputs to modeling
systems—e.g., flood and fire spread models—and decision tools to inform public policy makers [2].

State-of-the-art approaches to producing accurate land cover maps use supervised classification
of satellite images [3]. This makes it possible for maps to be reproducible and to be automatically
produced at a global scale while reaching high levels of accuracy [4]. Figure 1 displays an example of
such a map. Latest satellite constellations are capable of acquiring Satellite Image Time Series (SITS)
with high spectral, spatial and temporal resolutions. For instance, the two Sentinel-2 satellites provide,
since March 2017, worldwide images every five days, freely distributed, within 13 spectral bands at
spatial resolutions varying from 10 to 60 m [5].
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Figure 1. An example land cover map.

These new high-resolution SITS constitute an incredible source of data for land cover mapping,
especially for vegetation and crop mapping [6,7], at regional and continental scales [4,8]. They also
question the choice of the classification algorithms: although traditional algorithms showed good
performance for SITS classification [3], they do not explicitly use the temporal relationship between
acquisitions. Conversely, deep learning methods are appealing for this task [9], because they are
capable of automatically extracting useful representations, as demonstrated both in the machine
learning community [10] and in remote sensing [11]. The recent availability of long SITS on large
areas calls for new studies to evaluate if (and how) SITS classification task can benefit from deep
learning techniques.

In the following, we first review the state-of-the-art approaches used for SITS classification. Then,
we describe the most recent applications of deep learning to remote sensing data, with focus on time
series classification. Finally, we present the motivations and contributions of this work.

1.1. Traditional Approaches for SITS Classification

The state-of-the-art classification algorithms used to produce maps are currently Support Vector
Machines (SVMs) and Random Forests (RFs) [12]. These algorithms are generally applied at pixel-level
on the stack of multi-spectral images contained in the SITS. These algorithms are oblivious to the
temporal dimension that structures SITS. The temporal order in which the images are presented has
thus no influence on the results: counter-intuitively, a shuffle of the images in the series would result in
the same model and thus in same accuracy. It induces a loss of the temporal behaviour for classes with
evolution over time, such as the numerous forms of vegetation that are subject to seasonal change.

One solution to mitigate this problem has been to pre-calculate temporal features extracted from
vegetation index time series, and then to feed them to a classification algorithm [13–15]. Temporal
features that have been used include some statistical values, such as the maximum vegetation index,
and the approximation of key dates in the phenological stages of the targeted vegetation classes, e.g.,
the time of peak vegetation index. However, the addition of such temporal features has shown little
effect on classification performance [16].

To make the most of the temporal domain, other works have applied Nearest Neighbor (NN)
-type approaches combined with temporal similarity measures [17]. Such measures aim at capturing
the temporal trends present in the series by measuring a similarity independent of some temporal



Remote Sens. 2019, 11, 523 3 of 25

shifts between two time series [18]. Although promising, these methods require a complete scan of the
training set for classifying each test instance—leading to prohibitive computational costs when using
more than a few thousand profiles [19]—and only provide little abstraction of the training data.

1.2. Deep Learning in Remote Sensing

Deep learning approaches have been successfully used for many machine learning tasks including
face detection [20], object recognition [21], and machine translation [22]. Benefiting from both
theoretical and technical advances [23,24], they have shown to be extremely effective when there
exists a relationship between the dimensions of the data such as for images, audio, or text. The
applications to remote sensing of the two main deep learning architectures—Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)—are presented in the following.

1.2.1. Convolutional Neural Networks

CNNs have been widely applied to various remote sensing tasks including land cover
classification of very high spatial resolution images [25,26], semantic segmentation [27], object
detection [28], reconstruction of missing data [29], or pansharpening [30]. In these works, CNN
models make the most of the spatial structure of the data by applying convolutions in both x and y
dimensions. The main successful application of CNNs in remote sensing remains the classification
of hyperspectral images, where 2D-CNNs across the spatial dimension have also been tested [31], as
well as 1D-CNNs across the spectral dimension [32], and even 3D-CNNs across spectral and spatial
dimensions [33,34].

Regarding the classification of multi-source and multi-temporal data, 1D-CNN and 2D-CNN
have been used without taking advantage of the temporal dimension [35,36]: convolutions are applied
either in the spectral domain or in the spatial domain, excluding the temporal one. In other words, the
order of the images still has no influence on the model and results.

Meanwhile, temporal 1D-CNNs (TempCNNs) where convolutions are applied in the temporal
domain have proven to be effective for handling the temporal dimension for (general) time series
classification [37], and 3D-CNN for both the spatial and temporal dimension in video classification [38].
Consequently, these TempCNN architectures, that could make the most of the temporal structure of
SITS have started to be explored in remote sensing where convolutions are applied across the temporal
dimension alone [39,40], and also 3D-CNNs where convolutions are applied in both temporal and
spatial dimensions [41]. In particular, these preliminary works highlight the potential of TempCNNs
with higher accuracy than traditional algorithms such as RF. Although similar in nature with the work
proposed in [40], this paper proposes an exhaustive study of TempCNNs (presented in Section 2)
where we show how to handle multi-spectral images and use a broader nomenclature (not specific to
summer crops).

1.2.2. Recurrent Neural Networks

RNNs are another type of deep learning architecture that are intrinsically designed for sequential
data. For this reason, they have been the most studied architecture for SITS classification. They have
demonstrated their potential for the classification of optical time series [42,43] as well as multi-temporal
Synthetic Aperture Radar (SAR) [44,45]. Approaches have been tested with two types of units:
Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRUs) showing a small accuracy gain
when using GRUs [42,46]. In addition, these works have shown that RNNs outperform traditional
classification algorithms such as RFs or SVMs.

Some recent works dedicated to SITS classification have also combined RNNs with 2D-CNNs
(spatial convolutions) either by merging representations learnt by the two types of networks [47]
or by feeding a CNN model with the representation learned by a RNN model [48,49]. These types
of combinations have also been used for land cover change detection task between multi-spectral
images [50,51].
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RNN models are able to explicitly consider the temporal correlation of the data [46] making them
particularly well-suited to drawing a prediction at each time point, such as when translating each word
in a sentence [22]. In remote sensing, an RNN model based on LSTM units has been proposed to output
a land cover prediction at several time steps to detect palm oil plantations [52]. However, land cover
mapping usually aims at producing one label for the whole series, where the label holds a temporal
meaning (e.g., “corn crop”). RNNs might therefore be less suited to this specific classification task. In
particular, the number of training steps (i.e., the number of back-propagation steps) is a function of the
length of the series ([53] (Section 10.2.2)), while it is only a function of the depth of the network for
CNNs. The result is a network that is: (1) harder to train because patterns at the start of the series are
many layers away from the classification output, and (2) longer to train because the error has to be
back-propagated through each layer in turn.

1.3. Our Contributions

In this paper, we extensively study the use of TempCNNs—where convolutions are applied in
the temporal domain—for the classification of high-resolution SITS. The main contributions of this
paper include:

• demonstrating the potential of TempCNNs against RFs and RNNs,
• showing the importance of temporal convolutions,
• evaluating the effect of additional hand-crafted spectral features such as vegetation indices,
• exploring the architecture of TempCNNs.

This paper proposes the study of TempCNN for SITS classification. We provide a methodological
understanding of the models and their theoretical underpinnings, as well as an experimental study
that gives general guidelines about how they should be used and parameterized. For this purpose,
we first compare the classification performance of TempCNNs to the one of RFs and RNNs. Then, we
discuss different architecture choices including size of the convolutions, pooling layers, width and
depth of the network, regularization mechanisms and batch size. To our knowledge, this work is the
first extensive study of TempCNNs for remote sensing to date. This paper focuses on 1D-CNN models
and does not cover the use of the spatial structure of the data: each pixel is considered as an instance
and the features learnt by the network are spectro-temporal. Similarly to previous studies, we work at
pixel level and not at object level, mostly because the delineations of plots of land are not available for
the whole studied area. Working at object level would thus require a pre-segmentation of the data that
would introduce another dimension to this study and overly complicate the analysis. An interested
reader could refer to [41] for a first exploration of that topic.

