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Abstract: Detailed information on spatial distribution of wetland classes is crucial for monitoring
this important productive ecosystem using advanced remote sensing tools and data. Although the
potential of full- and dual-polarimetric (FP and DP) Synthetic Aperture Radar (SAR) data for wetland
classification has been well examined, the capability of compact polarimetric (CP) SAR data has
not yet been thoroughly investigated. This is of great significance, since the upcoming RADARSAT
Constellation Mission (RCM), which will soon be the main source of SAR observations in Canada,
will have CP mode as one of its main SAR configurations. This also highlights the necessity to fully
exploit such important Earth Observation (EO) data by examining the similarities and dissimilarities
between FP and CP SAR data for wetland mapping. Accordingly, this study examines and compares
the discrimination capability of extracted features from FP and simulated CP SAR data between
pairs of wetland classes. In particular, 13 FP and 22 simulated CP SAR features are extracted from
RADARSAT-2 data to determine their discrimination capabilities both qualitatively and quantitatively
in three wetland sites, located in Newfoundland and Labrador, Canada. Seven of 13 FP and 15 of
22 CP SAR features are found to be the most discriminant, as they indicate an excellent separability for
at least one pair of wetland classes. The overall accuracies of 87.89%, 80.67%, and 84.07% are achieved
using the CP SAR data for the three wetland sites (Avalon, Deer Lake, and Gros Morne, respectively)
in this study. Although these accuracies are lower than those of FP SAR data, they confirm the
potential of CP SAR data for wetland mapping as accuracies exceed 80% in all three sites. The CP SAR
data collected by RCM will significantly contribute to the efforts ongoing of conservation strategies
for wetlands and monitoring changes, especially on large scales, as they have both wider swath
coverage and improved temporal resolution compared to those of RADARSAT-2.

Keywords: wetland classification; RADARSAT-2; compact-polarimetry; RADARSAT Constellation
Mission; RCM; Earth Observation

1. Introduction

Wetlands are regions where water is the main factor affecting the ecosystem and the associated
flora and fauna [1]. In such an environment, the water table is either at or near to the land surface or
the land surface is covered by shallow-water [2]. Wetlands are natural infrastructures that facilitate
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the interactions of soils, water, plants, and animals, thus making them one of the most productive
ecosystems. Wetlands serve a number of purposes, including water storage and purification, flood
mitigation, storm protection, erosion control, shoreline stabilization, carbon dioxide sequestration,
and climate regulation [3]. To support global preservation of wetlands, the Ramsar Convention on
Wetlands has been in place since 1971, wherein the main purpose is “the conservation and wise use of
wetlands globally” [1]. Over the years, several countries (163 nations as of January 2013), including
Canada, have joined to the convention and demonstrated their commitments to wetland preservation.

Over the past two decades, remote sensing tools and data have significantly contributed to
wetland mapping and monitoring [4]. Optical remote sensing satellites have long been the main
source of Earth Observation (EO) data for vegetation and wetland mapping [5,6], yet cloud cover
hinders the acquisition of such data. Consequently, as they are not impacted by solar radiation or
weather conditions and can penetrate vegetation canopies (depending on wavelength), Synthetic
Aperture Radar (SAR) sensors are of special interest, particularly in geographic regions with chronic
cloud cover, such as Canada [7]. The interaction of SAR signal with vegetation canopies depends on
SAR wavelengths [8]. Overall, longer wavelengths (e.g., L-band) are preferred for monitoring woody
wetlands [8], whereas shorter wavelengths (e.g., C- and X-band) are useful for mapping herbaceous
wetlands [9]. Several studies reported of great benefit of L-band data collected by JERS-1 and ALOS
PALSAR-1 for inundation and vegetation dynamic mapping in various geographic locations, such as
the Amazon floodplain [10,11], the Alligator Rivers region of northern Australia [12], and wetlands
in Africa [13]. Other studies demonstrated the capability of shorter wavelengths, such as C-band
data collected by ERS-1/2 [14], RADARSAT-1 [15], RADARSAT-2 [16,17], and Sentinel-1 [18] for
wetland classification. X-band data collected by TerraSAR-X were also found to be useful for mapping
heterogeneous structure of wetland ecosystems and their dynamics, given its high temporal and spatial
resolution [19,20].

Wetland phenology also affects SAR backscattering responses of flooded vegetation and
depends on complex relation of vegetation height/density and the water level height in the
wetland ecosystem [21]. For example, during high water seasons, the classes of swamp forest
and freshwater marsh experience different conditions. In particular, an increase in water level
height increases the chance of double-bounce scattering for swamps, resulting in an enhanced SAR
backscattering response [22]. In contrast, an increase in water level height may decrease the chance of
double-bounce scattering for marshes, as it converts double-bounce scattering to the specular scattering
mechanism [23]. This results in little backscattering responses on SAR imagery in this case. Vegetative
density is another influential factor and was examined in several research. For example, Lu and
Known (2008) found that high vegetative density and canopy in swamp forest during the leaf-on
season converted double-bounce scattering to volume scattering in southeastern coastal Louisiana
wetlands using ERS and RADARSAT-1 imagery, which decreased SAR backscattering responses over
swamp forest [24]. Later studies, such as [25,26], found relatively similar results using ALOS PALSAR
L-band data for forested wetlands in the Congo River in Africa.

In addition to SAR wavelength and wetland phenology, polarization of SAR signal is also an
important factor. Given the capability of full-polarimetric (FP) SAR sensors to collect full scattering
information of ground targets, the potential of these sensors for mapping various wetland classes has
been well established [27]. In particular, a FP SAR sensor transmits a fully-polarized signal toward
ground targets while receiving both fully-polarized and depolarized backscattering responses from a
ground target [28]. This configuration also maintains the relative phase between polarization channels,
thus allowing the application of advanced polarimetric decomposition methods [29]. The polarimetric
decompositions are beneficial for distinguishing similar wetland classes through characterizing various
scattering mechanisms of ground targets.

Notably, decomposition techniques allow the polarimetric covariance or coherency matrixes to be
separated into three main scattering mechanisms: single/odd-bounce scattering, which represents
direct scattering from the vegetation or ground surface (e.g., rough water); double/even-bounce
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scattering, which represents scattering between, for example, flooded vegetation within smooth open
water; and volume scattering, which represents multiple scattering within developed vegetation
canopies. As such, several studies reported the success of wetland classification using FP SAR data in
different geographic regions, such as China [30], Europe [31], the United States [32], and Canada [33].
However, the main limitations associated with the FP SAR configuration are the time constraints
caused by the alternative transmitting of H and V polarizations toward ground targets, the large
satellite mass caused by higher system power requirements, and the small swath coverage caused by
doubling pulse repetition frequency (PRF) [34]. The small swath coverage precludes the potential of
such data for applications on large-scales [35], for example, for the production of daily ice charts and
annual crop inventories.

