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Abstract: This study aims to assess the potential of the LDAS-Monde platform, a land data
assimilation system developed by Météo-France, to monitor the impact on vegetation state of
the 2018 summer heatwave over Western Europe. The LDAS-Monde is driven by ECMWF’s (i)
ERA5 reanalysis, and (ii) the Integrated Forecasting System High Resolution operational analysis
(IFS-HRES), used in conjunction with the assimilation of Copernicus Global Land Service (CGLS)
satellite-derived products, namely the Surface Soil Moisture (SSM) and the Leaf Area Index (LAI).
The study of long time series of satellite derived CGLS LAI (2000–2018) and SSM (2008–2018)
highlights marked negative anomalies for July 2018 affecting large areas of northwestern Europe and
reflects the impact of the heatwave. Such large anomalies spreading over a large part of the domain
of interest have never been observed in the LAI product over this 19-year period. LDAS-Monde land
surface reanalyses were produced at spatial resolutions of 0.25◦ × 0.25◦ (January 2008 to October
2018) and 0.10◦ × 0.10◦ (April 2016 to December 2018). Both configurations of LDAS-Monde forced
by either ERA5 or HRES capture well the vegetation state in general and for this specific event, with
HRES configuration exhibiting better monitoring skills than ERA5 configuration. The consistency
of ERA5- and IFS HRES-driven simulations over the common period (April 2016 to October 2018)
allowed to disentangle and appreciate the origin of improvements observed between the ERA5 and
HRES. Another experiment, down-scaling ERA5 to HRES spatial resolutions, was performed. Results
suggest that land surface spatial resolution is key (e.g., associated to a better representation of the
land cover, topography) and using HRES forcing still enhances the skill. While there are advantages
in using HRES, there is added value in down-scaling ERA5, which can provide consistent, long term,
high resolution land reanalysis. If the improvement from LDAS-Monde analysis on control variables
(soil moisture from layers 2 to 8 of the model representing the first meter of soil and LAI) from
the assimilation of SSM and LAI was expected, other model variables benefit from the assimilation
through biophysical processes and feedback in the model. Finally, we also found added value of
initializing 8-day land surface HRES driven forecasts from LDAS-Monde analysis when compared
with model-only initial conditions.

Keywords: land surface modeling; data assimilation; leaf area index; surface soil moisture; summer
2018 heatwave
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1. Introduction

Land surface conditions are critical in the global weather and climate system. Accurate
characterization and simulation of hydrological and biophysical variables at the land surface represent
a significant challenge given large spatial heterogeneity and human modifications of the land surface.
In particular, observing and simulating the response and feedback of land surface conditions to extreme
events is crucial in our ability to manage adaptation to climate change impacts. Land Surface Model’s
(LSM’s) role has evolved over the years, from the primary goal of providing boundary conditions to
atmospheric models to being used as monitoring and forecasting tools for estimating land surface
conditions [1–4].

Modeling of terrestrial variables can be improved through the dynamical integration of
observations [5–7] and there is a growing emphasis on constraining LSM estimates with observational
inputs as well as coupling them with other models of the Earth system [1,8–10]. Enhanced estimates of
land surface conditions are also recognized to improve forecasts of weather patterns, sub-seasonal
temperatures and precipitations, agricultural productivity, seasonal streamflow, floods and droughts,
as well as the carbon cycle [11–16]. Remote sensing observations are particularly useful in this
context as they are now unrestrictedly available at a global scale with high spatial resolution and with
long-term records. Many satellite-derived products relevant to the hydrological (e.g., soil moisture,
snow depth/cover, terrestrial water storage), vegetation (e.g., leaf area index, biomass), and energy
(e.g., land surface temperature, albedo) cycles are readily available [17].

Data assimilation techniques allow to spatially and temporally integrate the observed information
into LSMs in a consistent way [5,18]. We refer to Land Data Assimilation Systems (LDASs) as the
framework where LSMs are driven by and/or ingest such observations generating enhanced estimates
of the land surface variables (LSVs) [10]. Several LDASs now exist from point to regional scale,
amongst them are the Global Land Data Assimilation System (GLDAS, [19]), the Carbon Cycle Data
Assimilation System (CCDAS, [20]), the Coupled Land Vegetation LDAS (CLVLDAS, [21,22]) and more
recently the U.S. National Climate Assessment LDAS (NCA-LDAS, [10]) as well as LDAS-Monde [7,18]
to name a few. These LDASs either optimize process parameters (e.g., CCDAS), state variables
(e.g., GLDAS, NCA-LDAS, LDAS-Monde) or both (e.g., CLVLDAS). Assimilated Earth Observations
(EOs) generally include satellite retrieval of surface soil moisture [5,8,23–25], snow depth [26–29]
and snow cover [9,27,30,31], vegetation [7,18,32–35], as well as terrestrial water storage [36–38].
Few studies have included multiple remote sensing measurements. For instance, Kumar et al. [10]
assimilates various remote sensing measurements of the terrestrial water cycle within the NCA-LDAS
over the USA while LDAS-Monde [7,18] considers the joint assimilation of vegetation (Leaf Area
Index, LAI) and surface soil moisture (SSM) measurements. LDAS-Monde is a sequential land data
assimilation system with global capacity. It has been evaluated over various domains at various spatial
resolutions including France at 8 km scale [33,39] forced by the SAFRAN reanalysis of Météo-France
(Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige [40,41], Europe
at 0.5◦ × 0.5◦ [18,35] forced by ERA-Interim atmospheric reanalysis from the European Centre For
Medium Range Weather Forecast (ECMWF) [42]; North America [7] and Burkina-Faso in western
Africa at 0.25◦ × 0.25◦ [43] forced by ERA5 atmospheric reanalysis [44]. In those studies, analysis
impact was successfully evaluated using several datasets such as (i) in situ measurements of soil
moisture (ii) agricultural statistics, (iii) river discharge, (iv) independent flux estimates related
to vegetation dynamics (evapotranspiration, Sun-Induced Fluorescence (SIF) and Gross Primary
Productivity (GPP)). Albergel et al. [7] highlighted LDAS-Monde capacity to better characterize
agricultural droughts (spatial area and intensity) than an open-loop counterpart (i.e. model without
any assimilation of satellite derived measurements) over the continental United States of America.
They found that LDAS-Monde can provide improved initial conditions to initialize forecast and
that its impacts persist through time. In the above mentioned study, LDAS-Monde satellite-derived
surface soil moisture dataset (ESA CCI SSM, [45–48]) along with satellite derived LAI (GEOV1,
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http://land.copernicus.eu/global/ last access on June 2018), were jointly assimilated leading to a
quarter degree spatial resolution reanalysis of the LSVs over 2010–2016.

