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Abstract: Due to the complex background and low spatial resolution of the hyperspectral sensor,
observed ground reflectance is often mixed at the pixel level. Hyperspectral unmixing (HU) is a
hot-issue in the remote sensing area because it can decompose the observed mixed pixel reflectance.
Traditional sparse hyperspectral unmixing often leads to an ill-posed inverse problem, which can be
circumvented by spatial regularization approaches. However, their adoption has come at the expense
of a massive increase in computational cost. In this paper, a novel multiscale hierarchical model for a
method of sparse hyperspectral unmixing is proposed. The paper decomposes HU into two domain
problems, one is in an approximation scale representation based on resampling the method’s domain,
and the other is in the original domain. The use of multiscale spatial resampling methods for HU
leads to an effective strategy that deals with spectral variability and computational cost. Furthermore,
the hierarchical strategy with abundant sparsity representation in each layer aims to obtain the global
optimal solution. Both simulations and real hyperspectral data experiments show that the proposed
method outperforms previous methods in endmember extraction and abundance fraction estimation,
and promotes piecewise homogeneity in the estimated abundance without compromising sharp
discontinuities among neighboring pixels. Additionally, compared with total variation regularization,
the proposed method reduces the computational time effectively.

Keywords: hyperspectral unmixing; hierarchical sparsity constraint; multiscale; spatial regularization

1. Introduction

Hyperspectral images possess abundant spectral information, which makes target detection
and classification become feasible [1,2]. However, due to a low spatial resolution of hyperspectral
sensor and the complex background, amounts of mixed pixels exist in the image and that makes it
impossible to determine the material directly from the pixel level. In order to ensure the materials,
called endmembers, in a scene, hyperspectral unmixing (HU) is being researched to solve the issue.
Through the HU technique, we can identify the distinct endmember signatures that are present in
a scene and its corresponding abundance fractions in each pixel. Thanks to the HU, this makes it
possible for precision classification and target detection at the sub-pixel level for risk prevention and
response [3–5].

Research work has been devoted to HU. Among it, non-negative matrix factorization (NMF) has
been shown to be a useful unsupervised decomposition for hyperspectral unmixing [6]. The learned
non-negative basis vectors that are used are distributed, yet they are still sparse combinations that
generate expressiveness in the signal reconstructions [7]. Generally, NMF is attractive because it
usually provides a part-based representation of the data, making the decomposition matrices more
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interpretable [8]. There are many possibilities to define the cost function and procedures for performing
its alternating minimization, which leads to several improved NMF algorithms. The most popular
algorithms for NMF belong to the class of multiplicative Lee–Seung algorithms, which have relatively
low complexity but are characterized by slow convergence and risk becoming stuck in local minima [9].
To improve the performance of the NMF based hyperspectral unmixing method, further constraints
were imposed on NMF [10–14]. Miao and Qi proposed a minimum volume constrained non-negative
matrix factorization [15]. Sparsity constraints have gained much attention since most of the pixels are
mixtures of only a few endmembers in the scene, which implies that the abundance matrix is a large
degree of sparsity. Furthermore, regularization methods are usually utilized to define the sparsity
constraint on the abundance matrix. Along these lines, L1/2 regularization is introduced into NMF
so as to enforce the sparsity of the endmember abundance matrix [8]. However, the performance of
many existing NMF algorithms may be quite poor, especially under the condition where the unknown
nonnegative components are badly scaled (ill-conditioned data), insufficiently sparse, and a number
of observations are equal or only slightly greater than a number of latent (hidden) components [16].
Therefore, a hierarchical strategy or multilayer NMF (MLNMF) is proposed to improve the performance
of existing NMF, which is fully confirmed by extensive simulations with diverse types of data to blind
source separation [16,17].

It should be noted that the phenomenon of spectral variability, which can be caused by
variable illumination and environmental, atmospheric, material aging, object contamination, and
other conditions, cannot be neglected [18–22]. It is shown that the same material spectra may be
varied in the different area or the different materials may have similar spectra. Likewise, as the
spatial resolution of imagery increases [23], it reduces the mixed pixel number in the image while
increasing the spectral variability. Therefore, if we only extract the spectra from one of the areas as
the endmember for unmixing, then the abundance map may not be accurate. To circumvent these
issues, spatial regularization approaches, such as Total Variation Regularization (SUnSAL-TV), deserve
special attention since they promote solutions that are spatially piecewise and homogeneous without
compromising sharp discontinuities between neighboring pixels [24,25]. However, this adoption has
come at the expense of a massive increase in computational cost and it needs the complete endmember
matrix prior knowledge. On the other hand, it is worth considering that the hyperspectral image
data acquired by different imagery sensors is various. Likewise, different optimal spatial resolutions
exist for different object characteristics, suggesting for the need for a multiscale spatial approach for
detection and analysis. In the literature [26], it has been proved that the spectral variability of land
cover was reduced in coarser resolution images when compared to finer resolutions. Thus, it is essential
to find a multiscale HU method to improve the unmixing accuracy regardless of the spatial resolution.