Dual-polarimetric (DP) SAR data cover a larger swath width and, currently, are the main
source of SAR observations for operational applications. Such a SAR data configuration is currently
available on Sentinel-1 SAR mission satellite of the Copernicus program by the European Space
Agency (ESA) [36]. The main purpose of this mission is to provide full, free, and open access
SAR observations for environmental monitoring [37]. Furthermore, the 12-days satellite revisit time
makes Sentinel-1 SAR data ideal for monitoring phenomena with highly dynamic natures such as
wetlands [18,38], as well as assistant with operational applications such as sea ice monitoring [39]
and crop mapping [40]. However, insufficient polarimetric information is available within such
data. Furthermore, DP SAR data cannot maintain a relative phase between polarization channels,
thus diminishing their capability to distinguish similar land and wetland classes through advanced
polarimetric decomposition techniques [29]. To move forward with both polarization diversity and
swath coverage, the compact polarimetry (CP) SAR configuration was introduced. CP SAR sensors
are in the same group as that of DP but differ in terms of the choice of polarization channels [41].
This configuration collects greater polarimetric information compared to that of DP, while covering a
much larger swath width relative to that of FP SAR data. CP SAR sensors also maintain the relative
phase between two received polarization channels, which further makes them advantageous relative
to DP SAR sensors for a variety of applications.

Importantly, the upcoming RADARSAT Constellation Mission (RCM), which is the successor
mission to RADARSAT-2, that is planned to be launched in 2019, will have a circularly transmitting,
linearly receiving (CTLR) CP mode as one of its main SAR data collection configurations [42]. The main
purposes of RCM are to ensure data continuity for RADARSAT-2 users and ameliorate the operational
capability of SAR data by leveraging a more advanced spaceborne mission [35]. In particular, RCM
comprises three identical small (relative to RADARSAT-2) C-band satellites to gain greater satellite
coverage over a much shorter satellite revisit time (only four-day) [43]. This is of great importance for
applications, such as maritime surveillance and ecosystem monitoring, which heavily rely on frequent
SAR observations.

Various SAR configurations and polarizations are available with RCM. These include
single-polarimetry (SP), conventional DP, and CTLR CP modes. In the CTLR mode, RCM transmits
a right-circular polarized signal and receives two coherent orthogonal linear (both horizontal and
vertical) polarized signals (RH and RV) and their relative phase [44]. Lower PRF and system power
and less on-board mass and data volume are other advantages of RCM compared to RADARSAT-2 [45].
Despite these benefits, less polarimetric information is available within CP SAR data compared to
that of FP SAR data. Furthermore, Noise Equivalent Sigma Zero (NESZ) values potentially range
between −25 to −17 dB for RCM data [43], which are higher than those of RADARSAT-2 in most
cases. This decreases the sensitivity of the RCM SAR signal to ground features with low backscattering
values, such as open water and sea ice.

It is beneficial to compare both the similarities and differences of CP SAR data collected by
RCM with those of RADARSAT-2 in different applications, prior to the availability of RCM data for
operational monitoring. Given that maritime surveillance is one the main application of RCM data [45],
the potential of simulated or real CP SAR data has been well examined for sea ice classification and
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monitoring in several recent studies (e.g., [35,41,46,47]). However, the potential of CP SAR data
for other applications, such as wetland characterization, remains an active research area, requiring
much investigation to fully exploit the capability of such data for other purposes, such as ecosystem
monitoring (e.g., agriculture, wetland, and forestry). Notably, two previous studies have highlighted
the capability of simulated CP SAR data from RADARSAT-2 for wetland mapping. Brisco et al.
(2013) first reported the potential of CP SAR data for wetland classification in southwestern Manitoba,
Canada, using 12 CP SAR features but for wetland classes different from typical Canadian wetland
classes (i.e., bog, fen, marsh, swamp, and shallow-water, as classified based on the Canadian Wetland
Classification System, CWCS) [48]. White et al. (2017) evaluated the potential of simulated CP SAR data
from RADARSAT-2 with a larger number of CP features, yet only for peatland classes (i.e., poor fen,
open shrub bog, and treed bog) in a small area in Southern Ontario, Canada [49]. However, the latter
study exploited the synergy of CP and FP SAR data with digital elevation model (DEM) and Landsat-8
optical data for classifying peatland classes [49]. Although their methodology and results were sound,
much investigation is still required to fully understand the compact polarimetric responses of various
CP SAR features to standard wetland classes (according to the definition of CWCS).

The present research was built on the knowledge gained from our previous work, wherein the
potential of CP SAR features for wetland mapping was investigated [29]. However, unlike in [29],
in the present study, three wetland sites were selected and the main objectives here were to identify the
most useful CP features for similar wetland class discrimination and to improve image interpretation
using both qualitative and quantitative approaches. Specifically, this study aimed to: (1) explore the
effect of the difference in polarization between FP (RADARSAT-2) and simulated CP SAR data for the
classification of wetland complexes; (2) determine the separability between pairs of wetland classes
with various CP SAR features both visually, using box-and-whisker plots, and quantitatively, using the
Kolmogorov-Smirnov (K-S) distance measurement; and (3) classify wetland complexes using the most
effective CP SAR features using an object-based random forest (RF) algorithm.

2. Study Area and Data

2.1. Study Area and In-Situ Data

The three study areas located in Newfoundland and Labrador, Canada, at the eastern, center, and
western portions of the island were selected for this research (see Figure 1). In general, the island of
Newfoundland has a humid continental climate, which is greatly affected by the Atlantic Ocean.
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The first pilot site is the Avalon area, located in the most eastern part of the island in the Maritime
Barren ecoregion. It has an oceanic climate of foggy, cool summers, and relatively mild winters.
The second pilot site is the Deer Lake area, located in the the northern (center) portion of the island in
the Central Newfoundland ecoregion and experiences a continental climate of cool summers and cold
winters. Finally, the third pilot site is the Gros Morne area, located on the extreme western coast of the
island, in the Northern Peninsula ecoregion. This area has a maritime-type climate with cool summers
and mild winters [50]. As elsewhere in Newfoundland, frequent rain and fog are dominant due to the
proximity of the pilot sites to the Atlantic Ocean. This highlights the great significance of SAR data for
remote sensing studies for the island.