All the topics are addressed experimentally using 46 high-resolution Formosat-2 images, with
training/test sets composed of one million labeled time series. This paper presents the results obtained
over 2000 (79 architectures and 25 experiments for each) deep learning models. It corresponds to
more than 2,000 hours of training time performed mainly on NVIDIA Tesla V100 Graphical Processing
Units (GPUs).

This paper is organized as follows: Section 2 describes our TempCNN model which is used in the
experiments. Then, Section 3 is dedicated to the description of the data and the experimental settings.
Section 4 is the core section of the paper that presents our experimental results. Finally, Section 5 draws
the main conclusions of this work.

2. Temporal Convolutional Neural Networks

This Section aims at presenting TempCNN models. We first briefly review the theory of neural
networks and CNNs. We then present the principles of temporal convolutions. We finally introduce
the general form of the TempCNN architecture studied in Section 4.
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2.1. General Principles

Deep neural networks are based on the concatenation of different layers where each layer takes
the outputs of the previous layer as inputs. Figure 2 shows an example of a fully-connected network
where the neurons in green represent the input, the neurons in blue belong to the hidden layers and
the neurons in red are the outputs. As depicted, each layer is composed of a certain number of units,
also known as neurons. The input layer size depends on the dimension of the instances, whereas the
output layer is composed of C units for a classification task with C classes. The number of hidden
layers and their number of units need to be selected by the practitioner.

Class 1

Class 2

Class 3

Dense #1Input Dense #2 Softmax

Figure 2. Example of fully-connected neural network.

Formally, the outputs of a layer l, the activation maps denoted by A[l], are obtained with a
two-step calculation: it first takes a linear combination of the inputs—which are the output of layer
l − 1, i.e., A[l−1], and then it applies a non-linear activation function g[l] to this linear combination.
It can be written as follow:

A[l] = g[l](W [l]A[l−1] + b[l]), (1)

where W [l] and b[l] are the weights and the biases of the layer l, respectively, that need to be learned.
The activation function, denoted by g[l] in Equation (1), is crucial as it allows to introduce

non-linear combinations of the features. If only linear functions were used, the depth of the network
would have little effect since the final output would simply be a linear combination of the input, which
could be achieved with a single layer. In this work, we use the well-kown Rectified Linear Units
(ReLU), calculated as ReLU(z) = max(0, z) [23].

Stacking several layers allows to increase the capacity of the network to represent complex
functions, while keeping the layers simple, i.e., composed of a small number of units. Section 4.4 will
provide some experimental results for different network depths.

Let (X, Y) be a set of n training instances such as (X, Y) = {(x1, y1), (x2, y2), · · · , (xn, yn)} ∈
RT×D ×Y . The pair (xi, yi) represents training instance i where xi is a D-variate time series of length
T associated with the label yi ∈ Y = {1, · · · , C} for C classes. Formally, xi can be expressed by
xi = 〈xi(1), · · · , xi(T)〉, where xi(t) =

(
x1

i (t), · · · , xD
i (t)

)
for a time stamp t. Note that A[0] is equal to

xi in Equation (1).
Training a neural network corresponds to finding the values of W = {W [l]}∀l and b = {b[l]}∀l

that will minimize a given cost function, which assesses the fit of the model to the data. This process is
known as empirical risk minimization, and the cost function J is usually defined as the average of the
errors committed on each training instance:

J (W, b) =
1
n ∑

xi

L(ŷi, yi). (2)

where ŷi correspond to the network predictions.
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The loss function L(ŷi, yi), for a multi-class classification problem, is usually the cross-entropy
loss:

L(ŷi, yi) = − ∑
y∈{1,··· ,C}

1{y = yi}log(p(y|xi)) (3)

= −log(p(yi|xi)), (4)

where p(yi|xi) represents the probability of predicting the true class yi of instance i computed by the
last layer of the network (the Softmax layer) and denoted A[L] for a network with L layers..

Training deep neural networks presents two main challenges which are offset by a substantial
benefit. First, it requires significant expertise to engineer the architecture of the network, choose
its hyper-parameters, and decide how to optimize it. In return, such models require less feature
engineering than more traditional classification algorithms and have shown to provide superior
accuracy across a wide range of tasks. It is in some sense shifting the difficulty linked to feature
engineering to the one of architecture engineering. Second, deep neural networks are usually prone to
overfitting because of their very low bias: they have so many parameters that they can fit a very large
family of functions, which in turn creates an overfitting issue [54]. Section 4.4 will provide an analysis
of TempCNN accuracy as a function of the number of learned parameters.

2.2. Temporal Convolutions

Convolutional layers were proposed to limit the number of weights that a network needs to learn
while trying to make the most of the structuring dimensions in the data—e.g., spatial, temporal or
spectral—[55]. They apply a convolution filter to the output of the previous layer. As compared to
dense layers (i.e., the fully-connected layer presented in Section 2.1) where the output of a neuron is
a single number reflecting the activation, the output of a convolution filter is an activation map. For
example, if the input is a univariate time series, then the output will be a time series where each point
in the series is the result of the convolution filter.

Figure 3 shows the application of a gradient extraction filter [−1 − 1 0 1 1] onto the time series
depicted in blue. The output is depicted in red. It takes high positive values where an increase in
the signal is detected, and low negative values where a decrease in the signal occurs. Note that the
so-called convolution is technically a cross-correlation.

50 100 150 200 250 300 350

Time

0.2

0.4

0.6

0.8

1

Time series

Result of the convolution

-0.1

-0.05

0

0.05

0.1
Gradient

convolution filter
-1 -1  0  1  1

Figure 3. Convolution of a time series (blue) with the positive gradient filter [−1 − 1 0 1 1] (black). The
result (red) takes high positive values when the signal sharply increases, and conversely.
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Convolutional layers have for specificity to share their parameters across different locations: the
same linear combination is applied by sliding it over the entire input. This drastically reduces the
number of weights in the layer, by assuming that the same convolution might be useful in different
parts of the time series. This is why the number of trainable parameters only depends on the filter size
of the convolution f and on the number of units n, but not on the size of the input. Conversely, the size
of the output will depend on the size of the input, and also on two other hyper-parameters—the stride
and the padding. The stride represents the interval between two convolution centers. Padding controls
the addition of values (usually zeros) at the start and end of the input series, before the calculation
of the convolution. It makes it possible, for instance, to ensure that the output has the same size as
the input.

2.3. Proposed Network Architecture

In this section, we present the baseline architecture that will be discussed in this manuscript. Note
that the goal of this paper is not to propose the best architecture for our data, but rather to explore the
behaviour of TempCNNs for SITS classification through exhaustive experiments.

Figure 4 displays the base TempCNN architecture used in the experiments (Section 4). The
architecture is composed of three convolutional layers (64 units), one dense layer (256 units) and one
Softmax layer. The filter size of convolutions is set to 5. Section 4.4 will justify the width (i.e., number
of units) and the depth (i.e., number of convolution layers) of this architecture. Moreover, Section 4.2
will study the influence of convolution filter size. Finally, the experimental section will also examine
the use of pooling layers (Section 4.3).

input CONV 1 CONV 2 CONV 3 Flatten Dense Softmax

time

spectral Class 1

Class 2

Class 3

Figure 4. Proposed temporal Convolutional Neural Network (TempCNN). The network input is a
multi-variate time series. Three convolutional filters are consecutively applied, then one dense layer,
and finally the Softmax layer, that provides the predicting class distribution.

To control for overfitting, we use four regularization mechanisms: dropout with a dropout rate of
0.5 [56], a L2-regularization on the weights (also named weight-decay) applied for all the layers with a
small rate of 10−6, a validation set corresponding to 5% of the training set, and batch normalisation [24].