In this paper, a multiscale spatial regularization hierarchical model is considered to tackle the
sparse unmixing problem. It breaks the unmixing problem into two domain problems. One is in
an approximation domain that considers the spatial contextual information and the other is in the
original domain that considers the detail information. Unlike the Total Variation Regularization that
requires considering explicitly the dependences between pairs of pixels, the proposed multiscale
regularization process compares the abundance matrix directly, which results in a computationally
efficient procedure.

The research is presented in five sections. Section 2 is the theoretical background and the proposed
method. Sections 3 and 4 report the experimental results and discussion and give suggestions for
future research, respectively. Finally, Section 5 concludes the paper.

2. Theoretical Methodology

2.1. Linear Mixture Model

When using the linear mixture model, the following three assumptions apply: (1) the spectral
signals are linearly contributed by a finite number of endmembers within each IFOV weighted by



Remote Sens. 2019, 11, 500 3 of 16

their covering percentage (abundance); (2) the land covers are homogeneous surfaces and spatially
segregated without multiple scattering; (3) the electromagnetic energy of neighboring pixels do not
affect each other [27,28]. Under the linear mixture model assumption, we have:

Y = MS + ε

s.t. : S ≥ 0, 1T
p S = 1T

n
(1)

where M = [m1, . . . , mp] ∈ RB×p is the matrix of endmembers (mi denotes the ith endmember signature
and p is the number of endmember, B is the band number), and S ∈ Rp×N is the abundance matrix
([S]i,j denotes the fraction of the ith endmember of the pixel j and N denotes the total number of pixels),
and ε denotes a source of additive noise. The abundance matrix needs every element within it, should
be non-negative, and sum to one in each column.

2.2. Multiscale Hierarchical Unmixing Methods

The proposed multiscale hierarchical model for sparse hyperspectral unmixing method (MHS-HU)
consists of two steps. First, we transform the original image domain (D) to an approximation (coarse)
domain (C) using the multiscale method. Then we conduct the hierarchical sparsity unmixing
(HSU) [22] method to obtain the endmember and abundance matrix to regularize the original unmixing
problem. Different from the former method, the weighting matrix in this paper is set to the unit matrix.
Superior to the HSU method, this procedure avoids the man-made endmember spectral variability
library selection and estimation. On the other hand, it should be noted that the literature [24] also
made the HU procedure in the coarse domain. However, compared with the literature [24] method,
this paper uses a L1/2 norm to impose further sparsity, rather than using the L1 norm. In addition,
we use multilayer sparsity to achieve better estimates of endmembers and abundance matrix results.

HU in the coarse domain can reduce the spectral variability effect.
Next, we apply a conjugate transformation to convert the abundance matrix obtained in the coarse

domain before going back to the original image domain. The converted abundance matrix is then used
to regularize the unmixing process to promote the spatial dependency between neighboring pixels.
Then, with the abundance matrix constraints, we conduct the unmixing procedure again. Finally,
we obtain the endmember and abundance matrix.

Consider a linear operator W ∈ RN×K, K < N that implements a spatial transformation of the
original domain. Then,

YC = YW (2)

where YC ∈ RB×K is the coarse domain of the original image Y. K denotes the total number of pixels
in the coarse domain. The W matrix is upscaling matrix which reduces the image dimension and
computational cost. Then the hierarchical sparsity unmixing procedure can be re-casted into the coarse
domain. It can be computed as follows:

JC(MC, SC) =
1
2
‖YC −MS‖2 + λ‖S‖1/2 (3)

The value of the parameter λ depends on the sparsity of the material abundance and it is computed
based on the sparseness criteria, shown as follows

λ = αe
−t
τ (4)

where α and τ are some constants to regularize the sparsity constraints, and t denotes the iteration
number in the process of optimization [16]. Then we obtain the estimated abundance matrix ŜC ∈ Rp×K

in the coarse domain. We define a conjugate transform W∗, which converts the images from the coarse
domain back to the original domain:

ŜD = ŜCW∗ (5)
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where ŜD ∈ Rp×N is the smooth approximation of the abundance in the original domain, which
can be used to regularize the original unmixing problem. In this way, it is possible to introduce a
spatial correlation into the abundance map solutions by separately controlling the regularization
strength in each of the coarse and original domain. Compared with the traditional total variation
regularization [25] that requires to consider explicitly the dependences between all pairs of pixels,
the proposed method considering the dependences between the two abundance matrices can reduce
time consuming computational cost.