The study areas contain all wetland classes categorized by the CWCS, namely bog, fen, marsh,
swamp, and shallow water, although bog and fen are the most dominant classes. Other land cover
classes include urban, upland, and deep water. Figure 2 illustrates examples of land cover classes in
the Avalon study area.
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For this study, in-situ data were collected over multiple visits during the summers and falls of
2015, 2016, and 2017. Potential and accessible wetland sites in all study areas were flagged based on
prior knowledge of wetland sites, interpretation of high resolution Google Earth imagery, and the
CWCS definition of wetlands. Other considerations for site visitation included accessibility via public
roads and the public and private ownership of lands. Significant effort was devoted to collect in-situ
data covering a wide range of wetland and non-wetland classes with vast spatial distributions across
all study areas. In each location, one or more Global Positioning System (GPS) points were collected,
depending on the size of each wetland class. Digital photographs and ancillary notes (e.g., dominant
vegetation, hydrology, dates, and the name of locations) were also recorded to facilitate preparation
of the training samples. Notably, data from wetlands of various sizes were collected during the first
year of data collection, resulting in the production of several small-size classified polygons. However,
wetlands with sizes greater than one ha (where possible) were selected during the following years to
restrict the production of small-size polygons to a feasible extent.

Recorded GPS points were then imported in ArcMap10.6, and polygons indicating classified
delineated wetlands were produced using a visual interpretation of 50 cm resolution orthophotographs
and 5 m resolution RapidEye optical images by remote sensing and biologist experts familiar with the
studies areas. Notably, any human error in both recording GPS points during in-situ data collection and
preparing the reference polygons may affect the results of separability analysis and classification. Next,
polygons were sorted based on their size and alternately assigned to either training or testing groups.
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This alternative assignment ensured that both the training (~50%) and testing (~50%) polygons had
relatively equal numbers of small and large polygons. Furthermore, the training and testing polygons
were obtained from independent samples to ensure robust accuracy assessment. Table 1 presents the
number of training and testing polygons for each class in the three pilot sites.

Table 1. Number of training and testing polygons for each class in the three pilot sites.

Avalon Deer Lake Gros Morne

Class Training Testing Training Testing Training Testing

Bog 42 41 16 15 19 19
Fen 20 19 27 27 15 16
Marsh 25 25 12 12 16 15
Swamp 22 23 20 20 21 21
Shallow water 20 20 11 12 13 14
Urban 36 35 17 18 19 19
Deep water 7 8 3 3 3 2
Upland 29 29 12 11 42 43
Total 201 200 118 118 148 149

2.2. Satellite Imagery

A total number of seven Single Look Complex (SLC) RADARSAT-2 images were used in this
study. These images were acquired using the Fine Quad-polarization (FQ) mode on August 2015 from
descending orbits (see Table 2).

Table 2. Characteristics of RADARSAT-2 imagery used in this study.

Pilot Site Date # Images Mode Image Coverage
(km) *

Incidence
Angle (◦) NESZ (dB) Resolution

(m) *

Avalon 20150821 2 FQ4 25 × 25 22.1–24.1 −34.6 to −37.8 5.2 × 7.6
Deer Lake 20150810 2 FQ3 25 × 25 20.9–22.9 −34.4 to −37.7 5.2 × 7.6

Gros Morne 20150803 3 FQ2 25 × 25 19.7–21.7 −34 to −38.4 5.2 × 7.6

* Note that image coverage is represented in (ground range × azimuth) and resolution is represented in (slant range
× azimuth).

Notably, the leaf-on season in Newfoundland starts by late May/early June. August corresponds
to the peak of the growing season in the study area, wherein both the vegetative density and water
level height are at their optimum. Accordingly, imagery was selected from August, as our recent study
demonstrated that flooding status of vegetation is at the highest, resulting in the maximum occurrence
of double-bounce scattering at this time period [51].

As indicated in Table 2, RADARSAT-2 images were collected in 2015; our in-situ data used for
both classification and separability analysis were collected during the summers and falls of 2015, 2016,
and 2017. We assumed that no change had occurred in the wetland properties during the three year
interval given very limited human activities in the studies areas. Furthermore, this time difference
(i.e., <three years) between satellite data acquisition and the collection of ecological training data is
acceptable and agrees with those used in previous research (e.g., [51,52]).

3. Methods

3.1. Full Polarimetric SAR Data Processing

The main preprocessing steps were speckle reduction, orthorectification, and image mosaicking.
Speckle reduction is a necessary preprocessing step, as the radiometric quality of SAR images is
hindered by speckle noise, which affects subsequent image processing steps (e.g., segmentation
and classification) [53]. Accordingly, a 5 × x5 Boxcar filter was employed to suppress speckle and
increase the number of looks prior to extraction of polarimetric features. A small filter size was
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selected, as it maintains the boundaries between natural and human-made objects and is appropriate
for wetland classes with small sizes (e.g., swamp and marsh in this study). Orthorectification of
de-speckled RADARSAT-2 images was performed in PCI Geomatica’s OrthoEngine 2017 software
using the rational function model [54,55]. Satellite orbital information and an external digital elevation
model (DEM), released by Natural Resource Canada, were employed for orthorectification. All images
were projected into UTM coordinates, zone 22/row T for the Avalon study area and zone 21/ row U
for the Deer Lake and Gros Morne study areas, respectively. Two scenes from the Avalon and Deer
Lake pilot sites and three from the Gros Morne study region were then mosaicked into single strips
of data.

A total of 13 features were extracted from the full polarimetric RADARSAT-2 images. In particular,
three SAR backscattering coefficient images, namely σ0

HH , σ0
VV , and σ0

HV , were extracted. σ0
HH is

sensitive to double-bounce scattering and, as such, is useful for discriminating flooded and non-flooded
wetland classes [9]. It is also beneficial for discriminating water from non-water (e.g., upland) classes,
given its lower sensitivity to surface roughness on water compared to σ0

VV [9]. σ0
VV is suitable for

distinguishing herbaceous wetland classes, especially bog and fen classes [56]. It is also sensitive to
soil moisture [57,58] and is useful for discriminating sparsely vegetated areas. σ0

HV is sensitive to the
vegetation structure and has shown promising results for distinguishing wetland classes [8].

Three incoherent decomposition methods, namely Cloude-Pottier [59], Freeman-Durden [60],
and Yamaguchi [61], were also employed. These methods decompose the SAR backscattering
responses of distributed ground targets into various scattering mechanisms, which are of great use for
discriminating similar wetland classes. This is because wetland classes are characterized by varying
scattering mechanisms depending on SAR wavelength, roughness, and vegetation structure through
the growing season.