Similarly to the split between the train and test set (see the details in Section 3.2), the validation set
is built such that instances do not come from the same polygons as ones from the train set. Section 4.5
will detail the influence of these four regularization mechanisms.

We train the network using Adam optimization (standard parameter values: β1 = 0.9, β2 = 0.999,
and ε = 10−8) [57] with a batch size of 32, and a maximum number of epochs set to 20, with an early
stopping mechanism with a patience of zero. The influence of the batch size on the accuracy and the
training time are analysed in Section 4.6.

All the studied CNN models have been implemented with the Keras library [58], with Tensorflow
as the backend [59]. To facilitate others to build on this work, we have made our code available at
https://github.com/charlotte-pel/temporalCNN.

https://github.com/charlotte-pel/temporalCNN
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3. Material and Methods

This section presents the dataset used for the experiments. We first present the optical satellite
data. Next, we briefly describe the reference data. Then, we detail the data preparation steps. Finally,
we present the benchmark algorithms and evaluation measures.

3.1. Optical Satellite Data

The study area is located at the South West of France, near the city of Toulouse (1°10′ E, 43°27′ N).
It is 24 km × 24 km area where about 60% of the soil correspond to arable surfaces. The area has a
temperate continental climate with hot and dry summer—average temperature of about 22.4 °C and
rainfall of about 38 mm per month. Figure 5 displays a satellite image of the area in false color from
14 July 2006.

Figure 5. Formosat-2 image in false color (near infra-red, red, green) from 14 July 2006. Green and blue
squares will be inspected visually in the experiments.

The satellite dataset is composed of 46 Formosat-2 images acquired at 8 meter spatial resolution
during the year 2006. Figure 6 shows the distribution of the acquisitions. Note that Formosat-2’s
characteristics are similar to the new Sentinel-2 satellites that provide 10 m spatial resolution images
every five days.

Figure 6. Acquisition dates of the Formosat-2 image time series.

For each Formosat-2 image, only the three bands Near-Infrared (760–900 nm) (NIR), Red
(630–690 nm) (R) and Green (520–600 nm) (G) are used. The blue channel has been discarded since it is
sensitive to atmospheric artifacts.

Each image has been ortho-rectified to ensure the same pixel locations throughout the time series.
In addition, the digital numbers from the row images have been converted to top-of-canopy reflectance
by the French Space Agency [60]. This last step corrects images from atmospheric effects, and also
outputs cloud, shadow and saturation masks. The remaining steps of the data preparation—temporal
resampling, feature extraction and feature normalization—are presented in Section 3.3.
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3.2. Reference Data

The reference data come from three sources: (1) farmer’s declaration from 2006 (Registre Parcellaire
Graphique in French), (2) field campaigns performed during 2006, and (3) a reference map obtained
with a semi-automatic procedure [61]. From these three reference sources, we extracted a total of
13 classes representing three winter crops (wheat, barley and rapeseed), five summer crops (e.g., corn,
soy and sunflower), four natural classes (grassland, forests and water) and urban areas. Note that the
reference map (3) is only used to extract the urban class, which is stable over time, and we checked the
associated polygons visually.

Table 1 displays the total number of instances per class at pixel- and polygon-level. It shows great
variations in the number of available instances for each class where grassland, urban surfaces, wheat
and sunflower predominate.

Table 1. Number of instances per class counted at pixel- and polygon-level.

Classes Pixels Polygons Legend

Wheat 194,699 295
Barley 23,404 43
Rapeseed 36,720 55
Corn 62,885 83
Soy 9481 24
Sunflower 108,718 173
Sorghum 17,305 22
Pea 9151 15
Grassland 202,718 328
Deciduous 29,488 24
Conifer 15,818 18
Water 30,544 32
Urban 292,478 307

Total 1,033,409 1419

The reference data are randomly split into two independent datasets at the polygon level
where 60% of the data is used for training the classification algorithms and 40% is used for testing.
To statistically evaluate the performance of the different algorithms, this splitting operation is repeated
five times [62]. Hence, each algorithm is evaluated on five different train/test splits. To also take the
variations from weights’ initialization into account, we train the neural networks five times on each
train/test split. The presented results are then averaged over the 25 runs (5× 5).

3.3. Data Preparation

3.3.1. Temporal Resampling

The optical SITS includes invalid pixels due to the presence of clouds and saturated pixels.
Nowadays, the high temporal resolution of SITS is used to efficiently detect clouds and their
shadows [60]. The produced masks are then used to gap-fill the cloud-covered and saturated pixels
before applying supervised classification algorithms, without a loss of accuracy [63]. We use here
a temporal linear interpolation for imputing invalid pixel values. Although not perfect given the
non-linear phenomena observed through the SITS, using more complex methods have shown only
little impact on classification performance [64]. Note also that the biggest temporal gaps in the dataset
occur mainly during the winter where the vegetation is not evolving much.

As most of the classification algorithms explored in the manuscript require a regular temporal
sampling, we apply interpolation and resampling on a regular temporal grid defined with a time gap
of two days. The starting and ending dates correspond to the first and last acquisition dates of the
Formosat-2 series, respectively. This operation increases the length of the Formosat-2 time series from
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46 to 149. As some studied algorithms, such as RF, may be sensitive to this increase of the length, we
also keep the original temporal sampling with interpolation.

3.3.2. Feature Extraction

We calculate spectral indices after the gapfilling step for each element of the pixel series. Spectral
indices are commonly used in addition of spectral bands as the input of the supervised classification
system in the remote sensing literature [3]. They can help the classifier to handle some non-linear
relationships between the spectral bands [4]

More specifically, we compute three commonly used indices: the Normalized Difference
Vegetation Index (NDVI) [65], the Normalized Difference Water Index (NDWI) [66] and a brilliance
index (IB) defined as the norm of all the available bands [63].

In the experiments, as we want to quantify the contribution of the spectral features on the different
algorithms, we use a set of three different configurations: 1) NDVI only, 2) the spectral bands only
(SB), and 3) the spectral bands and all indices (SB + NDVI + NDWI + IB). Note that we also decided to
analyse NDVI separately, as it is the most common index for vegetation mapping. Table 2 summarizes
the total number of variables for our SITS as a function of the temporal strategy and the spectral
features that we use.

Table 2. Number of features (D× T) for the studied dataset with T the length of the time series, and D
the number of spectral features.

Temporal Sampling NDVI SB SB-NDVI-NDWI-IB

D = 1 D = 3 D = 6

original T = 46 46 138 276
2 days T = 149 149 447 894

SB: Spectral Bands, NDVI: Normalized Difference Vegetation Index, NDWI: Normalized Difference
Water Index, IB: Brilliance Index.

3.3.3. Feature Normalization

In remote sensing, the input time series are generally standardized by subtracting the mean and
dividing by the standard deviation for each feature where each time stamp is considered as a separate
feature. This standardization, named z-normalization of each band at each date in the following,
ensures that the variation in the features is not dominated by a single feature that has a high dynamic
rank. However, this transforms the general trend of the series.

In machine learning, the input data are generally z-normalized by subtracting the mean and
divided by the standard deviation for each time series [67]. This z-normalization of each time series
has been introduced to be able to compare time series that have similar trends, but different scaling
and shifting [68]. However, it leads to a loss of the meaning of the magnitude, whereas magnitude is
crucial for vegetation mapping, e.g., corn will have higher NDVI values than other summer crops.

To overcome both limitations of the common normalization methods, we use a min-max
normalization per feature across all images. The traditional min-max normalization performs a
subtraction of the minimum, then a division by the range, i.e., the maximum minus the minimum [69].
As this normalization is highly sensitive to extreme values, we propose to use 2% (or 98%) percentile
rather than the minimum (or the maximum) value. For each feature, both percentile values are
extracted from all the time-stamp values. In the following, this normalization is named global feature
min/max normalization.