Following this idea, we define the multiscale hierarchical model for sparsity unmixing method
as follows:

JD(M, S) =
1
2
‖Y−MS‖2 + λ‖S‖1/2 +

β

2
‖ŜD − S‖2 (6)

where β is a regularization parameter. Since the SD obtained in the coarse domain is invariant in
this equation, the additional item is still convex. Note that compared with the hierarchical sparsity
unmixing method in the coarse domain, the update rule for the endmember matrix stays invariant,
while the update rule for the abundance matrix must be different. Now we address the update rule
for the abundance matrix S. To make our elaboration clearer, the objective function is separable in
the columns of S. Likewise, the corresponding row of Y is denoted y. The column-wise objective
function becomes

D(s) = 1
2
‖y−Ms‖2 + λ‖s‖ 1

2
+

β

2
‖ŝD − s‖2 (7)

2.2.1. Multiscale Methods

Large volumes of high-resolution hyperspectral image data offer challenges that are more
time-consuming, complex, and computationally intensive than a single scene analysis to the user.
In addition, in high resolution hyperspectral image data, the spectral variability phenomenon is also
obvious, which restricts the unmixing accuracy. However, there are amounts of mixed pixels in the
low spatial hyperspectral image. Balancing the effect of the mixed pixel and spectral variability,
using the multiscale unmixing method to interpret each pixel can no doubt improve the classification
accuracy [29]. That is reasonable because the multiscale strategy considering the surrounding pixels
reduces the spectral variability effect. Additionally, as a rule of thumb, each object has its suitable
scale to be detected [26]. Using high resolution hyperspectral image data makes it possible to provide
multiscale analysis.

In multiscale methods, nearest-neighbor (NN), bilinear interpolation (BIL) and cubic convolution
(CC) are commonly available in a commercial image processing software package [30]. In NN, the DN
of the pixel closest to the location of the original input pixel is assigned to the ones at the output
pixel location. In BIL, the DN is assigned to the output pixel by interpolating DNs in two orthogonal
directions within the input image. Essentially, it also can be computed based on the weighted distances
to the points. In CC, the weighted DN values of 16 pixels surrounding the location of the pixel in the
input image are used to determine the value of the output pixel.

However, as illustrated in the literature [30,31], the nearest neighbor, bilinear interpolation, and
cubic convolution resampling methods are not suitable for resampling remotely sensed data. And the
results showed that both Gaussian and aggregation resampling methods were found to produce similar
radiance values [26]. In the literature [32], the study showed that compared with other aggregation
resampling methods, a point-centerd distance-weighted moving window (PDW) is the best option to
be used in, for example, the studies on ecological resource management where consistency of the class
proportions at coarser resolutions is required. Therefore, for convenience, no weighting PDW is used
in this study.
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2.2.2. The Optimization Problem

To guarantee the convergence of the update rule, we define an auxiliary function G(s, st) satisfying
the condition G(s, s) = D(s) and G(s, st) ≥ D(s) such that D(s) is a non-increasing function when
updated using the following equation

s(t+1) = arg min
s

G
(
s, st) (8)

This is guaranteed by

D(s(t+1)) ≤ G
(

s(t+1), st
)
≤ G

(
st, st) = D(st) (9)

The Taylor expansion of D(s) can be written as

D(s) = D
(
st)+ (s− st)∇D(st)+ 1

2
(
s− st)T

[
MT M− β

4
s−

3
2 − β

](
s− st) (10)

We define the function G as

G
(
s, st) = D(st)+ (s− st)(∇D(st))+ 1

2
(
s− st)TK

(
st)(s− st) (11)

where the diagonal matrix K(st) is

K
(
st) = diag(

(
MTMst +

λ

2
(
st)− 1

2 + β

)
./st) (12)

Then

∇sG
(
s, st) = ∇D (

st)+ K
(
st)(s− st)

= MT Mst −MTx + λ
2 s−

1
2 + β

(
st − sD

)
+ K

(
st)(s− st) (13)

Set ∇sG
(
s, st) = 0, we get

s = st − K−1(st)[MT Mst −MTy + λ
2 s−

1
2 + β

(
st − sD

)]
=

st .∗(MTy+βsD)

MT Mst+ λ
2 s−

1
2 +βst

(14)

To improve performance in solving the Equations (3) and (6), especially for ill-conditioned or badly
scaled data, and reducing the risk of getting stuck in the local minima of a cost function, we develop a
hierarchical procedure in which we perform a sequential decomposition of non-negative matrices for
hyperspectral unmixing. The mathematical representation of the hierarchical structure is formulated as

Y = M1S1, S1 = M2S2, . . . , Sl = MlSl ⇒ M = M1M2 . . . Ml , S = Sl (15)

where the l denotes the layer number. Thus, the endmember and abundance matrix in each layer, Ml
and Sl , can be achieved by a modification of the multiplicative update rules as follows.

