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Abstract: Solar-induced chlorophyll fluorescence (SIF) brings major advancements in measuring
terrestrial photosynthesis. Several recent studies have evaluated the potential of SIF retrievals
from the Orbiting Carbon Observatory-2 (OCO-2) in estimating gross primary productivity (GPP)
based on GPP data from eddy covariance (EC) flux towers. However, the spatially and temporally
sparse nature of OCO-2 data makes it challenging to use these data for many applications from
the ecosystem to the global scale. Here, we developed a new global ‘OCO-2’ SIF data set (GOSIF)
with high spatial and temporal resolutions (i.e., 0.05◦, 8-day) over the period 2000–2017 based on
a data-driven approach. The predictive SIF model was developed based on discrete OCO-2 SIF
soundings, remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS),
and meteorological reanalysis data. Our model performed well in estimating SIF (R2 = 0.79, root
mean squared error (RMSE) = 0.07 W m−2 µm−1 sr−1). The model was then used to estimate SIF for
each 0.05◦ × 0.05◦ grid cell and each 8-day interval for the study period. The resulting GOSIF product
has reasonable seasonal cycles, and captures the similar seasonality as both the coarse-resolution
OCO-2 SIF (1◦), directly aggregated from the discrete OCO-2 soundings, and tower-based GPP. Our
SIF estimates are highly correlated with GPP from 91 EC flux sites (R2 = 0.73, p < 0.001). They capture
the expected spatial and temporal patterns and also have remarkable ability to highlight the crop
areas with the highest daily productivity across the globe. Our product also allows us to examine
the long-term trends in SIF globally. Compared with the coarse-resolution SIF that was directly
aggregated from OCO-2 soundings, GOSIF has finer spatial resolution, globally continuous coverage,
and a much longer record. Our GOSIF product is valuable for assessing terrestrial photosynthesis
and ecosystem function, and benchmarking terrestrial biosphere and Earth system models.

Keywords: solar-induced chlorophyll fluorescence; Orbiting Carbon Observatory-2; Moderate
Resolution Imaging Spectroradiometer; gross primary productivity; photosynthesis; machine
learning; data-driven approach; carbon cycle; trend; benchmarking; FLUXNET

1. Introduction

Plant photosynthesis provides a wealth of ecosystem services that are essential for most life on
Earth. Gross primary productivity (GPP), the largest planetary carbon dioxide (CO2) flux, is defined
as carbon fixation by terrestrial plants via photosynthesis. Terrestrial GPP is the major driver of
land carbon sequestration and may substantially affect the future climate trajectory [1]. As a result,
spatially and temporally explicit estimation of GPP has important implications for understanding
ecosystem functions, carbon cycling, and feedbacks to the climate. A variety of methods have been
developed for the estimation of global GPP, and they are mainly divided into three categories [2]: (1)
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Satellite-based production efficiency models [3–6], which combine satellite measurements of vegetation
and meteorological variables through a modeling approach; (2) process-based models [7–10], which
simulate photosynthesis based on physiological and biogeochemical processes; and (3) data-driven
models [11–14], which upscale the GPP estimates from eddy covariance (EC) towers combining
machine learning techniques and a suite of gridded ecosystem variables. However, these methods
led to a wide range of global GPP estimates (e.g., 98 to 177 Pg C yr−1) [15,16]. The large discrepancies
in current global GPP estimates indicate that other independent data are needed for benchmarking
these models. Over the last decade, a newly emerging satellite retrieval, solar-induced chlorophyll
fluorescence (SIF), has opened a new perspective to directly measure plant photosynthetic activity
from space globally [17–20].

SIF, a ‘glow’ of plants under sunlight, is an energy flux emitted by plant chlorophyll molecules
with wavelengths ranging from 600 to 800 nm [21]. Unlike satellite-derived vegetation indices,
which are more indicative of vegetation ‘greenness’ [22], SIF is considered as an indicator for the
functional status of actual plant photosynthesis [23]. Great advancements have been made in the
interpretation of SIF based on modeling approaches and hyperspectral measurements. Model-based
studies mainly illuminate what drives the simulated SIF signals and their relation with photosynthesis
at the leaf or canopy scales [24–27]. The ground-based and airborne hyperspectral measurements
further reveal the tight relationship between SIF and photosynthesis at the ecosystem scale [2,26,28–30].
The global SIF observations from satellites have become available in recent years, which has led to
tremendous developments in monitoring terrestrial photosynthesis (i.e., GPP) at various spatial
and temporal scales. The main satellite platforms/instruments providing SIF observations to
the scientific community include Greenhouse Gases Observing SATellite (GOSAT) [20,31], Global
Ozone Monitoring Experiment-2 (GOME-2) [18], SCanning Imaging Absorption SpectroMeter for
Atmospheric CHartographY (SCIAMACHY) [32], and the Orbiting Carbon Observatory-2 (OCO-2) [17].
Using SIF data from GOSAT and/or GOME-2 and gridded GPP data, several studies reported a strong
linear relationship between SIF and GPP, suggesting that SIF is a promising proxy for GPP at large
scales [19,20,33–38]. However, these satellite-derived SIF products have coarse spatial resolutions
(e.g., GOME-2: 40× 80 km2; GOSAT: 10 km diameter; SCIAMACHY: 30× 240 km2) and are insufficient
for finer-scale or ecosystem-level analyses [39]. Currently, this problem can be partly addressed by the
recent availability of finer-resolution SIF products from OCO-2 [17].