The Cloude-Pottier method is a decomposition that considers three secondary components,
including the entropy, anisotropy, and alpha angle, which are derived from eigenvalues and
eigenvectors. Entropy ranges from 0 to 1 and indicates the degree of randomness. Lower entropy
values demonstrate that a single scattering mechanism is dominant (low depolarization); whereas
values approaching 1 suggest that multiple scatterings are present. Anisotropy is the complementary
component to entropy and represents the relative importance of the secondary scattering mechanism.
The alpha angle varies between 0◦ and 90◦ and is also useful for characterizing different scattering
mechanisms. Surface, volume, and double-bounce scattering produce low, intermediate, and high
alpha angles, respectively.

The Freeman-Durden and Yamaguchi decompositions are known as physical model-based
decomposition approaches with three and four components, respectively. In particular, the
Freeman-Durden approach, which assumes reflection symmetry, decomposes target scattering as
the linear sum of the surface, double-bounce, and volume scattering mechanisms [60]. The Yamaguchi
decomposition has similar components as those of Freeman-Durden; however, it benefits from an
additional term, known as the helix scattering component. This component takes into account cases
of non-reflection symmetry (i.e., the correlation between co- and cross-polarized channels), which
usually occur in complex urban areas. Additionally, the volume scattering term of the Yamaguchi
decomposition for vegetation was further modified by employing a different probability density
function than that used by the Freeman-Durden approach [61].

3.2. Compact Polarimetry SAR Data Processing

The Canada Centre for Mapping and Earth Observation (CCMEO) simulator was used to simulate
the RCM CP data [45]. The CCMEO calibrates the RADARSAT-2 SLC product using the Sigma
Naught (σ0) calibration. The calibrated product is stored in a 3x3 covariance matrix format and is
then downsampled to a 2 × 2 covariance matrix to the defined spatial resolution for each mode.
The CCMEO software simulates both CP and DP data at various spatial resolutions with varying noise
floors. In this study, CP SAR data were simulated at medium resolution (i.e., −24 NESZ at a 16 m
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spatial resolution) imaging modes. All CP features were produced using a 5× 5 kernel size to take into
account the effects of speckle noise (i.e., Boxcar filter). Although advanced speckle reduction methods
(e.g., adaptive Lee filter) are advantageous for PolSAR image processing, as they preserve polarimetric
information and the resulting de-speckled images are less affected by blurring effects, the simple
Boxcar filter was used in this study. This is because it was the only available speckle reduction method
in the CCMEO software at the time of data processing. However, this filter was used for both FP
and CP SAR data to mitigate any potential differences due to employing different speckle reduction
methods. As such, any observed differences between the results of FP and CP SAR data are due to
differences in polarization, NESZ, and spatial resolution.

A total of 22 CP SAR features were extracted from the simulator and these features can be broadly
categorized into five main groups, namely intensity, Stokes vector, Stokes child, CP decompositions,
and other features (see Table 3).

Table 3. An overview of the investigated CP SAR features in this study.

Name of Feature Description CP Feature

Intensity features SAR backscattering coefficients σ0
RR, σ0

RL, σ0
RH , σ0

RV

Stokes vector First element S0 = 〈|ERH |2+|ERV |2〉

Second element S1 = 〈|ERH |2−|ERV |2〉

Third element S2 = 2Re〈ERH E∗RV〉

Fourth element S3 = −2Im〈ERH E∗RV〉

Stokes child parameters Circular polarization ratio µc =
S0 − S3
S0 + S3

Degree of polarization m =

√
S2

1 + S2
2 + S2

3

S2
0

Relative phase between RV and RH δ = tan−1 (
S3
S2

)

Ellipticity of the compact scattered
wave (Cloude αs)

αs=
1
2

tan−1 (

√
s2

1 +s2
2

S3
)

CP decompositions m-delta decomposition
m− δ−Odd
m− δ− Even

m− δ−Volume

m-chi decomposition
m− χ−Odd
m− χ− Even

m− χ−Volume

Other features Conformity coefficient µ =
2 Im〈SRHS∗RV〉

〈SRHS∗RH〉+ 〈SRVS∗RV〉

Correlation coefficient of RV and RH ρ =

∣∣∣∣∣∣
√
〈SRHS∗RV〉√

〈SRHS∗RH〉+ 〈SRVS∗RV〉

∣∣∣∣∣∣
Shannon entropy intensity SEI = 2 log (

πeTr(T2)

2
)

Shannon entropy polarimetry SEP = log (
4|T2|

Tr(T2)
2 )

The Stokes vector parameters are extracted from the 2 × 2 simulated covariance matrix of CP
SAR data [28] and are useful for characterizing the scattering properties of ground targets. Note that
in the Stokes vector, E is the electric field vector in the subscripted polarization, wherein the first
and second subscripts indicate the transmitted and received polarizations, respectively, * indicates
complex conjugate, and Re and Im denote the real and imaginary parts of the complex cross-product
amplitude, respectively [42]. The first element of the Stokes vector (S0) represents the total scattering
power, whereas the second component indicates the degree of the linear horizontal (S1 > 0) or vertical
(S1 < 0) polarization. The third component illustrates whether the SAR signal is polarized at tilt
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angle 45◦ (S2 > 0) or 135◦ (S2 < 0). The last component (S3) characterizes the left-circular (S3 > 0) or
right-circular (S3 < 0) polarization wave [7] (see Table 3).

The second group of parameters, the Stokes child features, are extracted from the Stokes vector.
The circular polarization ratio represents the ratio between the same circular polarization intensity and
the opposite circular polarization intensity, wherein values greater and lower than one correspond
to double-bounce and surface scattering mechanisms, respectively [62]. The degree of polarization
represents the state of polarization [28], wherein 0 and 1 indicate purely depolarized and polarized
waves, respectively [34]. The relative phase (δ) [45] is potentially similar to the co-polarized phase
difference and varies from −180◦ to 180◦. This parameter is useful for identifying whether surface
(δ > 0) or double-bounce (δ < 0) scattering is dominant [62]. The Cloude αs [63] has similar
behaviour as that of the alpha angle of Cloude-Pottier decomposition, describing the dominant
scattering mechanism [41].

Six CP decomposition parameters were also examined. They were obtained from m-delta [45]
and m-chi decompositions [28], each of which has three components. The extracted features from the
m-delta and m-chi decompositions describe the physical scattering mechanisms of even-bounce,
double-bounce, and volume scattering analogous to those obtained from the Freeman-Durden
decomposition. For example, m− δ−V reflects a dominant depolarized backscattering mechanism
(volume scattering). However, δ discriminates the dominant scattering mechanism between
odd-bounce (δ > 0 ∴ δ−O > δ− E) and even-bounce (δ < 0 ∴ δ−O < δ− E).