Sl ← Sl . ∗ (MT
l Y + βSD)./

(
MT

l MlSl +
λ

2
S−

1
2

l + βSl

)
(16)

Ml ← Ml . ∗
(

YlST
l

)
./
(

MlSlST
l

)
(17)

Furthermore, regarding the sum-to-one constraint on the abundance fraction in the model (1),
the data matrix and the endmember matrix are augmented by a row of constants defined by

Yf =

[
Y

δ1T
N

]
M f =

[
M

δ1T
p

]
(18)
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where δ controls the impact of additivity constraint over the endmember abundance fractions, and
N and p denote the whole pixel number and endmember number, respectively. The larger the δ, the
closer the sum over the columns of the abundance matrix are to unity. In each layer iteration, these
two matrices are taken as the input of the update rule in Equations (16) and (17) as an alternative to Y
and M.

Figure 1 shows the flowchart of the proposed method. The abundance and endmember matrix in
blue dotted line are the outputs of the coarse domain. And the matrices in the red dotted line are the
final outputs of the method.
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3. Experiments

3.1. Experimental Data

In this section, we introduce two sets of experimental data, simulated data, and real image data.
The simulated data makes it possible for presetting the endmember set and abundance fraction

map as prior knowledge that can be used as a measurement for the approach performance.
The procedure described in the literature [15] has been used to create the simulated data. In this
paper, the simulated data endmember spectra are derived from the USGS digital library. The data set
is a 224 spectral band image with n = 2000 pixels consisting of five endmembers. The endmembers
are extracted from the USGS library randomly. The abundance maps are piecewise smooth images.
In addition, the variety of spectral features and different signal-to-noise ratios have been employed to
generate the simulated images. To ensure no pure pixel exists, all the abundance fractions larger than
0.8 are discarded. To make the scenes more realistic and reasonable, white Gaussian noise is added
and SNR is set to 30 dB [3].

Apart from the simulated data, we also conduct a real data experiment. There are two real data
cubes. The first real hyperspectral image data cube, RC1, we choose the data obtained by ground-based
hyperspectral imaging instrumentation. The experiment site is located in Wuyuan (29.35◦N; 118.09◦E),
Jiangxi province, China. The images are captured by a Pika XC2 imaging of Resonon, which is a
push broom imager designed for the acquisition of visible and near-infrared hyperspectral images
ranging from 400 nm to 1000 nm with 1.3 nm spectral resolution in September 2017 [22]. The image
was calibrated using a white reference panel and converted from radiance to reflectance. The original
image has 462 channels. Note that channels 1–13 and 385–462 were blurred due to the sensor noise and
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atmospheric water vapor absorption. As a result, we only used channels 13–384 with the wavelength
ranging from 400 nm to 900 nm. Therefore, the size of the test image is 400 × 400 × 372. Rice, grass,
and corn are in the scene, shown in Figure 2. The right curve plot displays an example of the spectral
variability of the weed. Each spectrum is collected in a different area.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 16 
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Figure 2. Illustration of the study agricultural site near Wuyuan, Jiangxi Province, China. The site is
dominated by the rice, corn, and weed.

The second real data cubes, RC2, is the classic hyperspectral data, Urban, collected by HYDICE
hyperspectral imagery. The size of the image is 307× 307 with a spatial resolution of 2 m. It contains 210
spectral channels with the spectral resolution of 10 nm in the 400 nm and 2500 nm range. The imaging
area is located at Copperas Cove near Fort Hood, TX, U.S. After removing low SNR and water-vapor
absorption bands, a total number of 162 bands remained. The five materials prominently present in
RC2 are asphalt, grass, roof, shadow and tree. The false color of the RC2 is displayed in Figure 3.
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For the evaluation of the proposed method, spectral angle distance (SAD), abundance angle
distance (AAD), root mean square error (RMSE) and abundances mean squared error (MSEa) are used
in this paper. It should be noted that the endmembers of the synthetic data are extracted from USGS
serving as the reference endmembers. For the real image data, the reference endmembers are extracted
from the image. Each endmember class is extracted from the pure pixel area. Then an average of the
observations in each endmember class is computed, serving as reference endmember spectra.