Stemming from previous work [7], the present study investigates the capability of LDAS-Monde
to represent the impact of the summer 2018 heatwave in Europe on vegetation. Spring and summer
2018 in Europe were marked by unusually hot weather that had led to record-breaking temperatures
in many countries across Northern and Central Europe. According to ECMWF, near-surface air
temperature anomaly in Europe in the period of April to August, calculated with respect to the
1981–2010 average for those months, was much larger in 2018 than in any previous year since 1979 [49].
According to the National Oceanic and Atmospheric Administration (NOAA) Europe had its second
warmest July on record. It follows its second warmest June on record (behind 2003), its warmest May
since continental records began in 1910, surpassing the previous record set in 2003: the whole summer
2018 was above climatology; Europe’s warmest summer since continental records began in 1910 at
+2.16 ◦C (Global Climate Report, https://www.ncdc.noaa.gov/sotc/global/ last access October 2018).
Northern Hemisphere summer precipitation was generally weaker than normal across central Europe.

Such an event is likely to affect land surface conditions. In this study, satellite derived estimates of
LAI and SSM as well as LDAS-Monde are used to monitor the impact of the heatwave on vegetation,
focusing on July 2018. Firstly, we assess the heatwave impact on satellite derived LAI and SSM, using
time-series over 2000 to 2018 and 2008 to 2018, respectively. Secondly, we evaluate the heatwave impact
on the simulated LAI from LDAS-Monde forced by ECMWF ERA-5 reanalysis from January 2008 to
October 2018 at 0.25◦ × 0.25◦ and by ECMWF Integrated Forecasting System (IFS) high resolution
operational analysis (HRES) from April 2016 to December 2018 at 0.10◦ × 0.10◦. The use of both ERA5
and HRES to force LDAS-Monde enable to assess the impact of resolution versus system quality over
a common one year period (2017) were ERA5 was downscaled to HRES spatial resolution. Another
added value of using HRES consists in its forecast capacity, up to 10 days ahead. Forecast of LAI
initialized by LDAS-Monde analysis with a leading time up to 8-days is then investigated in order to
assess whether or not the heatwave impact on land surface conditions could have been anticipated.
The remainder of this paper is organized as follows: Section 2 describes the LDAS-Monde system, the
satellite derived estimates of LAI and SSM and the ECMWF analysis and reanalysis forcing, results are
analyzed and discussed in Sections 3 and 4.

2. Material and Methods

This study assesses the ability of LDAS-Monde sequential assimilation of satellite derived
surface SSM and LAI to represent the impact of the summer 2018 heatwave in Europe on vegetation.
The following sections describe LDAS-Monde system as well as 2 other key elements of its setup:
atmospheric forcing (LDAS-Monde being an offline system) and satellite derived observations.

2.1. LDAS-Monde

Within the SURFEX modeling platform of Météo-France (Surface Externalisée, [50], Version
8.1), the LDAS [32–34,39,51] developed in the research department of Météo-France, the CNRM
(Centre National de Recherches Météorologiques) permits integrating satellite products into the
ISBA (Interaction between Soil Biosphere and Atmosphere) LSM [52–55] using a data assimilation
scheme. The LDAS was extended to a global scale (LDAS-Monde, [18]). At the same time, the
coupling to hydrological models (ISBA-CTRIP for ISBA-CNRM, Total Runoff Integrating Pathways)
was consolidated. A full description of the ISBA-CTRIP system is presented in [56]. The obtained
land surface reanalyses from LDAS-Monde account for the synergies of various upstream products
(e.g., model and satellite derived observations) and are able to provide an improved representation of
LSVs, as well as statistics which can be used to monitor the quality of the assimilated observations
(e.g., [7,18,35]). LDAS-Monde can also be used to calibrate model parameters (e.g., [57] for the soil
maximum available water content within ISBA).

http://land.copernicus.eu/global/
https://www.ncdc.noaa.gov/sotc/global/
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LDAS-Monde uses the CO2-responsive [53–55], multi-layer soil [56–59], version of ISBA. The latter
allows to solve the energy and water budgets at the surface level and describes the exchanges between
the land surface and the atmosphere. Parameters in ISBA are defined for 12 generic land surface patches:
nine plant functional types (namely: needle leaf trees, evergreen broadleaf trees, deciduous broadleaf
trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous, tropical herbaceous, and wetlands, C3 and
C4 refer to different processes that plants use to fix carbon during the process of photosynthesis) as
well as bare soil, rocks, and permanent snow and ice surfaces. They are derived from ECOCLIMAP-II,
the land cover map used in SURFEX [60]. Atmospheric and climate conditions drive the dynamic
evolution of the vegetation biomass and LAI through vegetation growth and mortality processes
implemented in the form of a nitrogen dilution process (NIT option) [53,55,61]. Photosynthesis enables
vegetation growth resulting from the CO2 net assimilation. During the growing phase, enhanced
photosynthesis corresponds to a CO2 net assimilation, which results in vegetation growth from the
LAI minimum threshold (1 m2m−2 for coniferous forest or 0.3 m2m−2 for other vegetation types).
Vegetation phenology relies on photosynthesis-driven plant growth and mortality, and photosynthesis
is related to the mesophyll conductance. More information on the CO2-responsive version of ISBA
can be found in [62,63] and by visiting the SURFEX website (www.umr-cnrm.fr/surfex, last access:
February 2019). The multilayer diffusion scheme described in [58,59] drives transfers of water and heat
through the soil. Finally, the Simplified Extended Kalman Filter Data Assimilation (DA) technique
(SEKF, [18,32–34,39,51]) is the main technique available within LDAS-Monde. While ensemble based
DA techniques are currently being tested and implemented [39,64], to date the LDAS-Monde SEKF is
the most robust. It uses finite differences to compute the flow dependency between the assimilated
observations (SSM and LAI) and the analyzed variables (soil moisture from soil layer 2 (1 cm to 4 cm)
to layer 8 (80 cm to 100 cm), representing the first meter of soil and LAI, see Table 1). Further details of
the analysis methodology can be found in [18,34]. While control variables are directly updated through
their sensitivity to the observed variables, expressed by the SEKF Jacobians [18,65], other variables
are indirectly modified by the analysis through biophysical processes and feedback in the model by
updates of the control variables.

www.umr-cnrm.fr/surfex
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Table 1. Set up of the experiments used in this study.