Figure 7 displays four NDVI temporal profiles (top left)—rapeseed, corn, deciduous and
water—for the three types of normalization: z-normalization of each time series, z-normalization
of each band at each date, global feature min/max normalization (2–98%). Z-normalization of each
time series (top right) produces highly transformed temporal profiles, and loses the relative vertical
positioning of the spectra. Similarly, z-normalization of each band at each date (bottom left) also
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modifies the meaning of the amplitude. For instance, the normalized rapeseed profile looks flat during
the growing season (between day of year 35 and 75), although the NDVI increases during this period
(indicating a growth of the plant). Finally, global feature min/max normalization (2–98%) (bottom
right) is the only one that does not change the shape of the temporal profiles, while ensuring that most
of the values are within [−1, 1].
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Figure 7. Three types of normalization of four Normalized Difference Vegetation Index (NDVI)
temporal profiles.

3.4. Benchmark Algorithms

We use Random Forest (RF) as the state-of-the-art algorithm for SITS classification, and Recurrent
Neural Networks (RNNs) as the leading deep learning algorithm for sequential data. Both benchmark
algorithms are briefly introduced.

3.4.1. Random Forests

The remote sensing community has assessed the performance of different algorithms for SITS
classification showing that Random Forest (RF) and Support Vector Machine (SVM) algorithms
dominate other traditional algorithms [3,70]. In particular, the RF algorithm can handle the high
dimension of the SITS data [16], is robust to the presence of mislabeled data [71], has high accuracy
performance on large scale study [4], and has easy-to-tune parameters [16].

The RF algorithm builds an ensemble of binary decision trees [72]. Its first specificity is to
use a bootstrap sample of the data at each tree—i.e., training instances are selected randomly with
replacement [73]— in order to increase diversity among the trees. The second specificity is the use of
random subspace technique for choosing the splitting criterion at each node: a subset of the features is
first randomly selected, then all the possible splits on this subset are tested based on a feature value
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test, e.g., maximization of the Gini index. It results in a split of the data into two subsets, for which
previous operations are recursively repeated. The construction stops when all the nodes are pure (i.e.,
in each node, all the instances belong to the same class), or when a user-defined criterion is met, such
as a maximum depth or maximum number of instances at the node.

In the experiments in Section 4, we use the implementation from Scikit-Learn with standard
parameter settings [16]: 500 trees at maximum depth, and a number of randomly selected variables
per node equals to the square root of the total number of features.

3.4.2. Recurrent Neural Networks

First developed for sequential data, RNN models have been recently applied to several
classification tasks in remote sensing, and particularly for crop mapping [45,46,48]. They share
the learnt features across different positions. As the error is back-propagated at each time step, the
computational cost can be high and it might cause learning issues such as vanishing gradient. Hence,
most recent RNN architectures use LSTM or GRU units that help to capture long distance connections
and solve the vanishing gradient issue. They are composed of a memory cell as well as update and
reset gates to decide how much new information to add and how much past information to forget.
Moreover, RNNs are known to be able to handle series with different lengths, but to the best of our
knowledge, not about dealing with an irregular sampling within one sequence.

Following the most recent studies, we train bidirectional RNNs with stacks of three GRUs, one
dense layer with 256 neurons and a Softmax layer [46,48]. The same number of neurons is used in
the three GRUs. More specifically, we have trained five different models comprised of 16, 32, 64, 128
or 256 neurons. As we focus on the analysis of TempCNNs in this paper, Section 4.1 will report only
the best RNN result (128 neurons) obtained on the test instances. All the models have been trained
similarly to the CNNs with Keras (backend Tensorflow): batch size equal to 32, Adam optimization,
and monitoring of the validation loss with an early stopping mechanism (c.f., Section 2.3).

3.5. Performance Evaluation

We evaluate the performance of the different classification algorithms quantitatively and
qualitatively. Following traditional quantitative evaluations, we calculate confusion matrices by
comparing the reference labels with the predicted ones. Then, we compute the standard Overall
Accuracy (OA) measure, as well as user’s accuracy (UA), producer’s accuracy (PA) and F-Score
per-class. In addition, we also evaluate the results qualitatively through visual inspection.

4. Experimental Results

This section aims at evaluating the TempCNN architecture presented in Section 2.3. We designed
a set of six experiments in order to study:

1. how the proposed TempCNN architecture makes the most of both spectral and temporal
dimensions,

2. how the filter size of temporal convolutions influence the accuracy,
3. how pooling layers influence the accuracy,
4. how wide and deep the model should be,
5. how the regularization mechanisms help training the model,
6. what values should be used for batch size.

A last section is dedicated to the visual analysis of the produced land cover maps.
As explained in Section 3.2, all the presented Overall Accuracy (OA) values correspond to average

values over five folds. When displayed, the interval always correspond to one standard deviation. All
details of the trained networks are available at https://github.com/charlotte-pel/temporalCNN.

https://github.com/charlotte-pel/temporalCNN
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4.1. Benefiting from Both Spectral and Temporal Dimensions

In this experiment, we compare four configurations: (1) no guidance, (2) only temporal guidance,
(3) only spectral guidance, and (4) both temporal and spectral guidance (TempCNNs). Before
presenting the obtained results, we first describe the trained models for these fourth types of guidance,
which are illustrated in Figure 8.

Figure 8. Types of guidance. The top row represents our input in a 2D array, whereas the bottom row
represents the output of one neuron under each guidance scheme.

No guidance: Similar to a traditional classifier, such as the RF algorithm, the first considered type
of model ignores the spectral and temporal structures of the data, i.e., the expected model is the same
regardless of the order in which the features (spectral and temporal) are given. For this configuration,
we decided to train two types of algorithms: (1) the RF classifier selected as the competitor [3], and (2) a
deep learning model composed of three dense layers of 1024 units—this specific architecture is named
FC in the following. Both models are trained the whole dataset with T× D features, with T the length
of the times series and D the number of spectral features (see Table 2). As both RF and FC models do
not require regular temporal sampling, the use of 2-day sampling is not necessary and can even lead
to under-performance. The use of high dimensional space composed of redundant and sometimes
noisy features may indeed decrease accuracy. Hence, the results of both models are displayed for the
original temporal sampling, i.e., T = 46.

Temporal guidance: The second type of model provides guidance only along the temporal
dimension. We train an architecture with convolution filters of size ( f × 1). In other words, the
same convolution filters are applied across the temporal dimension, identically for all the spectral
dimensions (second column in Figure 8).

Spectral guidance: The third type of model includes guidance only on the spectral dimension
(third column in Figure 8). For this purpose, a convolution of size (1, D) is first applied without
padding, reducing the spectral dimension to one for the next convolution layers of size (1× 1).

Spectro-temporal guidance: The last type of model corresponds to the one presented in
Section 2.3 (TempCNNs), where the first convolutions have size ( f × D) (last column in Figure 8). The
choice of this architecture is explained in the following sections. We also compare this architecture to
RNNs, which also provide a spectro-temporal guidance (Section 3.4).

It is interesting to note that studying temporal and spectral guidance separately is not standard;
we only include it here as a means to disentangle the contribution of the different components of our
TempCNN model. As illustrated by Figure 8, all the applied convolutions are 1D-convolutions as they
slide over one dimension only: over time for both TempCNN and the temporal guidance, and the
spectral dimension for the spectral guidance.

Table 3 displays the Overall Accuracy (OA) and one standard deviation for the four levels of
guidance. As the use of engineering features may help the different models, we train all the models
for the three types of features presented in Section 3.3: NDVI alone, spectral bands (SB), and spectral



Remote Sens. 2019, 11, 523 14 of 25

bands with three spectral indices (SB-SF). For both models using temporal guidance, the filter size
f is set to five. All the models are learned as specified in Section 2.3, including dropout and batch
normalization layers, weight decay and the use of a validation set.

Table 3. Averaged overall accuracy (± one standard deviation) over five folds for four levels of help in
spectral and/or temporal dimensions. Three feature vectors are used here: (1) Normalized Difference
vegetation index (NDVI), (2) spectral bands (SB), and (3) SB and three spectral features (SB-SF). Bold
values show the highest performance for each type of features. CNN/ COnvolutional Neural Network.