SAD is defined as:

SAD
(
mi, mj

)
= cos−1

( 〈
mi, mj

〉
‖mi‖‖mj‖

)
(19)
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where mi denotes the ith endmember spectra, <mi, mj> denotes the inner product of the two spectra,
||•|| denotes the vector magnitude. It is used to compare the similarity of the original pure endmember
signatures and the estimated ones.

AAD is used on the condition that the abundance fractions are known as prior knowledge.
It measures the similarity between original abundance fractions (si) and the estimated ones (ŝi), which
is formulated in the equation below.

AAD(si, ŝi) = cos−1
(
〈si, ŝi〉
‖si‖‖ŝi‖

)
(20)

To obtain an overall measure accuracy, root mean square of these measures are defined as

rmsSAD =

(
1
p

p

∑
i=1

(SADmi )
2

)1/2

(21)

rmsAAD =

(
1
N

N

∑
i=1

(AADsi )
2

)1/2

(22)

where p denotes the number of endmember and N denotes the whole number of pixels.
RMSE is denoted by

RMSE =

√√√√ 1
N·B

N

∑
i=1

L

∑
j=1

ε2
i,j (23)

where N denotes the total number of pixels, B denotes the total number of spectral bands, and
εi,j = Yi,j − (MS)i.j denotes the error of the ith row and the jth column between the original and
simulated image data. It is used to evaluate the reconstruction estimates’ error. Since the model errors
are likely to have a normal distribution rather than a uniform distribution, the RMSE is a good metric
to present model performance [33].

MSEa is denoted by

MSEa =
1

Np
‖M− M̂‖2

F (24)

where N denotes the total number of pixels, p denotes the endmember number, and M denotes the
original endmember matrix, M̂ denotes the estimated endmember matrix. It is used to evaluate the
abundance estimates’ error. MSEa is used on the condition that the truth endmember is known as prior
knowledge.

3.2. Simulated experiments

In the simulated experiment, the parameters of the algorithm are set as follows: α = 0.1, τ =

25, L = 4, β = 0.2, the window scale is five and the maximum iteration time is 1000. In this experiment,
SNR is set to 25 dB. Figure 4 shows the proposed method, MLNMF, L1/2-NMF, VCA-FCLS and
SUnSAL-TV [25,34,35] method unmixing results, respectively. The selection of these algorithms comes
naturally since the proposed methods, L1/2-NMF and SUnSAL-TV, share similar sparse regression
formulations [8,24], and MLNMF [17] also considers the multilayer strategy to improve the existing
NMF performance. VCA-FCLS is the traditional method and is also used as the initial unmixing
method, which results in the inputs of the proposed method. It should be noted that the SUnSAL-TV
is only an abundance estimation method that needs the endmember matrix input as prior knowledge.
Therefore, we input the endmember extracted by the VCA to the SUnSAL-TV. The input parameters
used in SUnSAL-TV are λ = 0.01 and λTV = 0.001. The first column demonstrates the original simulated
abundance fraction, and the second column to the sixth ones are corresponding to the abundance
fraction map estimated by different methods, respectively. The abundance fraction map is denoted
using a color bar, which the blue color shows the least fraction near to zero and the red color shows
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the highest fraction near to one. The variation of color bar is consistent with the natural spectral
wavelength change. From the figure, it is obvious that the proposed method can obtain a higher
precision in abundance estimation than the traditional single layer L1/2-NMF algorithm. Table 1 shows
the true and reconstructed abundance maps for the different algorithms. The compared methods are
L1/2-NMF, MLNMF, VCA-FCLS and SUnSAL-TV. As expected, models accounting for hierarchical or
multilayer strategy tend to yield better reconstruction quality than L1/2-NMF. The proposed method
yields the smallest abundance reconstruction error, followed by MLNMF. The discrepancies between
the MSEa and RMSE results among the methods that address spectral variability indicate that there is
no clear relationship between these two variables. This is due to the fact that the MSEA pays more
attention to the abundance estimates, while RMSE focuses on the reconstruction error of the image data.
Additionally, the proposed method considers the spatial regularization as the additional constraints,
therefore it tends to yield more stable unmixing results compared with the MLNMF. In terms of
computational cost, we compared the proposed method with the SUnSAL-TV. The computational
complexity of the algorithms is evaluated through the average execution time of 20 runs, which is
displayed in Table 2. The results show that the proposed method performed significantly better than
the SUnSAL-TV, with execution times 7 to 12 times smaller than the SUnSAL-TV. That is due to the
fact that the proposed method tends to compare the dependences between the two domain abundance
matricies rather than all pairs of pixels that reduce the computational cost.
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Table 1. Comparison of MSEa and RMSE on simulated data.