Experiments
(Time Period) Model Domain

and Spatial Resolution Atm. Forcing DA Method Assimilated
Observations

Observations
Operators Control Variables

LDAS-ERA5 *
(01/2008-10/2018)

ISBA
Multi-layer soil

model
CO2-responsive

version
(Interactive
vegetation)

Western Europe defined as
longitudes from 10.5◦W to 20.5◦E,

latitudes from 42◦N to 59◦N

ERA5
SEKF

SSM
(ASCAT)

LAI
(GEOV2)

Rescaled wg2
(Second layer of

soil (1–4 cm))
LAI

Layers of soil 2 to
8 (wg2 to wg8,

1–100 cm)
LAI

LDAS_HRES *
(04/2016-12/

2018)
IFS_HRES

ERA5_010
(2017)

ERA5 downscaled
to 0.10◦ × 0.10◦ 12-month model run

LDAS_fc_d2
(2018)

North Western Europe defined as
longitudes from 5◦W to 15◦E,

latitudes from 48◦N to 55◦N for the
forecast experiments

IFS_HRES day 2
forecast 12-month model run, every day a 2-day forecast initialized by an analysis is ran

LDAS_fc_d8
(2018)

IFS_HRES day 8
forecast 12-month model run, every day an 8-day forecast initialized by an analysis is ran

* Both LDAS_ERA5 and LDAS_HRES configurations consider an analysis (with data assimilation) and open-loop (model only, i.e., no data assimilation) experiments.
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2.2. Satellite Derived Observations

Two satellite products from the Copernicus Global Land Service project are used in this study, the
Surface Soil Moisture (SSM) and the Leaf Area Index (LAI) derived from SPOT-VGT (prior to 2014)
and PROBA-V (from 2014 onward). The SSM product is derived from the Advanced Scatterometer
(ASCAT), an active C-band microwave sensor on board the European MetOp polar-orbiting satellite
(METOP-A&B). Information on soil moisture comes from ASCAT radar backscatter coefficients using
a methodology developed at the Vienna University of Technology (TU-Wien) based on a change
detection approach originally developed for the active microwave instrument flown on-board the
European satellites ERS-1 and ERS-2 [66,67]. The recursive form on an exponential filter [68] is applied
to the soil moisture product to estimate the Soil Wetness Index (SWI) using a timescale parameter,
T, varying between 1 day and 100 days. T implicitly takes many physical parameters into account,
it can be considered as a surrogate parameter for all the processes affecting the temporal dynamics
of soil moisture, such as the thickness of the soil layer, soil hydraulic properties, evaporation, run-off
and vertical gradient of soil properties (texture, density). T represents the time scale of soil moisture
variation, in units of day. A high value of T describes a deeper soil layer (assuming that the soil
diffusivity is constant) [69]. While giving a general rule on how to translate a given T-value to a
certain soil depth is currently not possible since this depends strongly on the application and the soil
composition of the area of interest, in this study, following work from [18,33] SWI-001 (i.e. T = 1 day,
the smallest T value available) is used as a proxy for SSM [69]. The result for the top soil moisture
content (<5 cm) is expressed as a degree of saturation and ranges between 0 (dry) and 100 (saturated).
It is a global product at 0.1◦ × 0.1◦ spatial resolution available daily from 2007. As in [7], pixels whose
average altitude exceeds 1500 m above sea level as well as pixels with urban land cover fractions larger
than 15% were discarded as those conditions may affect the retrieval of soil moisture from space.

SSM product has to be transformed into the model-equivalent surface soil moisture for data
assimilation purposes and in order to address possible misspecification of physiographic model
parameters (like field capacity and wilting point). As in [18] and [33] in LDAS-Monde, the linear
rescaling approach described in [70] (using the first two moments of the cumulative distribution
function, CDF) has been used in this study; it is a linear rescaling that enables a correction of the
differences in the mean and variance of the distribution. The first two moments, a the intercept and b
the slope are as follow:

a = SSMm − b × SSMo (1)

b =
σm

σo
(2)

where SSMm(σm) and SSMo(σ0) correspond to the model and observation means (standard deviations),
respectively. The authors of [33,71] discussed the importance of allowing for seasonal variability in the
CDF matching. a and b parameters vary spatially and were derived on a monthly basis by using a
three-month moving window after screening for presence of ice and urban areas over (i) January 2008
to October 2018 when using ERA5 as atmospheric forcing and (ii) April 2016 to December 2018 when
using IFS HRES as atmospheric forcing.

LAI, defined as one-sided area of green elements of the canopy per unit horizontal ground
area is observable from space and quantifies the thickness of the vegetation cover. Several LAI
collections/versions are available from the CGLS project from 1999. They are retrieved from the
SPOT-VGT (from 1999 to 2014) and then from PROBA-V (from 2014 to present) satellite data according
to the methodology proposed by [72]. This study makes use of the GEOV2, 1km spatial resolution
and 10-day steps in near real time product. Its development has followed several steps including (1)
applications of a neural network for providing instantaneous estimates from SPOT-VGT reflectances, (2)
a multi-step filtering approach to eliminate contaminated data (e.g., affected by atmospheric effects and
snow cover), and (3) temporal techniques for ensuring consistency and continuity as well as short term
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projection of the product dynamics [73] (LAI Product User Manual, https://land.copernicus.eu/global/
sites/cgls.vito.be/files/products/GIOGL1_PUM_LAI300m-V1_I1.60.pdf, last access January 2019).