The OCO-2 SIF data, which have much smaller footprints (i.e., 1.3 × 2.25 km), allow us to link
satellite-derived SIF to flux tower-based GPP at the ecosystem scale [17]. Based on GPP from EC flux
towers and SIF from OCO-2, several recent studies found strong SIF–GPP relationships for a variety of
biomes [39–43]. These promising results suggested that the SIF alone provides a robust shortcut for
estimating GPP, encouraging the wide use of OCO-2 SIF in carbon cycle studies at regional to global
scales. However, due to their spatially and temporally sparse nature (Figure 1), the OCO-2 SIF data
have to be aggregated to coarse spatial and temporal resolutions (e.g., 1◦, monthly) for global-scale
monitoring of terrestrial photosynthesis. Most ecosystems are highly heterogeneous at spatial scales
larger than 5–10 km [44], and the coarse spatial resolution of OCO-2 SIF remains a bottleneck for
its wide applications and also hinders the comprehensive evaluation of SIF using ecosystem-level
GPP and meteorological data [39]. Generating a new global SIF product with high spatiotemporal
resolutions and a long data period based on OCO-2 SIF soundings would be valuable for measuring
photosynthesis and providing important information on global carbon uptake at various spatial and
temporal scales. Two recent studies produced 0.05◦ global spatially contiguous SIF datasets based on
SIF from OCO-2 and surface reflectance from the Moderate Resolution Imaging Spectroradiometer
(MODIS) using machine learning methods [45,46]. Finer-resolution SIF products can have more
flexible applications compared to the coarse-resolution SIF data directly aggregated from OCO-2
SIF soundings.
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than MODIS surface reflectance. During the model development, we explored how the predicted SIF 
was affected by the training sample size and land cover type. We then applied the model to estimate 
SIF for each 0.05° × 0.05° grid cell across the globe for each 8-day interval over the period 2000–2017. 
We compared our global SIF product with GPP from the MODIS GPP product and the FLUXNET 
2015 Tier 1 dataset. We also examined the spatial and temporal variations and the trend in SIF across 
the globe using the resulting new 0.05° SIF data. Our new global, long-term SIF data product with 
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resolution and an 8-day time step based on discrete OCO-2 SIF soundings along with continuous 
MODIS data and MERRA-2 meteorological data. This method applied the Cubist regression tree 
model, which is an extension of Quinlan’s M5 model tree. Cubist creates rule-based predictive models 
from training samples, and each rule has an associated multivariate linear regression model. The 

Figure 1. Examples of producing 1◦, 8-day solar-induced chlorophyll fluorescence (SIF) maps from
Orbiting Carbon Observatory-2 (OCO-2) soundings: (a) By Nadir mode in 9–16 January 2015; (b) by
all modes in 9–16 January 2015; (c) by Nadir mode in 9–16 July 2015; and (d) by all modes in 9–16
July 2015.

Here we developed a new global ‘OCO-2’ SIF dataset (GOSIF) with fine spatial and temporal
resolutions (i.e., 0.05◦, 8-day). We used not only discrete OCO-2 SIF soundings but also data
from the Moderate Resolution Imaging Spectroradiometer (MODIS) and meteorological data from
the Modern-Era Retrospective analysis for Research and Applications (MERRA-2). The selected
meteorological variables could carry more environmental information (e.g., light use efficiency, LUE)
than MODIS surface reflectance. During the model development, we explored how the predicted SIF
was affected by the training sample size and land cover type. We then applied the model to estimate
SIF for each 0.05◦ × 0.05◦ grid cell across the globe for each 8-day interval over the period 2000–2017.
We compared our global SIF product with GPP from the MODIS GPP product and the FLUXNET
2015 Tier 1 dataset. We also examined the spatial and temporal variations and the trend in SIF across
the globe using the resulting new 0.05◦ SIF data. Our new global, long-term SIF data product with
0.05◦ resolution, GOSIF, will benefit many applications in ecosystem functioning and carbon cycle
studies. GOSIF will also help us better understand and use the fine-resolution (300 m) SIF data from the
upcoming Fluorescence Explorer (FLEX) mission, the first mission specifically designed for mapping
SIF [47], that is planned to be launched in 2022.

2. Materials and Methods

2.1. Data-Driven Approach

We used a data-driven approach to develop our global continuous gridded SIF with 0.05◦ spatial
resolution and an 8-day time step based on discrete OCO-2 SIF soundings along with continuous
MODIS data and MERRA-2 meteorological data. This method applied the Cubist regression tree
model, which is an extension of Quinlan’s M5 model tree. Cubist creates rule-based predictive models
from training samples, and each rule has an associated multivariate linear regression model. The
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resulting linear models can be overlapped and are not necessarily mutually exclusive. A prediction
is made using the linear regression model at the terminal node of the tree, and the final prediction
is the average value from multiple output values. Cubist has shorter run times while producing
comparable results with other machine learning approaches [48], and it has been widely used for
the estimation of biophysical variables and carbon fluxes, such as leaf area index (LAI) [49], forest
biomass [50,51], net ecosystem exchange (NEE) [52], and GPP [12]. More details on regression tree
approaches and Cubist were described in [48,52]. Cubist uses three statistical measures to evaluate the
quality of the constructed predictive models: Mean absolute error (MAE), relative error (RE), and the
product–moment correlation coefficient (R). MAE is calculated as follows:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (1)

where N is the number of training samples. yi and ŷi are the observed and predicted values of the
response variable, respectively. RE can be calculated as:

RE =
MAET
MAEµ

(2)

where MAET is the MAE of the developed model and MAEµ is the MAE that would result from always
predicting the mean value.

2.2. Explanatory Variable Selection and Data Acquisition

We first identified explanatory variables that can explain SIF. SIF can be expressed as follows [53]
like the LUE approach [54,55] for estimating GPP:

SIF = f PAR× PAR× SIFyield (3)

where f PAR is the fraction of photosynthetically active radiation (PAR) absorbed by vegetation canopies
(APAR) and SIFyield is the emitted SIF per photon absorbed. Previous studies have shown that SIF was
largely determined by APAR, and it also contained environmental conditions related to LUE [2,39].
Therefore, we considered three types of explanatory variables that may be indispensable factors to
predict the SIF, including vegetation conditions, meteorological conditions, and land cover information.
The enhanced vegetation index (EVI) was selected to characterize vegetation conditions in this study.
The EVI is one of the most widely used vegetation indices for monitoring vegetation conditions [56],
and is more sensitive to dense vegetation conditions than the normalized difference vegetation index
(NDVI). The EVI is generally considered as a good proxy of LAI and f PAR [57]. We used PAR, vapor
pressure deficit (VPD), and air temperature for characterizing the meteorological conditions. These
three variables can account for the environmental conditions (e.g., solar radiation, water availability,
temperature stress) that may influence the emission of plant fluorescence. We chose EVI, PAR, VPD,
and air temperature also because the model based on these four variables had a slightly higher
performance than the model based on surface reflectance of MODIS bands 1–7 and had an identical
performance to the model based on MODIS bands 1–7 and three meteorological variables (Table S1).
Surface reflectance was therefore not used in our predictive model. Land cover type was included
as a categorical variable to develop the model, aiming to test whether a biome-specific model would
improve the accuracy of SIF prediction.