The conformity coefficient is independent of Faraday rotation (FR) and varies between −1 and
1 [64]. Note that in the conformity coefficient equation, S is the element of the scattering matrix in
the subscripted polarization, wherein the first and second subscripts indicate the transmitted and
received wave polarizations, respectively. For the distributed targets under the reflection symmetry
hypothesis: (1) µ is positive and approaches 1 when surface scattering is dominant; (2) µ is negative and
approaches −1 when double-bounce scattering is dominant; and (3) µ has an intermediate value when
volume scattering is dominant [64]. The correlation coefficient varies between 0 and 1 and indicates the
degree of correlation between RV and RH intensity [47]. The last two parameters are Shannon entropy
intensity and polarimetry features. The Shannon entropy intensity is potentially similar to S0 (the
first element of the Stokes vector), as it represents the total backscattering power [65] and has shown
high correlation with S0 in the previous studies [35,66]. The Shannon entropy polarimetry represents
the polarimetric contribution, depends on the Barakat degree of polarization [65], and is, therefore,
correlated with the degree of polarization [66].

3.3. Backscattering and Separability Analyses

Backscattering analysis was performed for several FP and CP SAR features to visually interpret
the discrimination capacity between similar wetland classes. A quantitative analysis of the separability
between pairs of wetland classes was then followed by the two-sample Kolmogorov-Smirnov (K-S)
distance. The K-S distance is a nonparametric separability measurement that determines the maximum
difference between two cumulative distribution functions [67]. It varies between 0 and 1, wherein lower
(~0) and higher (~1) values correspond, respectively, to low and high discrimination potentials between
two classes using a given input feature. The K-S distance was calculated for all extracted CP and FP
features between each pair of wetland classes. This discrimination analysis resulted in four groups of
classes with: (1) poor separability, or, the K-S distance values lower than 0.5 (K− S < 0.5); (2) some
degree of separability, or, the K-S distance values ranging between 0.5 and 0.7 (0.5 ≤ K− S ≤ 0.7);
(3) good separability, or, the K-S distance values ranging between 0.7 and 0.85 (0.7 < K− S ≤ 0.85);
and (4) excellent separability, or, the K-S distance greater than 0.85 (K − S > 0.85). These selected
thresholds are appropriate for the purpose of this study and are matched with recent similar studies
of feature analysis and selection (e.g., [35,41,66]). Notably, the same training polygons were used for
backscattering and separability analyses of both the FP and CP SAR data. For this purpose, different
subsets of each class with relatively homogeneous and large areas were selected.
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3.4. Classification Scheme

An object-based classification scheme was employed in this study. Multi-resolution segmentation
(MRS) analysis was used for object-based classification. Scale, shape, and compactness are three
user-defined parameters for MRS analysis [68]. These parameters were adjusted using key directions
from previous studies (e.g., [33]) and a trial-and-error procedure. Accordingly, the optimal values for
scale, shape, and compactness were found to be 100, 0.1, and 0.5, respectively. Notably, the compactness
of 0.5 balances the compactness and smoothness of the objects equally. Scale values ranging between
25 and 300 were examined and a value of 100 was found to be optimal according to the visual analysis
of the segmentation results.

The random forest (RF) algorithm was selected for classification [69]. RF is a non-parametric
classifier and is insensitive to outliers and overtraining. It also has potential to handle high dimensional
remote sensing data. RF is an ensemble classifier that comprises a set of Classification and Regression
Trees (CART) to make a prediction [70]. RF is advantageous relative to decision trees in terms
of classification performance and is much easier to execute compared to support vector machine
(SVM) [70]. In particular, RF can be easily adjusted using two input parameters, namely the number
of trees (Ntree) and the number of variables (Mtry) [70]. About two thirds (i.e., in-bag) of the training
samples are selected to produce trees with high variance and low bias using a bootstrap aggregating
(bagging) approach. The remaining one third (i.e., out-of-bag, OOB) of the training samples are
employed for an internal cross-validation accuracy assessment [71]. The best splitting of the nodes is
determined by minimizing the correlation between trees and the final label is based on the majority
vote of the trees [70].

The two inputs of the RF classifier were determined based on (a) our previous studies (e.g., [33,72]),
and (b) a trial-and-error approach. Specifically, the parameter of Mtry was assessed for the following
values when Ntree was adjusted to 500: (a) one third of the total number of polarimetric features; (b) the
square root of the total number of polarimetric features; (c) half of the total number of polarimetric
features; and (d) all polarimetric features. This resulted in little or no influence on the classification
accuracies. Accordingly, Mtry was adjusted to the square root of the total number of polarimetric
features, as suggested in [69]. Then, the value of Ntree was assessed for the following values when
Mtry was set to the optimal value: (a) 400; (b) 500; (c) 600; (d) 700; (e) 800; (f) 900; and (g) 1000. A value
of 500 was then found to be optimal, as accuracies remained approximately constant for Ntree values
exceeding 500.

3.5. Evaluation Indices

This study examined two commonly used evaluation indices, namely overall accuracy (OA) and
Kappa coefficient (K). Overall accuracy characterizes the overall efficiency of the algorithm and can
be determined by dividing the total number of correctly-identified pixels (i.e., the diagonal elements
of the confusion matrix) by the total number of testing pixels. The Kappa coefficient measures the
degree of agreement between the ground truth data and the classified map. Both user’s accuracy (UA)
and producer’s accuracy (PA) were also reported for the classification results of the Avalon study
area. Producer’s accuracy is measured by dividing the total number of correctly-classified pixels in a
category by the total number of pixels in that category obtained from the reference data (i.e., the testing
samples) and is also a representative of omission error. User’s accuracy is measured by dividing the
total number of correctly-classified pixels in a category by the total number of classified-pixels in that
category as derived from the classified map and is also a representative of commission error [73].
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4. Results and Discussion

4.1. Backscattering Analysis

4.1.1. Full Polarimetric SAR Data

Figures 3–5 depict box-and-whisker plots of the various wetland classes extracted from SAR
backscattering intensity features, as well as the Freeman-Durden and H/A/alpha decompositions.
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Figure 5. Box-and-whisker plots for extracted features from the Cloude-Pottier decomposition for
wetland classes obtained from the pixel values of the training data set. Note: H: entropy, A: anisotropy,
and α: alpha angle.