2.3. ECMWF Atmospheric Forcing

LDAS-Monde is driven by near-surface meteorological fields from both ECMWFs’ reanalysis,
ERA5, released in 2018, as well as its high resolution operational high resolution weather analysis
and forecasts (HRES). ERA5 underlying model and data assimilation system are very similar to
that of the operational weather forecast. ERA5 production cycle (IFS Cycle 41r2) is still close to
that of the HRES (IFS Cycle 41r2 to 43r3 from 2016 and 45r1 from June 2018, more information
at https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model, last
access January 2019). The main difference between the two is the horizontal resolution with 31 km in
ERA5 and 9 km in HRES. Another difference is the data assimilation time window which is from 21:00
UTC to 09:00 UTC in ERA5 and from 21:00 UTC to 03:00 UTC in HRES, as it allows more observations
to be assimilated in ERA5. The shorter time window in HRES is due to ECMWF operational constraints
to deliver timely forecasts.

The ERA5 forcing data includes the lowest model level (about 10-meters above ground level) air
temperature, wind speed, specific humidity and pressure and the downwelling fluxes of shortwave
and longwave radiation as well as precipitation partitioned in solid and liquid phases. ERA5 forcing
data is extracted from the forecasts initialized daily at 00:00 UTC and 12:00 UTC using the hourly
forecasts from +1 to +12 h. HRES forcing data is extracted from the forecasts initialized at 00:00 UTC
and 12:00 UTC also using the forecasts from +1 h to 12 h. The same downwelling fluxes as in ERA5
are used but for HRES 2-meter temperature and dewpoint temperature, 10-meters wind-speed are
extracted. Specific humidity is then calculated from 2-meter temperature and dewpoint temperature.
HRES also has the lowest model level data archived, but due to data storage and access constraints it
was more efficient to extract the 2-meter temperatures and 10-meter wind speed. Despite the difference
in extracting the near-surface fields, lowest model level and 2-meter temperature and 10-meters winds
are very similar, and this is not expected to impact substantially the results. In ERA5 and HRES, the
+1 h to +12 h hourly forecasts were concatenated to generate continuous time series. Atmospheric
forcing is interpolated from the native grids of ERA5 and HRES to regular grids of 0.25◦ × 0.25◦ and
0.1◦ × 0.1◦, respectively. The grid to grid interpolation was performed via a bilinear interpolation
using the four neighbors in the source grid fitting latitude and longitude linearly. From the forecast
initialized at 00:00 UTC, HRES is also available up to 10-days ahead. HRES forecast step frequency is
hourly up to time step 90, 3-hourly from time-step 93 to 144 and 6-hourly from time-step 150 to 240
(i.e., 10 days). While the original 3-hourly time steps are used up to day 6 (time step 144), the 6-hourly
time steps from day 6 to 10 are interpolated to 3-hourly frequency.

2.4. Experimental Setup

Table 1 presents the different experiments evaluated in this study. LDAS-Monde is first forced by
ERA5 from 2008 to October 2018 (LDAS-ERA5 hereafter) and HRES (LDAS-HRES hereafter) from April
2016 to December 2018 over a western Europe domain (defined as longitudes from 10.5◦W to 20.5◦E,
latitudes from 42◦N to 59◦N). IFS is obtained from frequently updated versions of operational system
at ECMWF (including changes in spatial and vertical resolutions, data assimilation, parameterizations,
and sources of data), while reanalysis like ERA5 guarantees a higher level of consistency (e.g., same
model) over long time period because of its frozen configuration. From April 2016 onward, IFS has a
spatial resolution of about 0.1◦ × 0.1◦ (HRES). Despite the spatial resolution, ERA5 being a recently
released dataset, its production cycle (IFS Cycle 41r2) is still close to that of the HRES (IFS Cycle 41r2
to 43r3 from 2016 and 45r1 from June 2018). At the ERA5 spatial resolution, large scale, long time
experiments are computationally affordable, and HRES can be used to focus on specific domains
or events.

https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_PUM_LAI300m-V1_I1.60.pdf
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_PUM_LAI300m-V1_I1.60.pdf
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model
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Vegetation outputs from this set of 4 experiments (assimilation of SSM and LAI as well as their
model counterpart, i.e. open-loops without assimilation) are then evaluated. Vegetation from another
experiment (model only, without assimilation) is evaluated: ISBA forced by ERA5 down-scaled to
HRES spatial resolution (from 0.25◦ × 0.25◦ to 0.10◦ × 0.10◦) for 1 year (2017). Additionally to the
LDAS-HRES analysis experiment, daily forecast experiments with 8-day lead time (from LDAS-HRES
analyzed initial conditions) were also performed over 2018. Forecast experiments with 2 days and 8
days lead time (LDAS_fc_2d and LDAS_fc_8d, respectively) are evaluated.

3. Results and Discussions

This section describes the results obtained in this study. The impact of the heatwave on LAI
and SSM is first assessed using CGLS satellite derived data. To that end, the latter are expressed in
monthly anomalies (difference to the mean scaled by the standard deviation). LDAS-Monde ability
to represent LAI and SSM is then assessed using the correlation coefficient (R) and root mean square
differences (RMSD).