NDVI SB SB-SF

No guidance Random Forest (RF) 88.17 ± 0.59 90.02 ± 1.44 90.92 ± 1.22
Fully-Connected (FC) 86.90 ± 1.65 91.36 ± 1.15 91.87 ± 0.88

Recurrent Neural Network (RNN) 88.62 ± 0.86 92.18 ± 1.43 92.38 ± 0.83

CNN with temporal guidance 90.16 ± 0.94 92.74 ± 0.80 93.00 ± 0.83
CNN with spectral guidance 88.24 ± 0.63 93.34 ± 0.88 93.24 ± 0.83
CNNwith spectro-temporal guidance (TempCNN) 90.06 ± 0.88 93.42 ± 0.76 93.45 ± 0.77

Table 3 shows that the OA increases for CNN models when adding more guidance, regardless of
the type of used features. Note that the case of only using the spectral guidance with NDVI feature is
a particular “degenerate” case: the spectral dimension is composed of only one feature (NDVI). The
trained model applies convolutions of size (1,1), leading to a model that does not provide any guidance.

When using at least the spectral bands in the feature vector (SB and SB-SF columns), our
TempCNN model outperforms all other algorithms with variations in OA between 1 and 3%. We
have also performed a paired t-test to compare the mean accuracy obtained over the different folds of
TempCNNs against the three other competitors. The p-values are lower than 0.001 for TempCNN vs
both FC and RF, and ≈ 0.0116 for TempCNN vs RNN; TempCNN thus significantly outperforms the
three models at the traditional 5% significance threshold.

Interestingly, models based on only spectral convolutions with spectral features (fifth row, second
column) slightly outperform models that used only temporal guidance (fourth row, second column).
This result confirms the importance of the spectral domain for land cover mapping application. In
addition, the use of convolutions in both temporal and spectral domains leads to slightly better OA
compared to the other three levels of guidance. Finally, Table 3 shows that the use of spectral indices in
addition of the available spectral bands does not help to improve the accuracy of traditional and deep
learning algorithms.

To explore this result further, Table 4 gives the producer’s accuracy (PA), the user’s accuracy (UA)
and the F-Score per class for the three main classification algorithms: RFs, RNNs and TempCNNs.

Table 4 shows that TempCNNs outperform other algorithms with the highest F-Scores for all but
two classes, while obtaining very close results for the two remaining classes. TempCNNs obtain very
good results on the most frequent classes (wheat, sunflower, and grassland), but also on the rarer ones
(peas, sorghum, and conifer).

4.2. Influence of the Filter Size

For CNN models using a temporal guidance, it is also interesting to study the filter size.
Considering the 2-day regular temporal sampling, a filter size of f (with f an odd number) will
abstract the temporal information over ±( f − 1) days, before and after each point of the series. Given
this natural expression in number of days, we name ( f − 1) the reach of the convolution: it corresponds
to half of the width of the temporal neighborhood used for the temporal convolutions.

Table 5 displays the OA values as a function of reach for TempCNN. We study five size of filters
f = {3, 5, 9, 17, 33} corresponding to a reach of 2, 4, 8, 16, and 32 days, respectively.
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Table 4. Per-class quality measures. PA: producer’s accuracy. UA: user’s accuracy. Bold values
represent the highest F-Score per class.

RFs RNNs TempCNNs

UA PA F-Score UA PA F-Score UA PA F-Score

Whe 94.53 94.86 94.70 95.03 94.75 94.89 95.21 95.97 95.59
Bar 90.08 58.49 70.92 67.28 61.52 64.27 82.59 59.90 69.44

Rap 96.52 92.70 94.57 94.86 91.26 93.02 98.34 95.61 96.96
Cor 91.74 97.43 94.50 95.24 96.02 95.63 94.04 97.55 95.76
Soy 91.82 71.52 80.41 83.36 78.52 80.87 84.83 82.86 83.83
Sun 90.09 92.15 91.11 90.02 93.27 91.62 91.02 94.56 92.76
Sor 75.02 30.66 43.53 66.14 49.66 56.73 78.02 47.13 58.77
Pea 98.91 44.42 61.30 72.20 59.22 65.07 85.66 69.93 77.00
Gra 91.54 87.01 89.22 92.49 93.69 93.09 92.84 94.92 93.87
Dec 81.09 68.18 74.08 78.79 75.74 77.24 79.57 74.18 76.78
Con 52.55 49.01 50.71 57.56 56.05 56.79 54.48 59.45 56.86
Wat 99.90 99.02 99.46 99.21 97.92 98.56 99.81 99.69 99.75
Urb 86.47 99.66 92.60 96.48 98.92 97.68 97.16 99.31 98.22

Table 5. Averaged Overall Accuracy (OA), ±one standard deviation, and F-Score values for five reach
values. Bold values highlights the highest values.

Reach 2 4 8 16 32

Whe 95.47 95.58 95.67 95.48 95.30
Bar 68.17 69.39 69.44 68.75 68.29

Rap 96.76 96.93 96.73 96.58 95.58
Cor 95.58 95.77 96.65 96.41 96.18
Soy 82.79 83.78 83.97 82.96 82.97
Sun 92.44 92.76 92.82 92.74 92.87
Sor 54.58 58.77 61.87 62.00 61.20
Pea 74.64 77.01 75.24 68.14 69.79
Gra 93.82 93.85 93.95 93.17 92.86
Dec 76.78 76.65 76.46 76.13 76.83
Con 56.57 56.49 54.21 53.88 53.80
Wat 99.76 99.76 99.78 99.66 99.70
Urb 98.16 98.22 98.15 97.58 97.43

OA 93.29 ± 0.82 93.42 ± 0.76 93.43 ± 0.62 93.00 ± 0.85 92.79 ± 0.72

Table 5 shows that the maximum OA is obtained for a reach of 8 days, with a similar OA for
4 days. The F-Score values per class corroborate this results where maxima are often achieved for a
reach of 4 or 8 days. Although the OA values are close for the different reach values, there are some
observable differences per class: conifer, sorgo, and pea have F-Score differences that range from
2.8 to 8.9%. This result shows the importance of the high temporal resolution SITS, such as the one
provided at five days by both Sentinel-2 satellites. The frequency of acquisition indeed allows CNNs
to abstract enough temporal information from the temporal convolutions. In general, the reach of
the convolutions will mainly depend on the patterns that need to be abstracted at a given temporal
resolution. For example, even though the F-scores are very similar w.r.t. reach, the conifer class seems
to require the lowest reach and the deciduous to require the highest reach.

4.3. Are Local and Global Temporal Pooling Layers Important?

In this Section, we explore the use of pooling layers for different reach values. Pooling layers are
generally used in image classification task to both speed-up the computations and make the learnt
features more robust to noise [74]. They can be seen as a de-zooming operation, which naturally
induces a multi-scale analysis when interleaved between successive convolutional layers. For a time
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series, these pooling layers simply reduce the length, and thus the resolution, of the time series that
are output by the neurons—and this by a factor k.

Two types of pooling have received most of the attention in the literature in computer vision:
1) the local max-pooling [75], and 2) the global average pooling [76]. For time series, global average
pooling seems to have been more successful [9,37]. We want to see here if these previous results can be
generalized for time series classification.

For this purpose, we train models with a global average pooling layer added after the third
convolution layers for the following reach: 2, 4, 8, 16, and 32 days. We also train models with local
pooling layers interleaved between each convolution layer with a window size k of 2. As local pooling
layers virtually increase the reach of the following convolutional layers for this experiment, we kept the
reach constant—2, 4, 8, 16, and 32 days—by reducing the convolution filter size f after each convolution.
For example, a constant reach of 8 is obtained by applying successively three convolutions with filter
sizes of 9, 5, and 3, with a local pooling layer after each convolutional one.