As illustrated in Figure 3, the shallow-water class is easily separable from other wetland classes
using all intensity features, as it has the lowest SAR backscattering response in all cases. This is
because the dominant scattering mechanism for the shallow-water class is specular scattering, resulting
in little to no SAR backscattering return for this class in three polarizations. All wetland classes
have higher backscattering responses in σ0

HH , given the high sensitivity of the HH-polarization
signal to double-bounce scattering. This is particularly true for marsh, for which double-bounce
scattering was potentially dominant given the optimum height of water level at the time of SAR data
acquisition. Despite the greater responses in the HH-polarization signal, most wetland classes are not
distinguishable from each other using this feature due to the high degree of overlap between some
wetland classes, such as bog/fen and marsh/swamp. However, the classes of bog and fen are separable
using σ0

VV . This is because the dominant scattering mechanism for these classes is surface scattering and
σ0

VV is sensitive to this scattering mechanism. This corroborates the results of past studies (e.g., [49,74]),
which concluded that surface scattering is an important contributor to the classification of bogs and
fens. Overall, σ0

VV is useful for distinguishing herbaceous wetland classes (i.e., bog, fen, and marsh)
in this study. Notably, the swamp class is more effectively separated from other herbaceous wetland
classes (especially bog and fen) using σ0

HV , given the increased volume scattering and depolarization of
the SAR signal in its canopies due to the multiple scattering mechanisms. Although volume scattering
is dominant in swamps, double-bounce between trunks/branches and standing water could be present.
This finding agrees with the results of previous studies, such as those appearing in [74]. Nevertheless,
the capability of C-band data for mapping forested wetland is hindered by its shallow penetration
depth, especially when the forest canopy is dense.

As illustrated in Figure 4, double-bounce, volume, and surface scattering are the dominant
scattering mechanisms for the marsh, swamp, and bog and fen classes, respectively. These contribute to
distinguishing these classes from other wetland classes. For example, the marsh class is separable from
other wetland classes using the double-bounce scattering mechanism, whereas the volume scattering
component of the Freeman-Durden decomposition is the most useful feature for discriminating
swamps from other wetland classes. Shallow-water is distinguishable based on its dominant specular
scattering mechanism, producing the lowest backscattering responses.

As shown in Figure 5, the alpha angle (α) and, to a lesser extent, entropy (H) are useful for
discriminating similar wetland classes. In particular, entropy is lowest for the bog class, illustrating a
low degree of depolarization and randomness. This is characteristic of a relatively smooth surface.
Other wetland classes have a relatively large entropy value, which indicates the presence of different
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scattering mechanisms. Although the dominant scattering mechanism for fens is surface scattering
from the uniform grass, other scattering types could also be present. Notably, the bog class is
distinguishable from other wetland classes using the entropy feature, but this feature is less useful for
discriminating other wetland classes. However, the alpha angle is efficient for discriminating various
classes, especially herbaceous wetland classes. This is logical given that the alpha angle discriminates
features according to their types of scattering mechanisms. As shown, the bog and fen classes have
a low alpha angle, illustrating a dominant surface scattering mechanism. The swamp wetland is
characterized by intermediate alpha values, indicating dominant volume scattering. The alpha angle
for marshes mostly ranges from 40◦ to 50◦, corresponding to a dominant double-bounce scattering
mechanism. In contrast to the entropy and alpha angle, anisotropy is less useful for discriminating
similar wetland classes. This is in line with the findings of other studies, such as [75], which reported a
lower efficiency of the anisotropy feature for crop mapping.

4.1.2. Compact Polarimetric SAR Data

Figures 6–8 depict box-and-whisker plots of various wetland classes extracted from the features
of the CP SAR data.
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polarization, µ: conformity coefficient, and ρ: correlation coefficient.

As is the case for FP SAR data, the shallow-water class is distinct from other classes in all four
polarizations. σ0

RR exhibits clear advantages for classifying herbaceous wetland classes. It is also useful
for discriminating swamps from bogs and fens. However, the two classes of swamp and marsh are not
separable using σ0

RR. These two classes are better distinguished using σ0
RV and σ0

RL; however, confusion
remains between them. Among wetland classes, only shallow-water has values below the noise floor
of the RCM medium resolution mode (-24 dB; see the red horizontal line in Figure 6). All other wetland
classes produce a backscattering response considerably higher than the nominal NESZ of the RCM
medium resolution mode. Thus, the higher noise floor of RCM medium resolution CP SAR data is not
problematic for wetland mapping, but may have some impacts on surface water mapping.

A comparison between Figures 4 and 7 reveals that the backscattering responses of the wetland
classes in the m-delta decomposition are very similar to those of the Freeman-Durden decomposition.
In particular, the marsh and swamp classes are characterized by double-bounce and volume scattering
mechanisms, respectively. Surface scattering is, however, dominant for bogs and fens.

As shown in Figure 8, most of the features extracted from the CP SAR data are able to distinguish
wetland classes. For example, the circular polarization ratio distinguishes marsh from all other
classes. This feature is also useful for discriminating bogs from other wetland classes and fens from
shallow-water. The degree of polarization is also useful in distinguishing bogs from other wetland
classes, excluding the marsh class. This is because the degree of polarization for bogs tends to
1, indicating a relatively pure polarized wave. This is consistent with our observations from the
Cloude-Pottier decomposition, wherein bogs had the lowest entropy and alpha angle, both of which
indicate a relatively pure polarized wave. The conformity coefficient is also promising for separating
all wetland vegetation classes. Likewise, the correlation coefficient is efficient for differing some
wetland classes, for example, bogs from other wetland classes.

4.2. Separability Analysis

4.2.1. Full Polarimetric SAR Data

Figure 9 illustrates the separability between pairs of wetland classes from the FP SAR data using
the K-S distance.
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As expected, the shallow-water class is easily separable from most wetland classes, as several
features represent good and excellent separability in this case (see the fourth and last columns in
Figure 9). Bogs also are discernible from swamp and marsh, as several features indicate either good or
excellent separability between these classes. Thus, bog (excluding bog-fen) and shallow-water classes
are distinguishable from other classes based on both backscattering analysis and the K-S distances.
This is attributable to the dominance of a single scattering mechanism for these classes (i.e., surface
scattering for bogs and specular scattering for shallow-water), which results in good or excellent
separability using different SAR features.