3.1. Monitoring the Heatwave Impact on LAI and SSM Using Remote Sensing

Time-series on Figure 1 illustrate monthly anomalies for CGLS products GEOV2 LAI (over
2000-2018, Figure 1a) and ASCAT SSM (over 2008–2018, Figure 1b) averaged over the domain of
interest (presented by Figure 2). On both time-series, July is highlighted in red and the horizontal
dashed lines represent the value of July 2018. As for LAI (Figure 1a), July 2018 exhibits a large negative
anomaly, greater than twice standard deviations (stdv) on average. Such a low value is not observed
in this 19-yr time-series for a month of July and only one month, in summer 2003: August 2003
presents an anomaly value below than that of July 2018. In 2003, large parts of Europe were affected
by record-breaking temperature in summer (e.g., [74]). June to October 2018 presented negative LAI
anomalies. Table 2 presents the fraction of the considered domain affected by negative anomalies
greater than 2 stdv for all months of July over 2000–2018 for GEOV2 LAI and 2008–2018 for ASCAT
SSM. In July 2018, it represents nearly 19% of the domain for LAI, the largest percentage observed
in 19-year. Not only the 2018 summer heatwave lead to very large negative anomaly values in LAI
but it has affected a large part of the domain. Figure 2a shows maps of anomaly for July 2018 for
GEOV2 LAI.
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Figure 2. Monthly anomalies (scaled by standard deviation, expressed in units of standard deviation) 
maps for July 2018 for (a) GEOV2 Leaf Area Index with respect to 2000–2018 and (b) Surface Soil 
Moisture with respect to 2008–2018 from the Copernicus Global Land Service. Green/red colors 
represent positive/negative anomalies in units of standard deviation. 
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Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 23 

 

 
Figure 1. Monthly Anomaly time-series (scaled by the standard deviation) of satellite derived (a) 
GEOV2 Leaf Area Index over 2000–2018 and (b) Surface Soil Moisture over 2008–2018 from the 
Copernicus Global Land Service averaged over the domain (presented by Figure 2). Months of July 
are highlighted in red, straight dashed lines represent values for July 2018. 

 
Figure 2. Monthly anomalies (scaled by standard deviation, expressed in units of standard deviation) 
maps for July 2018 for (a) GEOV2 Leaf Area Index with respect to 2000–2018 and (b) Surface Soil 
Moisture with respect to 2008–2018 from the Copernicus Global Land Service. Green/red colors 
represent positive/negative anomalies in units of standard deviation. 

  

Figure 2. Monthly anomalies (scaled by standard deviation, expressed in units of standard deviation)
maps for July 2018 for (a) GEOV2 Leaf Area Index with respect to 2000–2018 and (b) Surface Soil
Moisture with respect to 2008–2018 from the Copernicus Global Land Service. Green/red colors
represent positive/negative anomalies in units of standard deviation.

Table 2. Percentage of the domain with monthly anomalies lower than -2 stdv for satellite derived
GEOV2 Leaf Area Index, ASCAT surface soil moisture. Only months of July are represented.

July
2000

July
2001

July
2002

July
2003

July
2004

July
2005

July
2006

July
2007

July
2008

July
2009

July
2010

July
2011

July
2012

July
2013

July
2014

July
2015

July
2016

July
2017

July
2018

GEOV2 Leaf
Area Index 5.0 0.4 0.2 5.0 0.6 0.8 1.8 1.1 0.2 0.03 0.7 0.7 0.3 0.7 0.2 2 0.1 0.6 19

ASCAT SWI N/A N/A N/A N/A N/A N/A N/A N/A N/A 2 0.04 1.7 0.2 1.5 0.5 0.06 3.0 0.01 10

Figure 2a shows that most of the UK, Northern France, Belgium, Netherlands, Denmark, Germany
and Czech-republic present anomaly values greater than -2 stdv. ASCAT SSM exhibits large negative
anomalies for July 2018 (Figure 2b) with values greater than -1 standard deviation. Such low values
were also observed in July 2008 and 2015, and it is worth noticing from Table 2 that in July 2018, 10%
of the domain was affected by anomalies greater than -2 stdv, while only ~2% and ~3% for July 2008
and 2015. Figure 2b (maps on anomaly for July 2018 for ASCAT SSM) shows that the southern part
of the domain presents large positive anomalies values (e.g., north of Spain, in the Balkans) and that
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good geographical agreement between GEOV2 LAI and ASCAT SSM anomalies is found. While some
winter months show large negative anomalies in ASCAT SSM, e.g., December 2010, 2011, this might be
related to frozen conditions not accounted for and interpreted as dry conditions.

3.2. Monitoring the Heatwave Impact on Vegetation Using LDAS-Monde

LDAS-Monde, being an offline reanalysis of the land surface variables, is forced by atmospheric
datasets: ERA5 and HRES in this study. Using both datasets to force LDAS-Monde produces a long
reanalysis of the LSVs (from the use of ERA5) with real-time and even forecast capacity (from the use
of HRES). As ERA5 is available over a large temporal extent (from 2000 at the time of study) it can be
useful to study recent climate changes. Anomaly time-series of air temperature and precipitation from
ERA5 are presented in Figure 3. While it is not our intention to repeat the study from [49] on predicting
the summer 2018 heatwave, Figure 3 highlights that the April to August period in 2018 exhibits rather
large positive anomaly values of air temperature (Figure 3a) with July 2018 being the highest value
observed between January 2001 and October 2018. For precipitation, all months from May to October
2018 present large negative anomalies with July 2018 being the third lowest within the considered
period. One may also note the coherence between air temperature and precipitation from ERA5 and
the satellite derived observation presented above for this 2018 heatwave event, particularly for LAI.
As seen from Figures 1a and 3, large positive anomalies of air temperature (Figure 3a) are associated
with large negative anomalies of precipitation (Figure 3b) as well as large negative anomalies of LAI
(Figure 1a). In the beginning of 2007 temperature and precipitation show positive anomalies which
reflect on LAI presenting large positive anomalies. While in the beginning of 2013, both air temperature
and LAI show negative anomalies.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 23 
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When LDAS-Monde is driven by ERA5 and integrates LAI and SSM through data assimilation,
those anomalies should be reflected on analyzed land surface conditions and their impact propagated
to other land surface variables through biophysical processes and feedback in the model. Figure 4a
illustrates observed CGLS GEOV2 Leaf Area Index (LAI), over 2008–2018 as well as LDAS-Monde
LAI time-series forced by either ERA5 (LDAS-ERA5) over January 2008–October 2018 or HRES
(LDAS-HRES) over April 2016–December 2018. Figure 4b shows the same as Figure 4a for the common
April 2014 to October 2018 period. From Figure 4 one may notice the good agreement between the
analyzed LAI and the observed annual cycle. While neither the open-loop nor the analysis capture
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the maximum LAI peak well (as already observed by [18]), the analysis efficiently corrects for the
open-loop delay during the senescence phase. Considering the period where both ERA5 and HRES
are available to force LDAS-Monde (April 2016 to October 2018), one may notice the relative good
agreement between LDAS-ERA5 and LDAS-HRES, both in the open-loops and analyses, as well as the
senescence phase being very well represented by LDAS-HRES analysis (which failed to capture the
LAI peak intensity though).
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2018 as well as LDAS-Monde LAI time-series forced by either ERA5 (Open-loop is in blue, analysis is
in red) over January 2008–October 2018 or high resolution operational analysis (HRES) (Open-loop
is in cyan, analysis is in orange) over April 2016–December 2018. (b) Same as a) over Land Data
Assimilation System (LDAS)-HRES and LDAS-ERA5 common period (April 2016 to October 2018).
Data are averaged over the domain illustrated by Figure 2, dashed line represents the date from when
HRES is available (April 2016) and the date up to when ERA5 is available (at the time of the study).