Figure 9 displays the OA values as a function of reach. Each curve represents a different
configuration: local max-pooling (MP) in blue, local max-pooling and global average pooling
(MP + GAP) in orange, local average pooling (AP) in yellow, local and global average pooling
(AP + GAP) in purple, and global average pooling (GAP) in green. The horizontal red dashed
line corresponds to the OA values obtained without pooling layers in the previous experiment.
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Figure 9. Overall Accuracy (OA) as function of reach for local max-pooling (MP) in blue, local
max-pooling and global average pooling (MP + GAP) in orange, local average pooling (AP) in yellow,
local and global average pooling (AP + GAP) in purple, and global average pooling (GAP) alone in
green. We use the dataset with three spectral bands and a regular temporal sampling at two days.

Figure 9 shows that the use of pooling layers performs poorly: the OA results are almost always
below the one obtained without pooling layers (red dashed line). Let us describe in more details the
different findings for both global and local pooling layers.

The use of a global average pooling layer leads to the biggest decrease in accuracy. This layer is
generally used to drastically reduce the number of trainable parameters by reducing the size of the last
convolution layer to its depth. It thus performs an extreme dimensionality reduction, that decreases
here the accuracy performance.

Regarding the use of only local pooling layers, Figure 9 shows similar results for both max and
average pooling layers. The OA values tend to decrease when the reach increases. The results are
similar to those obtained by the model without pooling layers (horizontal red dashed line) for reach
values lower than nine days, with even a slight improvement when using a local average pooling layer
with a constant reach of four days.
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This last result contrasts with results obtained in computer vision tasks for which: (1) max-pooling
tends to give better results than average pooling, and (2) the use of local pooling layers helps to improve
the classification performance. The main reason for this difference is probably task-related. In image
classification, local pooling layers are known to extract features that are invariant to the scale and
small transformations leading to models that can detect objects in an image no matter their locations
or their sizes. However, the location of the temporal features, and their amplitude, are critical for SITS
classification. For example, winter and summer crops, that we want to distinguish, may have similar
profiles with only a shift in time. Removing the temporal location of the peak of greenness might
prevent their discrimination.

4.4. How Wide and Deep a Model for Our Data?

4.4.1. Influence of the Width or Bias-Variance Trade-Off

This section has two goals: 1) justify the complexity of the learned models, and 2) be able to give
an idea about how wide should the model be. Both objectives relate to the bias-variance trade-off of
the model for our quantity of data. The more complex the model (i.e., more parameters), the lower
its bias, i.e., the fewer incorrect assumptions the model makes about the distribution from which the
data is sampled. Conversely, given a fixed quantity of training data, the more complex the model, the
higher the variance. Many classifiers vary their bias-variance trade-offs automatically by changing
their bias, such as decision trees tend to grow deeper as the quantity of data increases. For neural
networks however, the bias is mostly fixed by the architecture, and the variance by the architecture
and the quantity of training data. We use here the number of trainable parameters as a proxy for model
complexity, which provides a reasonable measure when dealing with a specific classification problem
where the quantity of data and the number of classes are fixed ([53] (Chapter 7, Introduction)).

We study seven CNN architectures with increasing number of parameters. Each architecture
has three convolutional layers, one dense layer (256 neurons), and the Softmax layer as depicted in
Figure 4. We then vary the number of neurons—or width—of the convolutional layers (16 to 1024
neurons). The depth of the model is specifically studied right after. The total number of trainable
parameters then ranges from about 320,000 to 50 million. All models are trained following Section 2.3,
with the exception of not using a validation set in order to observe more accuracy variations by letting
the models being more prone to overfitting. Figure 10a shows the OA values as a function of number
of parameters in logarithmic-scale.
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Figure 10. Overall Accuracy (±one standard deviation in orange) as a function of the number of
parameters (a) or the number of successive convolutional layers (b) for seven temporal Convolutional
Neural Network models. We use the dataset with three spectral bands and a regular temporal sampling
at two days.
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Figure 10a shows that the architecture is very robust to a drastic change in number of parameters,
as exhibited by OA varying only between 93.28% for 50M parameters and 93.69% for 2.5M parameters.
The standard deviation increases with the number of parameters, but even at 50M parameters, most
results are between 91% and 95% accuracy. Note that 50M parameters is an extremely large number
of parameters for our dataset of about 620,000 training instances. From this result, one can see that
models having about 2.5M of parameters with three convolutional layers and one dense layers have a
good bias-variance trade-off.

If more training data is available, using a similar architecture is likely to conservatively work well,
because more data is likely to drive the variance down while bias is fixed. If less data is available, one
could decide to use a smaller architecture but again, overall, the results are very stable.

4.4.2. Influence of the Depth

We now propose here to vary the number of successive layers, i.e., the depth of the network, for
the same model complexities. To keep the model complexity constant, we decrease the number of
units for deeper networks. More specifically, we consider six architectures composed of one to six
convolutional layers with a number of units ranging from 256 to 16, and one dense layer with a number
of units ranging from 64 to 2048. Figure 10b shows OA values as a function of number of convolutions.

Figure 10b shows that the highest accuracies are obtained with the lowest standard deviation
for an optimal number of convolutional layers of two or three. For a given complexity (here about
2.5M parameters), the use of an inappropriate number of convolutional layers and number of units
may lead to an under-performance of TempCNNs. For a specific task, the selection of a reasonable
architecture might be important, and could be optimized via cross-validation or using meta-learning
approaches [77–79].

4.5. How to Control Overfitting?

Our TempCNN model includes four mechanisms to deal with overfitting: (1) regularization of
the weights, (2) dropout, (3) using a validation set and (4) batch normalization. Regarding the optimal
architecture in Section 4.4, the model needs to learn a number of parameters higher than more than
three times the given number of training instances—2.5M of parameters versus 620,000 training data
instances. This section aims at determining which of the used regularization mechanisms are the most
important to train the TempCNN network. For this purpose, we first train our TempCNN architectures
with only one regularization technique, then with all regularization techniques except one.

Table 6 displays OA values with or without the use of different regularization mechanisms. The
first row displays the results when no regularization mechanism is applied (lower bound), whereas
the last row displays the results when all the regularization mechanisms are used (higher bound).

Table 6. Averaged overall accuracy over five runs using different regularization techniques. The first and last
rows display Overall Accuracy when all the regularization techniques are turned off and on, respectively. The
used dataset is composed of three spectral bands with a regular temporal sampling at two days.

Overall Accuracy

Nothing 90.83 ± 0.82

Only dropout 93.12 ± 0.64
Only batch normalization 92.22 ± 0.86

Only validation set 91.17 ± 0.94
Only weight decay 90.74 ± 1.00

All except dropout 92.07 ± 1.20
All except batch normalization 92.89 ± 0.72

All except validation set 93.68 ± 0.60
All except weight decay 93.52 ± 0.77

All 93.42 ± 0.76
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Table 6 shows that the use of dropout is the most important regularization mechanism for
TempCNNs as its only use leads to an OA value close from the one obtained when using the four
regularization mechanisms. Conversely, the use of a validation set and the weight decay seem less
useful to regularise the model.

4.6. What Values Should be Used for Batch Size?

This section aims at studying the influence of the batch size on the classification performance
and on the training time. For this purpose, the model of Section 4.5 is trained for the following batch
sizes: {8, 16, 32, 64, 128}. Table 7 displays the OA values and also the training time for each studied
batch size.

Table 7. Training time and averaged Overall Accuracy (OA) over five folds for the same model learned
for five batch sizes.

Batch Size Training Time OA

8 3 h 45 min 93.54 ± 0.67
16 1 h 56 min 93.65 ± 0.73
32 1 h 06 min 93.59 ± 0.74
64 34 min 93.43 ± 0.71

128 19 min 93.45 ± 0.83

Table 7 shows that for our experiments the batch size influences the training time, but not the
accuracy of the trained models, as all OA values are comparable. This result implies that large batch
sizes can be selected to speed up training.