We obtained OCO-2 SIF (V8r) data from the OCO-2 data archive maintained at the NASA Goddard
Earth Science Data and Information Services Center [17]. OCO-2 provides mid-day SIF retrievals at
both 757 and 771 nm. Since 771 nm falls farther away from the peak emission of the SIF spectrum and
SIF at 757 nm showed stronger correlation with GPP from EC flux towers than SIF at 771 nm [39], we
only used SIF at 757 nm in this study. The mid-day SIF retrievals at 757 nm were then converted to



Remote Sens. 2019, 11, 517 5 of 24

the daily timescale by applying the daily correction factor included in the SIF Lite product. The SIF
was acquired in three observation modes: Nadir, Glint, and Target. The instrument views the ground
directly below the spacecraft in the Nadir mode, with viewing zenith angle (VZA) near zero, while the
Glint mode has largely higher VZAs and the Target mode has varying VZAs [17]. Since the variation
of VZA will influence the magnitude of observed SIF [39], we only used the observations from the
Nadir mode to avoid the possible effects from changing viewing geometries.

We aggregated all the OCO-2 SIF soundings (1.3 × 2.25 km) in the Nadir mode during the
period 2015–2017 to 0.05◦ × 0.05◦ grid cells for each 8-day interval for training and testing purposes.
On average, these grid cells account for 0.3% of the total land area for a given 8-day interval. For
each grid cell, the SIF was calculated as the average of all the soundings if there were more than five
soundings within the grid cell. For each grid cell with SIF data, the corresponding EVI, land cover
type, air temperature, VPD, and PAR were obtained from the gridded MODIS and MERRA-2 products.
The EVI was derived and calculated from the daily MODIS bidirectional reflectance distribution
function (BRDF)-corrected reflectance product MCD43C4 (Collection 6, 0.05◦), and the land cover type
of each cell was identified by the MODIS Land Cover Type product (MCD12C1, 0.05◦). The daily PAR,
VPD, and air temperature were obtained from the MERRA-2 [58], a NASA atmospheric reanalysis
of the satellite era using the Goddard Earth Observing System Model, Version 5 (GEOS-5) with its
Atmospheric Data Assimilation System (ADAS). The downwelling PAR was derived as the sum of the
diffuse PAR and direct PAR. The VPD was calculated by the air temperature and the specific humidity.

2.3. Model Development and Validation

The five explanatory variables and SIF constitute a dataset with a very large number of data
points (~3.7 million). We used the samples in 2015 (~1.3 million) and 2016 (~1.3 million) as the training
data, and the samples in 2017 (~1.1 million) as the testing data. The size of the training sample may
influence the prediction accuracy, especially for machine learning methods [59]. To test how the
training sample size affected the SIF prediction, we used the stratified random sampling technique to
generate a set of training samples with different sizes from 10,000 to 2.6 million. Each training sample
dataset was individually used to develop a predictive SIF model, and the testing data was used to
validate each model. Each model was evaluated by the root mean squared error (RMSE) and coefficient
of determination (R2) between the predicted and observed SIF. We then divided the observed SIF in
the testing data into 23 contiguous bins of 0.05 W m−2 µm−1 sr−1 each from 0 to 1.1 W m−2 µm−1

sr−1, and calculated the averaged RMSE in each SIF bin. Finally, we calculated the percentages of SIF
observations in each 0.05 SIF bin relative to all the observed SIF across all bins, and multiplied them
by the averaged RMSE in each bin. The resulting indicator (i.e., accumulated error) accounts for the
RMSE in each bin and the weight of each bin across all the bins, and can measure the accumulated
performance of different models on each SIF bin and help us determine the best model.

Another sensitivity analysis was conducted to test whether the incorporation of land cover type
could improve the SIF estimation. The models mentioned above were developed and evaluated by
dropping or adding land cover type into the models, respectively. Finally, we determined the optimal
model and then validated this selected model.

2.4. Global-Scale Prediction and Analysis of SIF

For the purpose of producing global SIF maps, the daily MODIS EVI and the MERRA-2
meteorological data were temporally aggregated to 8-day intervals. We used the selected predictive
model to estimate SIF for each 0.05◦ × 0.05◦ grid cell across the globe for each 8-day interval over the
period 2000–2017, using wall-to-wall MODIS and MERRA-2 data. Our global, “OCO-2 based” SIF
product is hereafter referred to as GOSIF. The 8-day SIF estimates were also temporally aggregated to
monthly, seasonal, and annual time steps for different purposes.

We made a pixel-wise (each 0.05◦ × 0.05◦ grid cell) comparison between predicted SIF and
observed SIF in 2016 when OCO-2 passed by, and calculated the probability distribution of the SIF
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estimation errors. We then compared the seasonal variations between our new 0.05◦, 8-day SIF product
and the coarse-resolution (1◦) OCO-2 SIF directly aggregated from discrete soundings over 2014 to
2017 at four selected EC flux tower sites with different biomes: Daly River Cleared (AU-Das; savannas),
Sturt Plains (AU-Stp; grassland), Gebesee (DE-Geb; cropland), and Park Falls (US-PFa; mixed forest).
The coarse-resolution OCO-2 SIF map was directly aggregated from the discrete OCO-2 soundings
under the Nadir mode at 8-day time steps, and temporally dense SIF retrievals could be obtained
from the 1◦, 8-day maps during the period 2014 to 2017 at these four sites. In addition, these four sites
provided flux tower data in 2014, which are available in the FLUXNET 2015 Tier 1 dataset. Therefore,
we also examined how the new 0.05◦, 8-day SIF captured the trajectory of tower-based GPP estimates
(henceforth tower GPP).