Upper panel of Figure 5 illustrates seasonal RMSD (Figure 5a) and correlation (Figure 5b) values
between LAI from the model forced by either ERA5 (LDAS-ERA5 Open-loop) or HRES (LDAS-HRES
Open-loop), the analysis forced by either ERA5 (LDAS-ERA5 Analysis) or HRES (LDAS-HRES
Open-loop) and GEOV2 LAI estimates from CGLS from April 2016 to October 2018. Figure 5 lower
panel shows the same between modeled/analyzed soil moisture from the second layer of soil (1–4
cm) and ASCAT surface soil moisture estimates from CGLS (and converted into the model space, in
m3m−3, as detailed in Section 2.1). From Figure 5 (all panels), one may see that LDAS-ERA5 and
LDAS-HRES open-loops are quite comparable, LDAS-HRES open-loop being slightly better than
LDAS-ERA5 open-loop in representing both LAI and soil moisture. It is also visible that the analyses
add skill to both open-loops for both variables, which indicates the healthy behavior from the land data
assimilation system. Over the whole common period (from April 2016 to October 2018), averaged R
and RMSD values for LDAS-ERA5 open-loop (analysis) are 0.575(0.798) and 1.215 m2m−2 (0.796 m2m2)
for LAI, 0.748(0.772) and 0.038 m3m−3 (0.035 m3m−3) for soil moisture, respectively. For LDAS-HRES,
they are 0.601(0.808) and 1.150 m2m−2 (0.772 m2m−2) for LAI and 0.750(0.772) and 0.038 m3m−3 (0.036
m3m−3), respectively. It is also worth mentioning that if the analysis brings a clear improvement in the
representation of LAI, reducing the overestimation in the senescence phase, as its model counterpart,
it fails capturing the observed LAI onset. Albergel et al. [7] has evaluated the model sensitivity of the
observation for Europe over 2000–2012 reflected in the SEKF Jacobians. The Jacobians depend on the
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model physics and their examination provides useful insight that explains the data assimilation system
performances [34,65]. Albergel et al. [7] suggests a seasonal dependency of the model sensitivity to the
observed LAI. High sensitivity is found in autumn. Smaller model sensitivity at the time of the year
where the LAI onset occurs (spring) prevails the analysis to match the observations correctly.
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Figure 5. Upper panel, seasonal (a) root mean square differences (RMSD) and (b) correlation values
between leaf area index (LAI) from the model forced by either ERA5 (LDAS-ERA5 Open-loop in blue)
or HRES (LDAS-HRES Open-loop in cyan), the analysis forced by either ERA5 (LDAS-ERA5 Analysis
in red) or HRES (LDAS-HRES Open-loop in pink) and GEOV2 LAI estimates from the Copernicus
Global Land Service project from April 2016 to October 2018. Lower panel, same as upper panel
between modeled/analyzed soil moisture from the second layer of soil (1–4 cm) and ASCAT surface
soil moisture estimates from the Copernicus Global Land Service project.

As highlighted by [75], who have evaluated the capacity of several LSMs (including ISBA) to
accurately simulate observed energy and water fluxes during droughts, there is a need to re-examine
existing model components in LSMs to improve simulations of soil hydrological processes and
water–plant interactions.

Finally, Figure 6 shows LAI for the month of July 2018 from the open-loop, observations, analysis
as well as LAI differences (analysis minus open-loop) for LDAS-ERA5 (upper panels, 0.25◦ × 0.25◦

spatial resolution) and LDAS-HRES (lower panels, 0.10◦ × 0.10◦ spatial resolution). From the two
open-loops, one can see that LDAS-ERA5 and LDAS-HRES overestimate LAI with respect to the
observations. LDAS-HRES open-loop is however in better agreement with the observations than
LDAS-ERA5 open-loop, particularly over the area most affected by the heatwave (e.g., over Belgium,
the Netherlands, Germany and Poland). While the assimilation is efficiently reducing LAI in both
LDAS-ERA5 and LDAS-HRES analyses, the latter is in better agreement with the observations than
LDAS-ERA5 analysis. Despite their spatial resolution differences, ERA-5 and HRES results present



Remote Sens. 2019, 11, 520 13 of 22

similar LAI patterns. They both underestimate the amplitude and spatial extent of the drought in the
open-loop, and for both the analysis effectively improves the particular LAI conditions associated
to the 2018 heatwave. Furthermore, due to the large-scale nature of the drought event the spatial
resolution differences between ERA5 and HRES do not affect significantly the simulations.
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Figure 6. Upper panel, Leaf Area Index from (a) LDAS-ERA5 Open-loop, (b) the observations, (c)
LDAS-ERA5 Analysis and (d) differences between LDAS-ERA5 Analysis and LDAS-ERA5 Open-loop
for July 2018. Lower panel, (e–h) same as upper panel for LDAS-HRES. Spatial resolution of upper
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Figure 7 represents maps of monthly anomalies from LDAS-ERA5 for July 2008, 2010, 2012, 2014,
2016 and 2018 for soil moisture in the fourth layer of soil (wg4, between 20 cm and 40 cm) as well as
drainage, runoff and evapotranspiration over most of the UK. July 2018 presents the strongest negative
anomalies. Figure 7 is complementary to Figures 4–6 illustrating how the data assimilation system
impacts the model variables. Assimilating SSM and LAI within LDAS-Monde results in updates of
the LSM variables in different ways. Control variables in the state vector (LAI and soil moisture from
several layers of soil) are first updated through the Kalman gain computed by the SEKF. That gain
especially provides sensitivity to observed variables (LAI and the second layer of soil, wg2, between 1
cm and 4 cm) for unobserved variables allowing their updates by the SEKF (e.g., soil moisture from
the fourth layer of soil, wg4, top row of Figure 7). Then, other variables are indirectly modified by the
analysis through biophysical processes and feedback in the model by updates of the control variables
(e.g., drainage, runoff and evapotranspiration as seen on Figure 7). It is worth mentioning the positive
anomaly values for July 2012, particularly in runoff and drainage responding to persistent rain during
the first weekend of July that had led to flooding in many part of the UK (https://www.metoffice.gov.
uk/learning/learn-about-the-weather/weather-phenomena/case-studies/july-2012-flooding, last
access January 2019).