4.7. Visual Analysis

This experimental section ends with a visual analysis of the results for both blue and green areas
of size 3.7 km × 3.6 km (465 pixels × 450 pixels) displayed in Figure 5. The analysis is performed
for RF and TempCNN. The original temporal sampling is used for RF, whereas the regular temporal
sampling at two days is used to train TempCNN. Both models are trained on the datasets with three
spectral bands. The full maps are available in our online repository at https://github.com/charlotte-
pel/temporalCNN.

Figure 11 displays the produced land cover maps. The first row displays the results for the
blue area, whereas the second row displays the one for the green area. The first column displays the
Formosat-2 image in false color for 14 July 2006 (zoom of Figure 6). The second and third columns give
the results for the RF and the TempCNN algorithms, respectively. Images in the last column display
the disagreements between both classifiers in red. Legend of land cover maps can be found in Table 1.

Although the results look visually similar, the disagreement images between both classifiers
highlight some strong differences on the delineations between several land cover, but also at the
object-level (e.g., crop, urban areas, forest). Regarding the delineation disagreements, we found
that RF spreads out the majority class, i.e., urban areas, leading to an over-detection of this class,
especially for mixing pixels. Regarding object disagreements, one can observe that RF mistakenly
classifies an area as ‘urban’ (light pink) while it is a sunflower crop (purple). That crop, which was
part of the test set, is highlighted with a green outline in the top-row results. Finally, this visual
analysis shows that both classification algorithms exhibit some salt and pepper noise, that could be
potentially removed by a post-processing procedure or by incorporating some spatial information into
the classification framework.

https://github.com/charlotte-pel/temporalCNN
https://github.com/charlotte-pel/temporalCNN
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Formosat-2 image RF TempCNN RF 6= TempCNN

Figure 11. Visual results for two areas. The first column displays the Formosat-2 image in false color
from 14 July 2006. The second and third columns give the results for Random Forest (RF) and our
TempCNN model, respectively. The images in the last column displays in red the disagreement between
both classifiers. Legend of land cover maps is given in Table 1.

5. Conclusions

This work explored the use of TempCNNs for SITS classification. Through an extensive set
of experiments carried out on a series of 46 Formosat-2 images, we showed that the proposed
TempCNN model outperforms RF and RNN algorithms by a margin of 1 to 3% in overall accuracy.
A visual analysis also shows the good quality of TempCNN to accurately map land cover without over
representation of majority classes.

To provide intuitions beyond this good performance, we studied the impact of the network
architecture by varying the depth and the width of the models, by looking at the influence of common
regularization mechanisms, and by exploring different batch size values. We have also demonstrated
the importance of using both temporal and spectral dimensions when computing the convolutions.
The remaining experimental results support two main recommendations on the use of pooling layers
and the manual engineering of spectral features. First, we show that the use of global pooling
layers, which drastically reduces the number of trainable parameters, is armful for SITS classification.
Overall, we recommend careful study of the influence of pooling layers before any integration into
a TempCNN network, and to favour local average pooling. Second, we show that the addition of
manually-calculated spectral features, such as the NDVI, does not seem to improve TempCNN models.
We thus recommend not to use them.

All these results show that TempCNNs are a very strong learner for Sentinel-2 SITS, which
presents a high spectral resolution with 10 bands at a spatial resolution of 10 and 20 m. The presence
of salt and pepper noise also indicates a need to take the spatial dimension of SITS into account, in
addition to the spectral and temporal dimensions. Integrating the spatial dimension represents a good
avenue for future research.
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AP Average Pooling
CNN Convolutional Neural Network
GAP Global Average Pooling
IB Brilliance Index
MP Max pooling
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
OA Overall Accuracy
RF Random Forests
RNN Recurrent Neural Network
SB Spectral Band
SITS Satellite Image Time Series
SVM Support Vector machine
TempCNN Temporal Convolutional Neural Network

References

1. Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential
climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014,
95, 1431–1443. [CrossRef]

2. Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The
importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [CrossRef]
[PubMed]

3. Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification:
A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [CrossRef]

4. Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational high resolution land cover map
production at the country scale using satellite image time series. Remote Sens. 2017, 9, 95. [CrossRef]

5. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.;
Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services.
Remote Sens. Environ. 2012, 120, 25–36. [CrossRef]

6. Matton, N.; Sepulcre, G.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.;
Koetz, B.; Defourny, P. An automated method for annual cropland mapping along the season for various
globally-distributed agrosystems using high spatial and temporal resolution time series. Remote Sens. 2015,
7, 13208–13232. [CrossRef]

7. Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.T. How much does multi-temporal Sentinel-2
data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [CrossRef]

8. Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species
classifications in central Europe. Remote Sens. 2016, 8, 166. [CrossRef]

9. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series
classification: A review. arXiv 2018, arXiv:1809.04356.

10. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

11. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing:
A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

http://dx.doi.org/10.1175/BAMS-D-13-00047.1
http://dx.doi.org/10.1126/science.1118160
http://www.ncbi.nlm.nih.gov/pubmed/16339443
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.008
http://dx.doi.org/10.3390/rs9010095
http://dx.doi.org/10.1016/j.rse.2011.11.026
http://dx.doi.org/10.3390/rs71013208
http://dx.doi.org/10.1016/j.jag.2018.06.007
http://dx.doi.org/10.3390/rs8030166
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1109/MGRS.2017.2762307


Remote Sens. 2019, 11, 523 22 of 25

12. Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised
pixel-based land-cover image classification processes: General guidelines for practitioners and future
research. Remote Sens. Environ. 2016, 177, 89–100. [CrossRef]

13. Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Su, Y.; Jiang, B.; Wang, X. Land cover classification of Landsat data with
phenological features extracted from time series MODIS NDVI data. Remote Sens. 2014, 6, 11518–11532.
[CrossRef]

14. Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent
with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863. [CrossRef]

15. Valero, S.; Morin, D.; Inglada, J.; Sepulcre, G.; Arias, M.; Hagolle, O.; Dedieu, G.; Bontemps, S.; Defourny, P.;
Koetz, B. Production of a dynamic cropland mask by processing remote sensing image series at high
temporal and spatial resolutions. Remote Sens. 2016, 8, 55. [CrossRef]

16. Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to
map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016,
187, 156–168. [CrossRef]

17. Petitjean, F.; Inglada, J.; Gançarski, P. Satellite image time series analysis under time warping. IEEE Trans.
Geosci. Remote Sens. 2012, 50, 3081–3095. [CrossRef]

18. Maus, V.; Câmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; de Queiroz, G.R. A time-weighted dynamic
time warping method for land-use and land-cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2016, 9, 3729–3739. [CrossRef]

19. Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted
dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]

20. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 815–823.

21. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

22. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.
In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada,
14–16 April 2014.

23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 3–8 December 2012; pp. 1097–1105.

24. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the International Conference on Machine Learning, Lille, France,
6–11 July 2015; pp. 448–456.

25. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for large-scale
remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [CrossRef]

26. Postadjian, T.; Le Bris, A.; Sahbi, H.; Mallet, C. Investigating the potential of deep neural networks for
large-scale classification of very high resolution satellite images. ISPRS Ann. Photogramm. Remote Sens. Spat.
Inf. Sci. 2017, 4, 183–190. [CrossRef]

27. Volpi, M.; Tuia, D. Dense semantic labeling of subdecimeter resolution images with convolutional neural
networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 881–893. [CrossRef]

28. Audebert, N.; Le Saux, B.; Lefèvre, S. Segment-before-detect: Vehicle detection and classification through
semantic segmentation of aerial images. Remote Sens. 2017, 9, 368. [CrossRef]

29. Zhang, Q.; Yuan, Q.; Zeng, C.; Li, X.; Wei, Y. Missing Data Reconstruction in Remote Sensing image with a
Unified Spatial-Temporal-Spectral Deep Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens.
2018, 56, 4274–4288. [CrossRef]

30. Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by Convolutional Neural Networks.
Remote Sens. 2016, 8, 594. [CrossRef]

31. Liang, H.; Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural
network features. Remote Sens. 2016, 8, 99. [CrossRef]

32. Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification
of high-resolution remote sensing imagery. Remote Sens. 2015, 7, 14680–14707. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2016.02.028
http://dx.doi.org/10.3390/rs61111518
http://dx.doi.org/10.3390/rs2071844
http://dx.doi.org/10.3390/rs8010055
http://dx.doi.org/10.1016/j.rse.2016.10.010
http://dx.doi.org/10.1109/TGRS.2011.2179050
http://dx.doi.org/10.1109/JSTARS.2016.2517118
http://dx.doi.org/10.1016/j.rse.2017.10.005
http://dx.doi.org/10.1109/TGRS.2016.2612821
http://dx.doi.org/10.5194/isprs-annals-IV-1-W1-183-2017
http://dx.doi.org/10.1109/TGRS.2016.2616585
http://dx.doi.org/10.3390/rs9040368
http://dx.doi.org/10.1109/TGRS.2018.2810208
http://dx.doi.org/10.3390/rs8070594
http://dx.doi.org/10.3390/rs8020099
http://dx.doi.org/10.3390/rs71114680


Remote Sens. 2019, 11, 523 23 of 25

33. Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional
neural network. Remote Sens. 2017, 9, 67. [CrossRef]

34. Hamida, A.B.; Benoit, A.; Lambert, P.; Amar, C.B. 3-D Deep Learning Approach for Remote Sensing Image
Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [CrossRef]

35. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types
using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]

36. Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-Based Fusion Method for Feature Extraction from
Sentinel Data. Remote Sens. 2018, 10, 236. [CrossRef]

37. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong
baseline. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Anchorage,
AK, USA, 14–19 May 2017; pp. 1578–1585.

38. Wu, Z.; Wang, X.; Jiang, Y.G.; Ye, H.; Xue, X. Modeling spatial-temporal clues in a hybrid deep learning
framework for video classification. In Proceedings of the 23rd ACM International Conference on Multimedia,
Brisbane, Australia, 26–30 October 2015; pp. 461–470.

39. Di Mauro, N.; Vergari, A.; Basile, T.M.A.; Ventola, F.G.; Esposito, F. End-to-end Learning of Deep
Spatio-temporal Representations for Satellite Image Time Series Classification. In Proceedings of the
European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases
(PKDD/ECML), Skopje, Macedonia, 18–22 September 2017.

40. Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ.
2019, 221, 430–443. [CrossRef]

41. Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D Convolutional Neural Networks for Crop Classification with
Multi-Temporal Remote Sensing Images. Remote Sens. 2018, 10, 75. [CrossRef]

42. RuBwurm, M.; Körner, M. Temporal Vegetation Modelling Using Long Short-Term Memory Networks
for Crop Identification from Medium-Resolution Multi-spectral Satellite Images. In Proceedings of the
Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 1496–1504.

43. Sun, Z.; Di, L.; Fang, H. Using Long Short-Term Memory Recurrent Neural Network in land cover
classification on Landsat and Cropland data layer time series. Int. J. Remote Sens. 2018, 40, 1–22. [CrossRef]

44. Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land Cover Classification via Multitemporal Spatial Data
by Deep Recurrent Neural Networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1685–1689. [CrossRef]

45. Minh, D.H.T.; Ienco, D.; Gaetano, R.; Lalande, N.; Ndikumana, E.; Osman, F.; Maurel, P. Deep recurrent
neural networks for winter vegetation quality mapping via multitemporal SAR Sentinel-1. IEEE Geosci.
Remote Sens. Lett. 2018, 15, 464–468. [CrossRef]

46. Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network
for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018,
10, 1217. [CrossRef]

47. Benedetti, P.; Ienco, D.; Gaetano, R.; Ose, K.; Pensa, R.G.; Dupuy, S. M3-Fusion: A Deep Learning Architecture
for Multiscale Multimodal Multitemporal Satellite Data Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2018, 11, 4939–4949. [CrossRef]

48. Rußwurm, M.; Körner, M. Multi-temporal land cover classification with sequential recurrent encoders.
ISPRS Int. J. Geo-Inf. 2018, 7, 129. [CrossRef]

49. Rußwurm, M.; Körner, M. Convolutional LSTMs for Cloud-Robust Segmentation of Remote Sensing Imagery.
In Proceedings of the Spatio-Temporal Workshop on Neural Information Processing Systems, Montreal, QC,
Canada, 3–8 December 2018.

50. Lyu, H.; Lu, H.; Mou, L. Learning a transferable change rule from a recurrent neural network for land cover
change detection. Remote Sens. 2016, 8, 506. [CrossRef]

51. Mou, L.; Bruzzone, L.; Zhu, X.X. Learning spectral-spatial-temporal features via a recurrent convolutional
neural network for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57,
924–935. [CrossRef]

52. Jia, X.; Khandelwal, A.; Nayak, G.; Gerber, J.; Carlson, K.; West, P.; Kumar, V. Incremental dual-memory
LSTM in land cover prediction. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 867–876.

53. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

http://dx.doi.org/10.3390/rs9010067
http://dx.doi.org/10.1109/TGRS.2018.2818945
http://dx.doi.org/10.1109/LGRS.2017.2681128
http://dx.doi.org/10.3390/rs10020236
http://dx.doi.org/10.1016/j.rse.2018.11.032
http://dx.doi.org/10.3390/rs10010075
http://dx.doi.org/10.1080/01431161.2018.1516313
http://dx.doi.org/10.1109/LGRS.2017.2728698
http://dx.doi.org/10.1109/LGRS.2018.2794581
http://dx.doi.org/10.3390/rs10081217
http://dx.doi.org/10.1109/JSTARS.2018.2876357
http://dx.doi.org/10.3390/ijgi7040129
http://dx.doi.org/10.3390/rs8060506
http://dx.doi.org/10.1109/TGRS.2018.2863224


Remote Sens. 2019, 11, 523 24 of 25

54. Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking
generalization. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon,
France, 24–26 April 2017.

55. LeCun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Handwritten
digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems;
Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1990; pp. 396–404.

56. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

57. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International
Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.

58. Chollet, F.. Keras. 2015. Available online: https://keras.io (accessed on 1 February 2018).
59. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;

Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
2–4 November 2016; Volume 16, pp. 265–283.

60. Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate
aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENUS and
Sentinel-2 images. Remote Sens. 2015, 7, 2668–2691. [CrossRef]

61. Idbraim, S.; Ducrot, D.; Mammass, D.; Aboutajdine, D. An unsupervised classification using a novel ICM
method with constraints for land cover mapping from remote sensing imagery. Int. Rev. Comput. Softw. 2009,
4, 165–176.

62. Lyons, M.B.; Keith, D.A.; Phinn, S.R.; Mason, T.J.; Elith, J. A comparison of resampling methods for remote
sensing classification and accuracy assessment. Remote Sens. Environ. 2018, 208, 145–153. [CrossRef]

63. Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.;
Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal
and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [CrossRef]

64. Valero, S.; Pelletier, C.; Bertolino, M. Patch-based reconstruction of high resolution satellite image time series
with missing values using spatial, spectral and temporal similarities. In Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2308–2311.

65. Rouse, J., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS.
In Proceedings of the Third Symposium on Significant Results Obtained from the First Earth, Washington,
DC, USA, 10–14 December 1973.

66. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water
features. Int. J. Remote Sens. 1996, 17, 1425–1432. [CrossRef]

67. Bagnall, A.; Lines, J.; Bostrom, A.; Large, J.; Keogh, E. The great time series classification bake off: A review
and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 2017, 31, 606–660.
[CrossRef]

68. Goldin, D.Q.; Kanellakis, P.C. On similarity queries for time-series data: Constraint specification and
implementation. In International Conference on Principles and Practice of Constraint Programming; Springer:
Cassis, France, 1995; pp. 137–153.

69. Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011.
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