To further evaluate our finer-scale SIF estimates, we used tower GPP from 91 EC flux towers
across the globe based on the FLUXNET 2015 Tier 1 dataset. We collected a total of 116 flux sites
having more than three years of GPP data. Since the size of our finer-resolution (0.05◦) SIF does not
exactly match the footprint of conventional EC flux towers, we only retained the flux sites that were
relatively homogeneous. A site was considered homogeneous in this study when the dominant land
cover type was similar to that of the site. The dominant land cover type for each 0.05◦ grid cell was
determined based on the 500 m-resolution MCD12Q1 land cover product. As a result, 25 out of the 116
sites were excluded for the evaluation of the SIF. The FLUXNET dataset provides GPP estimates based
on both night-time (GPP_NT_VUT_REF) and day-time (GPP_DT_VUT_REF) partitioning methods.
We used the average of the two estimates to evaluate the new SIF, and removed the points with
differences of the GPP estimates based on the two methods over 3 g C m−2 d−1. We also removed the
daily averaged GPPs with more than 40% from gap-filled data. Finally, we obtained 91 sites, with a
total of 27434 observations. We compared the 8-day SIF and tower GPP, and examined whether the
finer-resolution SIF was closely related to the tower GPP across biomes. The spatial distributions of
these flux tower sites and more detailed descriptions including site code, site name, location, biome
type, measurement duration, and references are provided in Figure S1 and Table S2 from the online
Supplementary Material.

We examined the spatial patterns of the annual average and maximum SIF between our new
SIF product and the 1◦ SIF data across the globe. For our new SIF product, the annual averages and
maximum SIF for each grid cell were derived from all the 8-day values within each year. In contrast, the
1◦ SIF data had large data gaps, and therefore the annual averages and maximum SIF were calculated
for each grid cell if there were more than eight valid monthly values. Since a number of studies have
shown that the SIF is a robust proxy of terrestrial GPP [19,26,33,39,42,43], the SIF is expected to capture
the similar spatial and temporal patterns as presented in GPP. To that end, we compared the annual
averages and the maximum magnitudes of SIF with those of GPP from the MODIS GPP product [6].
We then averaged the SIF and MODIS GPP from all the global land pixels, and analyzed their trends
using the non-parametric Mann–Kendall (MK) test [60,61]. The trend of BRDF-corrected EVI was also
provided for comparison purposes.

3. Results

3.1. Model Development and Sensitivity Analyses

Table 1 shows that the models based on samples with larger sizes had slightly better performance
than those based on smaller sizes. Both MAE and R decreased with increasing sample size. MAE
was stable when half of training samples was used. The results of validation also showed that the
performance was improved as more samples were used to develop the model, and it was quite stable
when the size of samples was more than 100,000. Figure 2 provided a detailed insight into the final
selection of the SIF models. The curves in Figure 2a suggest that the models based on larger sample
sizes had lower errors at low SIF values (e.g., 0–0.3 W m−2 µm−1 sr−1) but larger errors at high SIF
values (e.g., >0.5 W m−2 µm−1 sr−1) than those based on smaller sample sizes. Since the majority of the
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test set had relatively lower SIF values (Figure 2b: 89.1% was <0.3 W m−2 µm−1 sr−1 and 78.8% was
<0.2 W m−2 µm−1 sr−1), the models based on more samples had lower accumulated errors (Figure 2c).
The model based on half of the training samples had nearly the same performance as that based on all
the training samples (two lines are almost completely coincident in Figure 2c), and therefore we used
half of the training samples to develop the model for both low computation demand and high accuracy.

Table 1. The statistical measures for model development and validation. All the models were developed
with training samples in 2015 and 2016 and validated with testing data in 2017. MAE, RE, and R
represent mean absolute error, relative error, and correlation coefficient, respectively. R2 and RMSE
represent the coefficient of determination and root mean squared error, respectively. MAE, RE, and R
are used for fitting, while R2 and RMSE are used for validation.

With Land Cover Type

Fitting Validation

Size MAE RE R R2 RMSE

10,000 0.09 0.34 0.93 0.77 0.08

100,000 0.08 0.39 0.91 0.80 0.07

250,000 0.08 0.42 0.89 0.81 0.07

500,000 0.07 0.42 0.89 0.80 0.07

Half 0.05 0.45 0.89 0.80 0.07

All 0.05 0.44 0.89 0.80 0.07

Without Land Cover Type

Fitting Validation

Size MAE RE R R2 RMSE

10,000 0.09 0.35 0.92 0.76 0.09

100,000 0.08 0.40 0.90 0.79 0.07

250,000 0.08 0.42 0.89 0.79 0.07

500,000 0.07 0.42 0.89 0.79 0.07

Half 0.05 0.45 0.89 0.79 0.07

All 0.05 0.45 0.89 0.79 0.07
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Table 1 also shows that the models without land cover type had almost identical statistical
measures and thus comparable performance to those with land cover type. This difference was better
visualized in Figure 3 (only the results for 250,000 training samples and half of training samples are
provided here). The models with land cover type had slightly lower accumulated errors than those
without land cover type when observed SIF was over 0.3 W m−2 µm−1 sr−1. This difference was
much smaller than that resulting from different training sample sizes (also see Table 1), suggesting
that the land cover type only played a very minor role in predicting the SIF, with other explanatory
variables already included in the model. In addition, global land cover maps typically have significant
classification uncertainty. Therefore, we selected the model without land cover type consisting of only
four explanatory variables—EVI, PAR, VPD, and air temperature—to predict the SIF.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 23 
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Figure 3. The accumulated errors of predicted SIF by different models: (a) Using 250,000 training
samples without land cover type, (b) using 250,000 training samples with land cover type, (c) using
half of the training samples without land cover type, and (d) using half of the training samples with
land cover type.