Accuracy (10−4) MHS-HU MLNMF VCA-FCLS L1/2-NMF SUnSAL-TV

MSEa 1.073 1.093 2.178 1.102 3.274

RMSE 1.667 1.679 3.152 1.738 33

Table 2. Execution time of the unmixing algorithms on experimental data.

MHS-HU SUnSAL-TV

simulated data 10.62s 88.93s
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In addition, to verify how the multiscale window affects the proposed method in hyperspectral
unmixing accuracy, we experiment with various window scale and the coefficient beta under the same
fixed initial condition. Both the statistics are based on the average value of thirty times running results.
Table 3 shows the various window scale comparison results. It is observed that the performance
does not vary significantly from its optimal values unless the window becomes too large. This is
reasonable that when the window becomes too large, it may produce a higher mixture pixel that
increases the difficulty of the inverse solution. Furthermore, Table 4 illustrates the weighting coefficient
of the multiscale effect on the final unmixing accuracy. As the results show, β = 0.2 tends to obtain
better results.

Table 3. Comparison of MSEa, RMSE and rmsSAD accuracy with various scale.

Value 2 4 5 6 8

MSEa (10−4) 1.0786 1.0284 1.0244 1.0223 1.0227

RMSE (10−4) 1.8750 1.8367 1.8376 1.8431 1.8277

rmsSAD 0.0736 0.0683 0.0647 0.0672 0.0676

Table 4. Comparison of MSEa, RMSE and rmsSAD accuracy with various β.

β 0 0.01 0.05 0.1 0.2 0.4 0.5 0.8 1 2

MSEa (10−4) 1.1177 1.1197 1.1972 1.0943 1.0742 1.0892 1.1100 1.2264 1.3239 1.8116

RMSE (10−4) 1.7948 1.7544 1.7447 1.7534 1.7201 1.9674 2.2948 2.7408 3.4200 5.5022

rmsSAD 0.0389 0.0374 0.0385 0.0384 0.0387 0.0428 0.0457 0.0555 0.0621 0.0898

Therefore, we have illustrated the advantages of our proposed method on simulated data against
L1/2-NMF, MLNMF, SUnSAL-TV and VCA-FCLS. The experimental results consistently show that
MHS-HU exhibits better performance in hyperspectral unmixing. This is particularly true in the
presence of ill-conditioned or projected gradient algorithms.

3.3. Real Data Experiments

In the first real data, RC1, experiment, the endmember and layer number are set as 3 and 4,
respectively. The iteration in each layer is set to 1000. Furthermore, we set α = 0.1 , β = 0.2, τ = 10
and the multiscale as 5.

Figure 5 shows the unmixing results of the proposed method and the compared methods.
The compared methods are MLNMF, VCA-FCLS, SUnSAL-TV and L1/2-NMF. It is worth mentioning
that both the spatial and spectral resolution of the image are so tiny that they capture the shadow details
among the rice and corn. Furthermore, except for the spectral variability of crops especially caused
by the shadow effect, the high similarity of corn and weed also increases the difficulty in vegetable
abundance estimation. That is the reason why traditional unmixing methods such as VCA-FCLS and
L1/2-NMF cannot produce the expected results in the vegetable abundance estimation, especially
in rice abundance estimation. However, in this case, the proposed method shows significantly
better performance estimating the rice abundance map when compared with the other algorithms.
This indicates that the proposed method effectively exploits the spatial properties of the abundance
maps by using multiscale strategy, resulting in more spatially consistent estimates with fewer outliers
resulting from the influence of measurement noise. In addition, a hierarchical sparsity strategy is also
used to search the optimal global solution. Thus we can obtain a better result than the traditional one,
especially in distinguishing corn and rice. In the corn abundance map, all the methods made the wrong
estimation and some weeds showed a high fraction. That is because the corn and the weed spectra
are too similar in the visible waveband to distinguish them. Nevertheless, the proposed method
can still estimate the corn abundance completely compared with the others. Table 5 illustrates the
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unmixing results of different methods. As mentioned before, the proposed method also outperforms
other methods.
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Table 5. Comparison of rsmSAD and RMSE on real data.

Accuracy MHS-HU MLNMF VCA-FCLS L1/2-NMF SUnSAL-TV

rmsSAD 0.1940 0.2329 0.2856 0.2415 X

RMSE 0.0063 0.0064 0.0114 0.0088 0.0071

Table 6 illustrates the multiscale effect on the unmixing results. As expected, as the window scale
varies, the accuracy increases to some degree. But when the window scale is too large, the accuracy
tends to decrease. In this experiment, it should be noted that when the scale window is 1, it cannot
be regarded as the original domain, such as in MLNMF. On the contrary, it means we conduct two
continuous hierarchical sparsity hyperspectral unmixing procedures on the original domain, but with
the first abundance result as the spatial regulation constraint of the second one. This tends to yield
more stable results.