https://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/july-2012-flooding
https://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/july-2012-flooding
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Figure 7. Maps of monthly anomalies (expressed in units of standard deviation) from LDAS-ERA5
analysis for July 2008, 2010, 2012, 2014, 2016 and 2018 with respect to the 2008–2018 period (from left to
right) for the following variables: soil moisture form the fourth layer of soil (between 20 cm and 40 cm),
drainage, runoff and evapotranspiration (from top to bottom).

Both LDAS-Monde configurations forced by either ERA5 or HRES lead to an accurate
representation of vegetation during the summer 2018 heatwave and in general. The HRES configuration
presents slightly better results over the common period investigated. HRES being obtained from
frequently updated versions of the IFS it is not a fixed system in time, while a reanalysis like ERA5
guarantees a higher level of consistency because of its frozen configuration. ERA5 has a coarser spatial
resolution than the HRES. Its spatial resolution allows, however LDAS experiments to be long term
and affordable at large scale. With ERA5 available back to 1950 and covering near real-time needs with
the ERA5T (https://climate.copernicus.eu/climate-reanalysis, last access March 2019), an LDAS-ERA5
would be able to provide a model climate as reference for anomalies of the land surface conditions.
Significant anomalies could then be used to trigger more detailed monitoring and forecasting activities
for a region of interest using, for example the LDAS-HRES.

The Summer 2018 heatwave clearly had an impact on vegetation and soil moisture, as seen using
satellite derived estimates of LAI and SSM. Those satellite estimates are very useful to monitor extreme
events impacts but their use is limited by their temporal frequency of a few days at best. While
microwave remote sensing provides a way to quantitatively describe the water content of a shallow
near-surface soil layer, [76], the variable of interest for applications in short- and medium-range
meteorological modeling and hydrological studies over vegetated areas is the root-zone soil moisture
content which controls e.g., plant transpiration [68]. Similarly, estimates of above-ground biomass
might be more useful than LAI for applications linked to agriculture. Integration of these satellite
derived datasets into LSMs through data assimilation is, therefore of paramount importance to improve
monitoring accuracy of extreme events impacts on LSVs. Not only the representation of LAI and
SSM in such system would be improved but other model variables will benefit from the assimilation
through biophysical processes and feedback in the model too [7,10,18,77].

https://climate.copernicus.eu/climate-reanalysis
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3.3. Resolution vs. System Evaluation

Results presented above showed that driving the LDAS by either ERA5 or HRES leads to good
results monitoring the impact of the summer 2018 heatwave on vegetation, with HRES providing
better results. In an attempt to investigate whether the improvement from the use of ERA5 to HRES is
due to the resolution only (e.g., better representation of land cover) or to the forcing quality (or both),
another experiment was carried out for 2017 (see Table 1). ERA5 was downscaled from 0.25◦ × 0.25◦

to 0.10◦ × 0.10◦ (ERA5_010) spatial resolution to force ISBA and outputs were compared to those of
LDAS_HRES open-loop (ran for 2017, with similar initial conditions). A bilinear interpolation from
the native grid to the regular grid was made. Figure 8 illustrates monthly scores (R and RMSD values
over 2017) for LAI from 2 experiments, namely ERA5_010 and LDAS_HRES open-loop. From the two
panels of Figure 8, one may appreciate the score similarities between ERA5_010 and LDAS_HRES
open-loop. HRES was upscaled to ERA5 spatial resolution to run ISBA and outputs where compared
to these of LDAS-ERA5 open-loop (ran for 2017, with similar initial conditions), and similar results
as discussed above were obtained (not shown). Although a longer time period would be required to
further test such configurations, it is very interesting to notice than when ERA5 forcing is downscaled
to 0.10◦ × 0.10◦ to force ISBA, it performs almost as good as the operational forcing, HRES. These
results could justify running longer periods of time of ERA5 at 0.10◦ × 0.10◦ when the operational
forcing is not available (e.g., prior to April 2016).
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Figure 8. Monthly (a) RMSD and (b) correlation values between leaf area index (LAI) from the model
forced by either HRES_010 or ERA5_010 (ERA5 forcing down-scaled to HRES spatial resolution) and
GEOV2 LAI estimates from the Copernicus Global Land Service project for the year 2017.