3.2. Model Validation

The scatterplot between observed OCO-2 SIF and predicted SIF by the selected model (i.e., the
model based on half of the training samples without land cover type) was shown in Figure 4. The plot
density figure showed that our model estimated SIF fairly well (R2 = 0.79, RMSE = 0.07 W m−2 µm−1

sr−1). The model slightly under- and overestimated values greater than 0.6 W m−2 µm−1 sr−1 and
lower than 0.3 W m−2 µm−1 sr−1, respectively. We further validated the model for each biome, and
the results of the model with land cover type were also provided for comparison purposes (Table 2).
Our model had a high predictive performance for deciduous needleleaf forests, deciduous broadleaf
forests, mixed forests, woody savannas, savannas, and croplands (all with R2 greater than 0.75), and a
moderate performance for evergreen broadleaf forests (R2 = 0.43, RMSE = 0.08 W m−2 µm−1 sr−1) and
open shrublands (R2 = 0.46, RMSE = 0.06 W m−2 µm−1 sr−1). The model with land cover type had
almost identical performance with our selected model in each biome (Table 2).
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Figure 4. The validation of the predictive SIF model: Scatterplot of observed OCO-2 SIF versus
predicted SIF in 2017. The dashed line is the 1:1 line, and the solid line is the regression line.

Table 2. Validation of the predictive SIF model for each biome: Evergreen needleleaf forests (ENF),
evergreen broadleaf forests (EBF), deciduous needleleaf forests (DNF), deciduous broadleaf forests
(DBF), mixed forests (MF), closed shrublands (CSH), open shrublands (OSH), woody savannas (WSA),
savannas (SAV), grasslands (GRA), croplands (CRO), and wetlands (WET). The units of the RMSE are
W m−2 µm−1 sr−1.

Biome
Without Land Cover Type With Land Cover Type

R2 RMSE R2 RMSE

ENF 0.66 0.07 0.67 0.07

EBF 0.43 0.08 0.45 0.08

DNF 0.82 0.07 0.83 0.07

DBF 0.87 0.08 0.88 0.08

MF 0.81 0.08 0.82 0.08

CSH 0.62 0.05 0.63 0.05

OSH 0.46 0.06 0.46 0.06

WSA 0.79 0.07 0.79 0.07

SAV 0.75 0.07 0.75 0.07

GRA 0.69 0.06 0.69 0.06

WET 0.54 0.07 0.56 0.07

CRO 0.83 0.08 0.84 0.07

All 0.79 0.07 0.80 0.07

3.3. Global SIF Product: Spatial Patterns and Seasonal Cycles of SIF

Figure 5 shows that our predictive model predicted SIF well, with the absolute estimation error
within ±0.05 W m−2 µm−1 sr−1 for the majority of the grid cells. The distribution of the estimation
errors was close to the normal distribution.



Remote Sens. 2019, 11, 517 10 of 24
Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 23 

 

 
Figure 5. The probability distribution of errors (estimated SIF minus the observed SIF) in 2016. 

Compared with the coarse-resolution SIF maps directly aggregated from discrete OCO-2 SIF 
soundings (Figure 1), GOSIF provides spatially continuous SIF estimates with much finer spatial 
resolution and 8-day intervals for a much longer period (2000–2017) (Figure 6). GOSIF exhibited 
expected spatial and temporal variations in SIF across the globe (Figure 6). In the northern 
hemisphere, SIF had relatively strong seasonal cycles. In the spring (March, April, and May), SIF 
exhibited small values at the start of the growing season but then gradually increased over time. The 
summer (June, July, and August) exhibited the highest values, owing to favorable temperature and 
soil moisture conditions and long day length. In the autumn (September, October, and November), 
SIF showed intermediate values first and then approached zero at the end of the season because of 
the gradual senescence of vegetation. The majority of the areas in mid- and high latitudes showed 
the lowest values in the winter (December, January, and February) as the canopies of most ecosystems 
were dormant. The prominently high SIF values were found in the U.S. Corn Belt region in July and 
August, with SIF ranging from 0.6 to 1 W m−2 μm−1 sr−1. High SIF values were also observed in other 
agricultural regions, such as northeastern China and central Europe. In the southern hemisphere, SIF 
exhibited smaller seasonal fluctuations. The pan-tropics areas showed high SIF values for most of the 
year and had slightly lower values in the dry seasons (austral winter: June, July, and August). Low 
SIF values were found in a large part of Australia throughout the year. 

Figure 5. The probability distribution of errors (estimated SIF minus the observed SIF) in 2016.

Compared with the coarse-resolution SIF maps directly aggregated from discrete OCO-2 SIF
soundings (Figure 1), GOSIF provides spatially continuous SIF estimates with much finer spatial
resolution and 8-day intervals for a much longer period (2000–2017) (Figure 6). GOSIF exhibited
expected spatial and temporal variations in SIF across the globe (Figure 6). In the northern hemisphere,
SIF had relatively strong seasonal cycles. In the spring (March, April, and May), SIF exhibited small
values at the start of the growing season but then gradually increased over time. The summer (June,
July, and August) exhibited the highest values, owing to favorable temperature and soil moisture
conditions and long day length. In the autumn (September, October, and November), SIF showed
intermediate values first and then approached zero at the end of the season because of the gradual
senescence of vegetation. The majority of the areas in mid- and high latitudes showed the lowest values
in the winter (December, January, and February) as the canopies of most ecosystems were dormant.
The prominently high SIF values were found in the U.S. Corn Belt region in July and August, with
SIF ranging from 0.6 to 1 W m−2 µm−1 sr−1

. High SIF values were also observed in other agricultural
regions, such as northeastern China and central Europe. In the southern hemisphere, SIF exhibited
smaller seasonal fluctuations. The pan-tropics areas showed high SIF values for most of the year and
had slightly lower values in the dry seasons (austral winter: June, July, and August). Low SIF values
were found in a large part of Australia throughout the year.
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Figure 6. Spatial patterns of 8-day global OCO-2 SIF (GOSIF) from January through December in 2016.
The units are W m−2 µm−1 sr−1. For each month, the second 8-day SIF map is shown here.