Table 6. Comparison of rmsSAD and RMSE on data with various scale.

Window Scale 1 3 5 7

rmsSAD 0.2079 0.1953 0.1915 0.1917

RMSE 0.0089 0.0064 0.0061 0.0071
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In the second real data experiment, the layer number is 4 and the maximum iteration time in
each layer is 1000. Furthermore, we set α = 0.1, β = 0.2 and τ = 10. The endmember number is
set as 5 and the multiscale is 5. Since the true abundance maps are unavailable for the images, we
make a qualitative assessment of the recovers abundance maps based on knowledge of materials
present in a prominent fashion in those scenes. The major endmember abundance maps for the
Urban data set are depicted in Figure 6. The compared methods are geometric-based VCA with FCLS,
MLNMF and L1/2-NMF. As can be seen, the proposed method yields the best results for the overall
abundances of all materials. Especially the roof abundance map, it corresponds with ground truth
well. Not only the fraction of the biggest roof is near to 1, shown in red color, but also the other
small size roof can also be estimated accurately. Also, in the tree abundance map, the proportion
of the proposed method outperforms the other unmixing methods. Regarding the abundance map,
Tables 7 and 8 show the SAD and RMSE of different methods. The SAD results varied among the
algorithms, with no method performing uniformly better than the others. Table 7 indicates that the
proposed method and the MLNMF results are very close and significantly smaller than those of the
other methods, which agrees with their better abundance estimation results. This falls in line with the
fact that compared with the single layer L1/2-NMF, the hierarchical or multilayer NMF with abundance
sparsity representation in each layer aims to obtain the global optimal solution [17]. On the other hand,
since the grass and the tree have highly similar diagnostic spectral features, the grass and the tree
cannot be endmember sets simultaneously in the geometric simplex [36]. This is why the traditional
geometric based VCA-FCLS method cannot distinguish them effectively. Therefore, the proposed
method and the MLNMF outperform the traditional methods. It should be noted that compared with
MLNMF, the proposed method does not show the same advantage of using the multiscale strategy to
improve the unmixing accuracy as the RC1 data experimental results. That is due to the fact that the
Urban dataset is one of the prevalent authentication data for unmixing, which means every pixel in
the dataset is well calibrated. The data is collected from the airborne imagery with nadir, observing
that the shadow effect within the endmember class is much smaller than the RC1. In addition, the area
is homogeneous. Thus, compared with the RC1 data cube, the spectral variability phenomenon is not
obvious in this dataset. Table 9 shows the results versus various window scales. As mentioned before,
the spatial resolution of RC2 data is 2 m and each endmember class is homogeneous with a large area
and less spectral variability. The unmixing accuracy increases with the window scale to some degree.
When the window scale becomes too large, the unmixing result deviates its optimal value. This is
expected since the large multiscale size hinders the capability of transformation matrix W to capture
coarse scale information [24]. Therefore, the best results are obtained with a proper window scale.
To summarize, the results mentioned above confirm the satisfactory performance of the proposed
method in terms of unmixing quality.

Table 7. Comparison of SAD on Urban data by MHS-HU, MLNMF, L1/2-NMF and VCA-FCLS.

SAD MHS-HU MLNMF L1/2-NMF VCA-FCLS

Asphalt 0.1745 0.1692 0.2027 0.1978
Grass 0.0896 0.0890 0.2857 0.3667
Tree 0.1682 0.1636 0.1897 0.2155
Roof 0.1493 0.1569 0.4611 0.4636

shadow 0.3289 0.3489 0.4238 0.3881

mean 0.1821 0.1855 0.3439 0.3263

Table 8. Comparison of RMSE on Urban data by MHS-HU, MLNMF, L1/2-NMF and VCA-FCLS.

RMSE MHS-HU MLNMF L1/2-NMF VCA-FCLS

mean 0.0195 0.0198 0.03753 0.02102
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Table 9. Comparison of rmsSAD and RMSE on Urban data with various scales.

Window Scale 1 3 5 7

rmsSAD 0.2398 0.2455 0.1821 0.2424

RMSE 0.0211 0.0185 0.0189 0.0198
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4. Discussion

Previous work has documented the effectiveness of various unmixing algorithms, especially in
synthetic data. It should be noted that synthetic data is generated in a fully controlled environment,
and the accuracy of the unmixing results can be effectively validated. However, it is not easy to
realistically simulate the data close to the real data, which consists of various spectral variability.
That is the reason why the unmixing results based on simulated data are often inconsistent with the
ones based on real data. Notably, when it comes to verifying the endmember extraction accuracy,
we tend to extract the spectra directly from the image by averaging the selected sample. Therefore,
regarding the idea, this study decomposes the HU into the coarse and original domain to reduce the
spectral variability effect.