Conversely, other wetland classes exhibit some degree of separability in the best case. For example,
fen-marsh, fen-swamp, and marsh-swamp are separable using two, five, and three of 13 features,
respectively, with some degree of separability (see the blue color for these pairs of wetland classes).
Notably, the alpha angle is useful for discriminating fens and marshes (i.e., approaching good
separability). However, there remains similarity between them, potentially due to their vegetation
structures, such as sedge meadows and reeds, as has been previously reported [74]. Likewise,
bogs and fens are also found to be hardly distinguishable using the FP SAR features, albeit with
a greater number of features (six of 13 features with some degree of separability). Bogs and fens
are both peatlands with very similar vegetation types, which are typically short vegetation with
smooth canopies. This contributes to the similarity between these classes. Overall, the difficulty of
discriminating these classes using C-band data has been reported in the literature [74]. The results of
our separability analysis indicate that only the anisotropy feature of the Cloude-Pottier decomposition
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is not useful for wetland mapping. Accordingly, this feature was removed for classification in the
following sections.

4.2.2. Compact Polarimetric SAR Data

The separability between pairs of wetland classes from the extracted features of the CP SAR data
using the K-S distance is depicted in Figure 10.
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The K-S distance analysis of CP SAR features indicates relatively similar behavior as that of
the FP SAR data. However, the number of more separable features is higher, given that 22 CP SAR
features were examined in this case as compared to 13 features from the FP SAR data. Specifically,
several features exhibit an excellent separability between shallow-water from other wetland classes
(K− S > 0.85). For example, the SAR backscattering coefficient features indicate either excellent or
good separability between the shallow-water and other wetland classes, given the lowest backscattering
responses were from shallow-water.

The two classes of bog and fen fall within either the poor separability class or some separability
class (six of 22 features) using the CP SAR features. For example, the volumetric components of m-chi
and m-delta decompositions produce a K-S distance of 0.65. This finding may be explained by the
fact that the dominant scattering mechanism for bogs is surface scattering, whereas fen may also
produce volume scattering (see also Figure 7). Bog and marsh were distinguished using several CP
features, with three of 22 features representing excellent separability, six of 22 features representing
good separability, and five of 22 features representing some degree of separability. The discrimination
between these classes is due to the fact that the dominant scattering mechanism for bogs is surface
scattering as compared to dominant double-bounce scattering in marshes. This results in different
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responses for these two classes in several CP SAR features (see Figures 6–8), which contribute to
discrimination between them. Likewise, bogs and swamps are also discernible using several CP
features, with four of 22 features representing excellent separability, four of 22 features representing
good separability, and two of 22 features representing some separability. The volumetric component of
the m-chi and m-delta decompositions, as well as σ0

RR, are among the most separable features between
bogs and swamps, potentially due to the different dominant scattering mechanisms for these classes.
As for the extracted features from the FP SAR data apart from a slight deviation, the separability
between fen-marsh, fen-swamp, and marsh-swamp mostly falls into the class of some separability.

As shown in Figure 10, some CP SAR features are very promising for discriminating similar
wetland classes. For example, intensity features, the first and last components of the Stokes vector,
the circular polarization ratio, the volumetric components of the m-chi and m-delta decompositions,
and the Shannon entropy features are among the most useful CP SAR features, as they exhibit an
excellent separability between at least two pairs of wetland classes. Other studies also found that
Shannon entropy was an important feature for wetland mapping, given its capability to discriminate
saturated soils from unsaturated soils [76], as well as flooded vegetation from open water [77]. This is
further confirmed in this study, because the Shannon entropy intensity feature indicates an excellent
separability between the shallow-water class and other wetland classes, as illustrated in Figure 10.
Conversely, some features, such as the second and third components of the Stokes vector, as well as the
relative phase were less useful because they poorly separated wetland classes in most cases. As such,
these three features were removed from further analysis in the following sections.

4.3. Classification Results

Table 4 represents the overall accuracies and Kappa coefficients for three case studies using FP
and CP SAR data. Overall, the results indicate the superiority of the FP SAR data compared to those
of CP in the three case studies. In particular, an overall accuracy of 87.89%, 80.67%, and 84.07% were
obtained from the CP SAR data for the Avalon, Deer Lake, and Gros Morne study areas, respectively.
These indicated a decrease of about 2.8%, 4%, and 6.9% in overall accuracies for the Avalon, Deer Lake,
and Gros Morne study areas, respectively, relative to the FP SAR data.

Table 4. The overall accuracies and Kappa coefficients obtained from FP and CP SAR data for the three
case studies.

Case Study Type of Data Overall Accuracy (%) Kappa Coefficient

Avalon
FP 90.73 0.88
CP 87.89 0.85

Deer Lake
FP 84.75 0.81
CP 80.67 0.77

Gros Morne
FP 90.93 0.88
CP 84.07 0.80

The most accurate result using CP SAR data was obtained for the Avalon study area, as more
training data were available for this site compared to the other two pilot sites (see Table 1). In particular,
more wetland sites were available for visitation in the Avalon area due to their proximity to public
roads and, in particular, this area is close to the capital city, St John’s. As such, significant effort
was devoted to collecting in-situ data from this site, compared to those of other sites. Figures 11–13
demonstrate the classified maps of the Avalon, Deer Lake, and Gros Morne study areas, respectively.
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Figure 13. (a) A true color composite of RapidEye optical imagery (bands 3, 2, and 1) acquire on June
18, 2015. The classification maps of the Gros Morne study area obtained from (b) FP (OA: 90.93%,
K: 0.88) and (c) simulated CP SAR data (OA: 84.07%, K: 0.80).
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Overall, there is an agreement between the classification maps of FP and CP SAR data. Taking
the Avalon area as an example (Figure 11b,c), bog and fen are the most prevalent wetland classes in
the two classified maps. This is in line with biologists’ reports recorded during in-situ data collection.
Furthermore, the dominance of urban areas in the center of the study area (capital city of St John’s)
was correctly identified in the two classification maps, and again this is in agreement with real world
objects. This consistency also exists between the classification maps for Deer Lake and Gros Morne.
Tables 5 and 6 represent the confusion matrices of the classification maps for the Avalon area.

Although both FP and CP SAR data successfully classify the non-wetland classes with user and
producer’s accuracies exceeding 92%, FP SAR data are advantageous for wetland classes in most cases.
Specifically, an overall accuracy of 90.73% was obtained using the FP SAR data, with bogs correctly
classified in 80.29% of cases, fens in 86.09%, marshes in 61.76%, swamps in 66.03%, and shallow-water
in 93.17% of cases. These demonstrate an improvement of about 2.8% in terms of overall accuracy,
as well as 8.4%, 15.3%, 0.5%, and 7.7% improvements in terms of producer’s accuracies for bogs,
fens, swamps, and shallow-water, respectively, compared to those of the CP SAR data. Interestingly,
marshes were better distinguished using CP SAR data relative to the FP SAR data, demonstrating an
improvement of about 10.4% in terms of producer’s accuracy.