Our new 0.05◦ SIF captured the seasonal variations presented in the 1◦ OCO-2 SIF maps directly
aggregated from discrete soundings at four selected EC sites fairly well (Figure 7a,c,e,g). Compared to
the discrete and noisy observations (likely due to the scale mismatch) found in the coarse-resolution
maps, the continuous and smooth observations in our new SIF could support finer-scale applications.
Our new 0.05◦ SIF also generally tracked the seasonality of tower GPP at these sites (Figure 7b,d,f,h),
demonstrating its great potential in monitoring vegetation photosynthesis. During the senescence
stage when the new 0.05◦ SIF and tower GPP were close to zero (Figure 7e,g), the coarse-resolution SIF
still had relatively high values, possibly due to the heterogeneity within the coarse-resolution grid cell.
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forests (Figure S2 from the online Supplementary Material). 

Figure 7. The seasonal cycles of our new 0.05◦ SIF, 1◦ OCO-2 SIF directly aggregated from discrete
SIF soundings, and tower-based gross primary productivity (GPP) at four eddy covariance (EC) flux
tower sites: (a,b) AU-Das, savannas (SAV), (c,d) AU-Stp, grasslands (GRA), (e,f) DE-Geb, croplands
(CRO), and (g,h) US-PFa, mixed forests (MF). The tower-based GPP was temporally aggregated to
8-day intervals to be consistent with the temporal resolution of the new 0.05◦ SIF.

To further evaluate the GOSIF product, we also examined the relationship between 8-day SIF and
tower GPP for 91 flux tower sites. The new 0.05◦ GOSIF showed high correlation with tower GPP
from 91 EC flux tower sites (Figure 8, R2 = 0.73, p < 0.001). We also examined the relationship between
SIF and GPP for each biome. SIF was strongly correlated with GPP for evergreen needleleaf forests,
evergreen broadleaf forests, deciduous broadleaf forests, mixed forests, woody savannas, savannas,
croplands, and wetlands, and a moderately strong relationship was observed for evergreen broadleaf
forests (Figure S2 from the online Supplementary Material).
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Figure 8. Relationship between 8-day SIF from our GOSIF product and 8-day GPP from the FLUXNET
2015 Tier 1 dataset. The 8-day flux tower-based GPP was temporally aggregated from the daily values.

3.4. Global SIF Product: Annual Average, Maximum Magnitude, and Trend of SIF

The magnitude and spatial pattern of the annual mean SIF averaged over the period from 2001
to 2017 are illustrated in Figure 9. The annual mean SIF showed the highest values in the tropical
regions, intermediate values in the eastern United States, southern China, and central Europe, and the
lowest values in the barren regions. This was largely dependent on climate conditions (air temperature,
precipitation, and solar radiation) and vegetation type.
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Figure 9. Magnitude and spatial patterns of the annual mean SIF of our GOSIF product (0.05◦, 8-day)
over the period from 2001 to 2017. The units are W m−2 µm−1 sr−1.

We also compared annual mean and maximum daily values between GOSIF and MODIS GPP
in 2015 (Figure 10). The spatial pattern of annual mean SIF (Figure 10a) was generally in accordance
with the spatial pattern of annual mean GPP based on the MODIS GPP product (Figure 10c). The
highest value of maximum daily SIF was observed in the U.S. Corn Belt region, followed by central
Europe, northeastern China, Argentina, and the tropical regions (Figure 10b). In contrast, maximum
daily MODIS GPP had the prominently highest values in the tropical regions, followed by the U.S.
Corn Belt region (Figure 10d). We also compared GOSIF with the 1◦ OCO-2 SIF that was directly
aggregated from the discrete SIF soundings, and found that our new SIF (Figure 10a,b) well-captured
the spatial variations in both annual mean and maximum daily SIF presented in the coarse-resolution
SIF (Figure 10e,f). Compared with the coarse-resolution SIF that was directly aggregated from OCO-2
soundings and had large data gaps, GOSIF had finer spatial resolution, globally continuous coverage,
and a much longer record, and is better suited for studying ecosystem function and carbon cycles at
various spatial and temporal scales.
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During the period from 2001 to 2017, more than half of the land grid cells showed no significant 
trend in SIF (p > 0.05, Figure 11a). For the remaining grid cells, SIF increased over most regions (e.g., 
India, most of China), and negative trends were only detected in a few regions (e.g., eastern Brazil). 
The annual global mean SIF had a significant positive trend (0.0004 W m−2 μm−1 sr−1 per year, p < 0.001) 
during the past 17 years (Figure 11b). The global mean EVI showed a similar positive trend (0.0006 
yr−1, p < 0.001) during the 17-year period, while no significant trend was found in MODIS GPP (p > 
0.1) over 2001 to 2015. For the period that MODIS GPP was available (2001–2015), SIF still exhibited 
a significant positive trend, with a slope (0.0003 W m−2 μm−1 sr−1 per year) slightly smaller than that of 
2001–2017, and EVI also had a significant positive trend, with a slope (0.0006 yr−1) identical with that 
of 2001–2017. 

Figure 10. Annual mean and maximum SIF of our GOSIF product (0.05◦, 8-day) and comparison with
annual/maximum GPP of the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product
and the annual mean/maximum SIF of the 1◦ OCO-2 SIF directly aggregated from discrete OCO-2
SIF soundings in 2015: (a) Annual mean new 0.05◦ SIF, (b) maximum daily new 0.05◦ SIF, (c) annual
MODIS GPP, (d) maximum daily MODIS GPP, (e) annual mean 1◦ SIF, and (f) maximum daily 1◦ SIF.

During the period from 2001 to 2017, more than half of the land grid cells showed no significant
trend in SIF (p > 0.05, Figure 11a). For the remaining grid cells, SIF increased over most regions
(e.g., India, most of China), and negative trends were only detected in a few regions (e.g., eastern
Brazil). The annual global mean SIF had a significant positive trend (0.0004 W m−2 µm−1 sr−1 per
year, p < 0.001) during the past 17 years (Figure 11b). The global mean EVI showed a similar positive
trend (0.0006 yr−1, p < 0.001) during the 17-year period, while no significant trend was found in
MODIS GPP (p > 0.1) over 2001 to 2015. For the period that MODIS GPP was available (2001–2015),
SIF still exhibited a significant positive trend, with a slope (0.0003 W m−2 µm−1 sr−1 per year) slightly
smaller than that of 2001–2017, and EVI also had a significant positive trend, with a slope (0.0006 yr−1)
identical with that of 2001–2017.
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(b). The trends in SIF (unit: W m−2 μm−1 sr−1) and EVI were derived over both periods: 2001–2017 and 
2001–2015, while the trend in MODIS GPP was based on the period 2001–2015 (unit: Pg C yr-1). Gray 
color indicates grid cells with an insignificant trend detected by the Mann–Kendall (MK) test (p > 
0.05). In (b), the SIF, EVI, and GPP were normalized by their maximum values for better display 
purposes because they have different units and magnitudes. The trends were derived based on the 
original values of these variables. 