3.4. Anticipating the Impact of Heat Waves on Vegetation

Two other experiments are presented in order to (i) study the possibility of forecasting the impact
of extreme events on vegetation few days in advance and (ii) highlighting the fact that a forecast
initialized by an analyzed state can have more skills than an open loop. For the whole 2018 and for each
daily analysis from LDAS-HRES, 2 forecast experiments (2-day and 8-day forecast, see Table 1) were
conducted. The atmospheric forcing forecast is coming from HRES, as described in the materials and
methods sections. For the sake of clarity, only forecasts with lead time of 2 and 8 days are presented
(LDAS_fc_d2 and LDAS_fc_d8, respectively). Figure 9a illustrates LAI time-series from the open-loop,
the analysis (ran for 2018, only) as well as the 2 forecast experiments (LDAS_fc_d2 and LDAS_fc_d8)
for 2018 averaged over a domain defined as: longitudes from 4◦W to 15◦E and latitudes from 48◦N
to 55◦N. According to Figure 2, this domain was more severely affected by the heatwave, and is
represented by Figure 9c. Firstly, the large error between all the experiments and the observations for
the start of the growing season is noticeable (Figure 9a). Secondly, from March to June LDAS_HRES
analysis as well as LDAS_fc_d2 and LDAS_fc_d8 are only slightly correcting for this issue. This is a
known issue as already mentioned by [18], the CO2-responsive version of ISBA is such that during the
growing phase, enhanced photosynthesis corresponds to a CO2 uptake, which results in vegetation
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growth from a prescribed LAI minimum threshold (1 m2m−2 for coniferous forest or 0.3 m2m−2 for
other vegetation types). These thresholds are likely too low and are currently being revisited using
the CGLS LAI long term dataset. This is expected to lead to better representation of LAI during the
vegetation growing phase [78]. However, during the senescence phase (see zoom on Figure 9b), the
analysis is quite efficient in reducing the differences with the observed LAI and it is interesting to notice
that so are the 2-d and 8-d forecasts of LAI initialized by the analysis. This suggests that the impact of
assimilating satellite observations in LDAS-Monde has the capacity to mitigate model deficiencies,
leading to better estimates of the system states and that this impact can last in time. From the two first
panels of Figure 9, one may see that LDAS_fc_d2 and LDAS_fc_d8 are closer to the observations than
the open-loop. Figure 9c represents RMSD values between the open-loop (ran for 2018, only) and the
LAI GEOV2 observations and Figure 9d the RMSD differences between the open-loop (analysis) and
the LAI GEOV2. Negative (blue shaded areas) values indicate areas where the analysis has smaller
(i.e., better) RMSD values than the open-loop. Figure 9d is dominated by negative values with blue
shaded areas representing 82% of the domain. It shows the added value of the analysis over the
open-loop. Finally, Figure 9e presents RMSD differences between the open-loop (LDAS_fc_d8) and the
LAI GEOV2 observations and it is very interesting to notice than an 8-day forecast initialized by an
analysis presents better skills in capturing LAI than an open-loop for most of the domain with blue
shaded areas (negative values) still representing ~49% of the studied domain.
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(LDAS-HRES Analysis in red), the 2-d and 8-d forecasts from the analysis (LDAS_Fc_d2 in green,
LDAS_Fc_d8 in cyan respectively) as well as the observations from the Copernicus Global Land Service
(LAI GEOV2, red stars) for 2018. (b) same as (a) focusing on the June–December period. (c) RMSD
values between LDAS-HRES Open-loop ran over 2018 and LAI GEOV2, (d) RMSD differences between
LDAS-HRES analysis (open-loop) and LAI GEOV2, (e) same as (d) for LDAS_fc_d8 and open-loop.
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This result is emphasized by Figure 10 showing monthly RMSD and R values between LAI
from the four above-mentioned experiments (LDAS-HRES open-loop and analysis, LDAS_fc_d2 and
LDAS_fc_d8) and the GEOV2 observations over 2018. The RMSD and R values from LDAS_fc_d2
and LDAS_fc_d8 experiments are better than from the open-loop, all year long. They are closer to
those from LDAS-HRES analysis than from its open-loop counterpart. As seen on Figure 10b, it is
from July 2018 that the differences between the open-loop and the analysis are the strongest. Impact
of assimilating LAI and SSM estimates has a time persistence of at least 8 days on LAI. Future work
could focus on giving more statistical strength to those results in particular by considering a longer
time period as well as looking at other LSVs.
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4. Conclusions and Perspectives

This study has investigated the capability of LDAS-Monde offline land data assimilation system
to represent the impact of the summer 2018 heatwave on vegetation. Satellite derived leaf area index
and surface soil moisture were assimilated in LDAS-Monde forced by either ERA5 reanalyses (0.25◦

× 0.25◦ spatial resolution) or IFS HRES operational product (0.10◦ × 0.10◦ spatial resolution) from
ECMWF. Both analysis experiments were able to represent the impact of the heatwave on vegetation
well. While there is a surface physiography and modeling advantage to the HRES configuration, there
is added value in down-scaling ERA5 to HRES spatial resolution, too. It would allow consistent, long
term and high-resolution reanalysis of the LSVs. The possibility of forecasting LSVs was tested and it
was shown that a forecast of LAI from analyzed initial conditions has more skill than an open-loop
(with a persistence of at least 8 days). Combining ERA5 atmospheric re-analysis, HRES analysis and
its forecast within LDAS-Monde is highly relevant to foster research for land applications at various
timescales from daily to annual. The use of HRES data to force LDAS-Monde is very promising and it
can be complemented by ECMWF 51-member ensemble forecasts (~18 km spatial resolution). Use of
the ECMWF ensemble in LDAS-Monde could help to capture uncertainties in the representation of
LSVs. It would open the possibility to anticipate the impact of heatwaves at monthly temporal scales
using a probabilistic method. Moreover, since one member of the ensemble is similar to HRES at a
coarser spatial resolution, and the ensemble is available up to 15-days lead time (twice a day and up to
45 days twice a week) it can be used to test longer range forecast of LSVs than when using HRES.

One of the limitations of the use of the discussed land data assimilation system at a high spatial
resolution, for example using grid cells of 1 km or 300 m, is that analyzed atmospheric forcings are
not available at these scales. While downscaling atmospheric forcing like the IFS HRES (e.g., from
0.1◦ × 0.1◦ to 0.01◦ × 0.01◦ spatial resolution) is likely to add uncertainties, their impact on the
representation of the LSVs can be reduced through the dynamic integration of satellite-derived LAI
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observations at fine scale like the 300 m spatial resolution product from Copernicus Global Land Service.
For the meteorological forcing, the use of AROME (Application de la Recherche à l’Opérationnel à
Méso-Échelle), the operational numerical prediction model from Météo-France, atmospheric variables
to drive the LDAS could also be investigated as its spatial resolution is already of 1.3 km × 1.3 km
over France. The process of comparing Land Surface Models and observations, e.g. through data
assimilation, can highlight model deficiencies. It is likely that the model would benefit from new
LAI minimal values parameterization that are currently being revisited at Météo-France using the
long-term CGLS data-set including more than 19-yr of LAI data.
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