As a rule of thumb, coarser spatial resolutions can result in a loss of spatial and spectral
information. Amounts of studies have examined the impact of spatial resolution on the mapping
of vegetation [26]. The results have indicated that a pixel size of 6 m or less would be optimal for
studying the functional properties of southern California grassland [37]. However, considering the
current conditions for the satellite hyperspectral imagery, it is hard to obtain a finer spatial resolution
than 6 m. In this case, to improve the mapping accuracy, the unmixing procedure is in need. Since
the demonstrated viability of upscaling approaches suggests that current ground instrumentation
is adequate for satellite mission validation needs, it is also possible that new ground measurement
technologies could significantly expand the spatial support of observations derived from ground-based
instrumentation. Therefore, by resampling the ground-based or airborne images to coarser spatial
resolutions and applying unmixing modeling algorithms, the impacts of spatial resolution on fraction
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estimation can be simulated. In addition, high resolution reference images can also be used for the
validation of global land cover datasets. The accuracy assessment of the land surface parameters
estimation algorithm is difficult to achieve due to the difficulties in obtaining actual fraction vegetation
cover from the field surveys [38]. For this purpose, it is necessary to aggregate the high resolution
reference map to the corresponding coarse resolution global land cover dataset [32]. Additionally,
it is more persuadable to verify the unmixing result accuracy and saves much time or cost for the
situ survey.

However, it should be noted that each material has its own fit resolution to be detected. Therefore,
when we use the multiscale unmixing method, the multiscale window cannot be too large. Analogously,
the literature [24] used superpixel algorithms for multiscale transformation, and it also mentioned
that the performance might deviate, which is optimal value if the superpixel size became too large.
This is expected since very large multiscale sizes may contain semantically different pixels, hindering
the capability of the transformation in matrix W to adequately capture coarse scale information.
Furthermore, the unmixing results for super resolution mapping (SRM) can also be used in a wide
range of applications. Providing a map at the sub-pixel level is more persuadable than the simply
fractional images. As illustrated in the literature [39], in this study both the unmixing method and
the SRM were focused on developing the boundary of the river at the sub-pixel. On the other
hand, compared with the SUnSAL-TV method using the endmember matrix as input, the proposed
method can obtain the endmember and abundance matrix simultaneously without prior knowledge.
In addition, the proposed method tends to compare the two domain abundance matrices rather than
all the pixels that reduce the computational time.

Rather, it is impossible for the HU method results to maintain consistency under the various
spatial resolution conditions. In this case, the users only pay more attention to which kind of HU
method outperforms the others regardless of the spatial resolution or which spatial resolution is fit
for the specific application. Therefore, it is feasible that the HU method using a multiscale unmixing
strategy can consider the different spatial resolutions and enhance the stability of the results with
spatial regularization.

5. Conclusions

This paper proposes an unsupervised multiscale hierarchical sparsity unmixing method to
improve the accuracy of hyperspectral unmixing. It decomposes large scale spatially regularized
sparse unmixing into two domain problems in different image domains, one capturing coarse
domains and another representing fine scale details. Considering the spatial contextual information
with an abundance matrix regularization in a coarse domain, the proposed method leads to a
simple and efficient strategy to deal with spectral variability, especially caused by shadow between
neighboring pixels. The unmixing procedure can then be solved at a reasonable computational cost.
Additionally, it uses a hierarchical strategy to decompose matrices into a multilayer. In each layer, we
force an abundance sparsity representation to improve the performance in hyperspectral unmixing.
The proposed method has been applied to simulated and real datasets. Compared with MLNMF,
SUnSAL-TV, L1/2-NMF and other approaches, the proposed method produces promising results in
endmember extraction and abundance fraction estimation. Furthermore, it reduces the computational
time effectively compared with SUnSAL-TV. It also considerably improves the unmixing performance
especially if a problem is ill-conditioned. In addition, the projected gradient algorithms are used
to reduce the risk of getting stuck in local minima. Furthermore, the proposed method can be
readily applied to other conditions in which nonnegative sparse matrix factorization is a valuable
computational tool. Additionally, it is worth mentioning that it may be more appropriate to focus future
sensor development towards collecting data at the finest spatial resolution, and develop algorithms
focused on upscaling routines, rather than collecting a host of different spatial resolution data with
high expense cost. Thus, it is essential to find an appropriate upscaling technique to represent the
hyperspectral data at different scales and a stable multiscale HU method in further research.
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