4. Discussion 

We used a predictive SIF model based on four explanatory variables to develop the global, 0.05° 
SIF product. We selected the explanatory variables based on the findings of previous studies that the 
SIF was mainly determined by APAR [26,27] and also contained environmental information which 
influenced the LUE [2,39,43,62]. For example, APAR alone could explain a large portion of the 
variance in SIF, and APAR, along with temperature and water stresses, had a stronger correlation 
with SIF [39]. Therefore, our selected variables (i.e., EVI, PAR, VPD, and air temperature) could 

Figure 11. Spatial distribution of the trends (2001–2017) in annual global mean SIF (a) and the
inter-annual variations and trends in global mean SIF, enhanced vegetation index (EVI), and MODIS
GPP (b). The trends in SIF (unit: W m−2 µm−1 sr−1) and EVI were derived over both periods: 2001–2017
and 2001–2015, while the trend in MODIS GPP was based on the period 2001–2015 (unit: Pg C yr−1).
Gray color indicates grid cells with an insignificant trend detected by the Mann–Kendall (MK) test
(p > 0.05). In (b), the SIF, EVI, and GPP were normalized by their maximum values for better display
purposes because they have different units and magnitudes. The trends were derived based on the
original values of these variables.

4. Discussion

We used a predictive SIF model based on four explanatory variables to develop the global, 0.05◦

SIF product. We selected the explanatory variables based on the findings of previous studies that
the SIF was mainly determined by APAR [26,27] and also contained environmental information
which influenced the LUE [2,39,43,62]. For example, APAR alone could explain a large portion of the
variance in SIF, and APAR, along with temperature and water stresses, had a stronger correlation with
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SIF [39]. Therefore, our selected variables (i.e., EVI, PAR, VPD, and air temperature) could largely
account for the variations in SIF. This approach is actually similar to the concept of LUE models, with
EVI × PAR equivalent to APAR and with VPD and air temperature as two environmental scalars.
Considering more explanatory variables in the model might improve the SIF estimation. However,
for the global-scale predictions at higher spatial and temporal resolution (0.05◦, 8-day) with a long
period (2000–2017), we should consider not only model performance but also other factors such as
computational efficiency, availability of data, and data uncertainty. We also examined the performance
of other similar vegetation variables, such as LAI, f PAR, NDVI, and the normalized difference water
index (NDWI), but found that they did not significantly improve the prediction for SIF. Having only
four explanatory variables had almost identical predictive capability could also substantially reduce
the computational complexity. Our study further found that the land cover map had a very limited
role in improving the SIF predictions. Therefore, considering the large uncertainty of current land
cover classifications [63] and the potential land cover changes during the study period, we predicted
SIF only based on EVI, PAR, VPD, and air temperature.

Our analysis also indicated that the model based on EVI, PAR, VPD, and air temperature had a
slightly higher performance than the model based on surface reflectance of the seven MODIS bands.
Two recent studies also used machine learning approaches to develop 0.05◦ SIF data from OCO-2
soundings [27,46], and their models were based solely on MODIS surface reflectance. In contrast,
we used MODIS EVI to characterize vegetation conditions, and PAR, VPD, and air temperature to
account for meteorological conditions and water availability. These meteorological factors can better
account for the environmental conditions (e.g., solar radiation, water availability, temperature stress)
that influence the emission of plant fluorescence (Table S1). Our predictive model performed slightly
better (R2 = 0.79, RMSE = 0.07 W m−2 µm−1 sr−1) than that of Zhang et al. [27], and had comparable
performance to the combined time and biome stratification of Yu et al. [46] in terms of R2 and RMSE.
These prediction statistics reflect the performance of the predictive models but not necessarily the
performance of these three global products, due to the use of different global datasets with different
uncertainties in the prediction.

Our results showed that the training sample size influenced the SIF predictions. This is
inconsistent with a previous finding that the Cubist method was not very sensitive to training sample
size compared to other machine learning techniques [64]. Our results showed that the smaller sample
sizes could mitigate the underestimation for high SIF values (like > 0.6 W m−2 µm−1 sr−1) and
increase the accumulated errors. Larger sample sizes could lead to lower accumulated errors, and the
performance of the model became stable when the sample size was close to the million level. The very
large sample used for developing the SIF model was more representative, and could encompass various
climatic conditions and ecosystem types across the globe, and also sample the seasonal variations in
each variable.

The predicted SIF was possibly affected by the uncertainty of the gridded input data products.
The global gridded input data products used in this study are widely used high-quality data. The
EVI was calculated from the BRDF-corrected surface reflectance product [65], and previous studies
have shown that the BRDF correction makes it possible to recover the real information on vegetation
dynamics [39,66,67]. The high quality of MERRA-2 products and their effective applications in
meteorology and hydrology were demonstrated by previous studies [53,58,68]. MERRA-2 data have
coarse spatial resolution (0.5◦ × 0.625◦), and we resampled the data to 0.05◦ for the prediction of SIF.
The accuracy of our SIF product could be further improved should high-quality meteorological data
with finer spatial resolution be available.