Among wetland classes, the highest producer’s accuracy was obtained for shallow-water. This is
in line with results of the backscattering and separability analyses, both of which demonstrated that
shallow-water is easily separable from other wetland classes. Furthermore, bogs were classified with
relatively acceptable accuracies in most cases. This further supports the findings of the backscattering
and separability analyses, which indicated bogs are distinguishable from other wetland classes.
In particular, the K-S distance revealed that bogs are most separable from marsh, swamp, and
shallow-water with K-S distances exceeding 0.7 using several features. However, there was similarity
between bogs and fens according to the separability analysis because they had a K-S distance up to 0.7.
This latter observation is also in agreement with the confusion matrix, as a high confusion error exists
between bogs and fens.

The producer’s accuracies are lower for swamp, as well as marsh (only for FP SAR data) compared
to those of other classes. This is relatively in line with the results of the backscattering and separability
analyses. For example, the two classes of marsh and swamp were found to be hardly distinguished
from other wetland classes according to the backscattering analysis. This is further supported by the
confusion matrix, as these classes had the lowest accuracies in most cases. This could be attributed to
the lower amount of training data for the swamp and marsh compared to those of other classes. Note
that these two classes had training polygons with the small sizes compared to other wetland classes
(e.g., bog). This is because of the natural ecological characteristics of NL wetlands and its cool and moist
climate, which contribute to extensive peatland formation (i.e., bog and fen). Accordingly, bogs and fens
are more frequently visited during in-situ data collection and are easily spotted during interpretation
of the aerial and satellite imagery. This resulted in the production of large and homogeneous training
polygons for these classes. Conversely, swamps are usually inaccessible and hardly distinguishable
using visual interpretation of satellite imagery. They also exist in physically small areas, such as in
transition zones between a wetland and another land cover class. This resulted in the production of
small size training polygons for this class.
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Table 5. The confusion matrix of the Avalon classification map obtained from the FP SAR data. An overall accuracy of 90.73% and Kappa coefficient of 0.88
were achieved.

Reference Data

Classified data

Bog Fen Marsh Swamp Shallow-waterUrban Deep-water Upland Total User Acc. (%)

Bog 3659 139 68 142 0 52 0 459 4519 80.97
Fen 442 1981 95 58 0 37 0 25 2638 75.09

Marsh 122 44 809 33 71 55 7 49 1190 67.98
Swamp 156 82 102 729 0 4 0 81 1154 63.17

Shallow-water 3 2 171 0 1732 7 205 4 2124 81.54
Urban 114 16 41 14 2 5777 0 5 5969 96.78

Deep-water 2 0 0 0 54 0 8621 0 8677 99.35
Upland 59 37 24 128 0 0 0 8122 8370 97.04

Total 4557 2301 1310 1104 1859 5932 8833 8745 34,641
Producer Acc. (%) 80.29 86.09 61.76 66.03 93.17 97.39 97.60 92.88

Table 6. The confusion matrix of the Avalon classification map obtained from the CP SAR data. An overall accuracy of 87.89% and Kappa coefficient of 0.85
were achieved.

Reference Data

Classified data

Bog Fen Marsh Swamp Shallow-waterUrban Deep-water Upland Total User Acc. (%)

Bog 3278 317 23 105 0 43 0 165 3931 83.39
Fen 524 1629 78 111 2 79 1 202 2626 62.03

Marsh 163 149 946 53 88 63 0 18 1480 63.92
Swamp 182 142 47 723 0 57 0 34 1185 61.01

Shallow-water 6 2 118 0 1588 12 392 3 2121 74.87
Urban 247 51 51 7 2 5539 0 6 5903 93.83

Deep-water 0 0 0 0 175 0 8440 0 8615 97.97
Upland 157 11 47 105 4 139 0 8317 8780 94.73

Total 4557 2301 1310 1104 1859 5932 8833 8745 34,641
Producer Acc. %) 71.93 70.8 72.21 65.49 85.42 93.47 95.55 95.11
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5. Conclusions

The spatial distribution of wetlands is of particular interest for the sustainable management of
this important, productive ecosystem. In this study, the capability of full and simulated compact
polarimetric (FP and CP) SAR data for wetland mapping was investigated in three pilot sites
in Newfoundland and Labrador, Canada. A total of 13 FP and 22 simulated CP SAR features
were extracted to identify the discrimination capability of these features between pairs of wetland
classes both qualitatively, using backscattering analysis, and quantitatively, using the two-sample
Kolmogorov-Smirnov (K-S) distance measurement. The most useful features were then identified and
incorporated into the subsequent classification scheme.

Among wetland classes, bog and shallow-water were found to be easily distinguished according
to both the backscattering analysis and the K-S distance. Several features indicated either good or
excellent separability between pairs of shallow-water-other classes and bog-other classes. Among FP
features, backscattering intensity features, the Cloude-Pottier alpha angle, the volumetric components
of the Freeman-Durden and Yamaguchi decompositions, as well as the surface scattering component
of Yamaguchi decomposition were useful, as they indicated an excellent separability (K− S > 0.85)
between at least one pair of wetland classes. With regard to the CP SAR features, SAR backscattering
coefficients, the first and last components of the Stokes vector, the circular polarization ratio,
conformity coefficient, correlation coefficient, Shannon entropy, and both volume and surface scattering
components of the m-chi and m-delta decompositions were useful features.

The overall accuracies of 87.89%, 80.67%, and 84.07% were obtained from the CP SAR data for the
Avalon, Deer Lake, and Gros Morne study areas, respectively. The overall accuracies obtained from the
FP SAR data were 90.73%, 84.75%, and 90.93% for the Avalon, Deer Lake, and Gros Morne study areas,
respectively, which were higher than those of CP. Although the classification results demonstrated the
superiority of FP SAR data compared to that of CP, the latter remains advantageous. This is because
CP SAR data, which will be collected by RCM, will have a wider swath coverage and improved
temporal resolution compared to those of RADARSAT-2. This is of great significance for efficiently
mapping phenomena with highly dynamic natures (e.g., wetlands) on a large scale. Thus, the results
of this research suggest that CP SAR data available on RCM hold great promise for discriminating
conventional Canadian wetland classes. The analysis presented in this study contributes to further
scientific research for wetland mapping and serves as a predecessor study for RCM, which will soon
be the primary source of SAR observations in Canada.
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