The comparison of spatial patterns and seasonal cycles between GOSIF and the coarse-resolution
SIF directly aggregated from OCO-2 SIF soundings provides insight into the performance of our
SIF product in the spatial and temporal domains. The seasonal cycles and annual averages of
GOSIF captured the spatial variations presented in coarse-resolution OCO-2 SIF [69,70], and were
also generally consistent with those derived from previous coarse-resolution SIF products from
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GOSAT [19,20,31] and GOME-2 [18,71]. The comparison between our SIF product with current gridded
GPP products may provide robust evidence on the potential of our new SIF in monitoring the terrestrial
photosynthesis. We found that the spatial pattern of annual averaged new SIF agreed well with that
from the MODIS GPP product [6]. However, the annual maximum magnitudes of the two products
did not match well with each other. The highest values were observed in the U.S. Corn Belt region for
our SIF product, while the MODIS GPP product had the highest values in the tropical regions. The
high SIF signal in the U.S. Corn Belt region was also detected in previous studies based on GOME-2
SIF [33,72]. This inconsistency between our SIF product and the MODIS GPP product may result
from the underestimation of GPP by the MODIS GPP algorithm in high-productivity cropland regions
mainly due to the low maximum LUE parameter value. A previous study [73] found that the mean
annual MODIS GPP largely underestimated cropland GPP, and the optimization of the maximum
LUE parameter significantly improved the accuracy of GPP. Another study [33] also found that the
MODIS GPP model underestimated GPP at cropland sites with high fluxes. These studies suggested
that reflectance-based indices usually underestimated ‘greenness’ for very dense crop canopies with
high green biomass levels. Our new SIF product, GOSIF, is able to provide a reasonable diagnosis
on the GPP over the largest crop belts worldwide as well as previous satellite SIF retrievals, but with
much more spatial detail.

The SIF had an increasing trend during 2001 to 2017 in many regions. The largest positive
trends were observed in China and India, while large negative trends were found in parts of tropical
regions (southern Amazon and eastern Brazil). The increasing trend in China benefited from China’s
afforestation efforts [74,75] and improved agricultural management practices [76]. The declining
trend in vegetation productivity in the southern Amazon and eastern Brazil was reported by several
studies [77,78], which was mainly caused by frequent drought events [79–81] and deforestation [82].
Our annual global mean SIF exhibited similar but larger inter-annual variations than EVI during
the past 17 years. This is consistent with the finding of previous studies that SIF responded more
pronouncedly to the environmental conditions, including heat and moisture stress, compared with
vegetation indices such as the NDVI and EVI [53,83,84]. Both our global mean SIF and MODIS EVI
increased in 2011 in response to the La Niña event and decreased in 2015 in response to the El Niño
event, with larger changes in SIF than in EVI.

Our global, finer-resolution SIF data product (GOSIF) has three main advantages compared to the
coarse-resolution OCO-2 SIF data directly aggregated from OCO-2 SIF soundings: 1) Finer spatial and
temporal resolutions (0.05◦, 8-day), 2) spatially and temporally continuous coverage, and 3) a much
longer period (2000–2017). These advantages enable greater potentials and broader prospects of the
new SIF data for different applications. For example, it will be useful for assessing the spatial and
temporal patterns of terrestrial photosynthesis at various spatial and temporal scales, and responses of
ecosystems to drought, disturbance, and snow cover. Our finer-resolution data can capture fine-scale
variations in GPP and thereby can better support ecosystem-level studies than the coarse-resolution SIF
directly aggregated from OCO-2 soundings. Our global, finer-resolution SIF product, freely available
at http://globalecology.unh.edu, will also be useful for benchmarking terrestrial biosphere and Earth
system models, such as the Community Land Model (CLM) and the E3SM Land Model (ELM).

5. Conclusions

The much smaller footprint of OCO-2 provides the first opportunity to directly measure the
ecosystem-scale photosynthesis at the ecosystem level, while its sparse global coverage imposes a
strong limitation on the use of the OCO-2 SIF. We generated continuous gridded global SIF data with
higher spatial and temporal resolutions (i.e., 0.05◦ and 8-day) based on a data-driven approach. The
developed predictive SIF model allows us to estimate SIF for each 0.05◦ × 0.05◦ grid cell across the globe
for each 8-day interval based on MODIS and meteorological data, and extends the current short data
record of OCO-2 SIF (since September 2014) to a much longer period (since March 2000). Our results
showed that increasing training sample size could reduce the errors of predicted SIF, while the land
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cover type only played a small role in improving the SIF prediction. Our selected model, developed
by four variables (i.e., EVI, PAR, VPD, and air temperature), performed fairly well in estimating SIF
(R2 = 0.79, RMSE = 0.07 W m−2 µm−1 sr−1). Our new 0.05◦ SIF maps exhibited expected spatial and
temporal variations, and agreed well with the coarse-resolution OCO-2 SIF in both annual mean and
maximum magnitude. At four selected EC flux sites, the 0.05◦ SIF captured similar trajectories as
compared to the original OCO-2 soundings, and were also spatially and temporally continuous. It also
showed similar seasonality with the tower GPP. We further examined the relationship between the
new 0.05◦ SIF and GPP from 91 EC flux sites, and found high correlations between SIF and GPP across
biomes, indicating the potential of SIF in monitoring the photosynthesis. During the past 17 years,
the annual global mean SIF has had a significant positive trend (0.0004 W m−2 µm−1 sr−1 per year,
p < 0.001).

Our finer-resolution SIF data product GOSIF, freely available at http://globalecology.unh.edu,
will benefit various applications in many areas, such as carbon cycle, remote sensing, climate change,
ecosystem studies, and agriculture. For example, it may serve as a useful data set to monitor
terrestrial photosynthesis and to assess plant water stress and phenology, and it can also be used for
benchmarking terrestrial biosphere and Earth system models (e.g., CLM, ELM) which currently exhibit
substantial uncertainty. The synergetic use of our 0.05◦ SIF product, along with new or forthcoming
SIF data such as the TROPOspheric Monitoring Instrument (TROPOMI, 0.1◦) and the FLEX (300 m),
has great potential for studying terrestrial carbon cycle dynamics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/5/517/s1,
Figure S1: The spatial distribution and land cover types of the 91 eddy covariance (EC) flux tower sites from
the FLUXNET 2015 Tier 1 dataset used in this study, Figure S2: Relationship between solar-induced chlorophyll
fluorescence (SIF) from our global Orbiting Carbon Observatory-2 SIF (GOSIF) product and gross primary
productivity (GPP) from the FLUXNET 2015 Tier 1 dataset across biomes, Table S1: The statistical measures for
model development and validation, Table S2: FLUXNET Tier-1 sites used for evaluating GOSIF in this study.
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