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Abstract: The traditional station-based drought index is vulnerable because of the inadequate spatial
distribution of the station, and also, it does not fully reflect large-scale, dynamic drought information.
Thus, large-scale drought monitoring has been widely implemented by using remote sensing
precipitation products. Compared with station data, remote sensing precipitation products have the
advantages of wide coverage and dynamic, continuous data, which can effectively compensate for
the deficiency in the spatial distribution of the ground stations and provide a new data source
for the calculation of a drought index. In this study, the Gridded Standardized Precipitation
Evapotranspiration Index (GSPEI) was proposed based on a remote sensing dataset produced by
the Climate Prediction Center morphing technique (CMORPH), in order to evaluate the gridded
drought characteristics in the Yellow River basin (YRB) from 1998 to 2016. The optimal Ordinary
Kriging interpolation method was selected to interpolate meteorological station data to the same
spatial resolution as CMORPH data (8 km), in order to compare the ground-based meteorological
parameters to remote sensing-based data. Additionally, the gridded drought trends were identified
based on the Modified Mann–Kendall (MMK) trend test method. The results indicated that: (1) the
GSPEI was suitable for drought evaluation in the YRB using CMORPH precipitation data, which
were consistent with ground-based meteorological data; (2) the positive correlation between GSPEI
and SPEI was high, and all the correlation coefficients (CCs) passed the significance test of α = 0.05,
which indicated that the GSPEI could better reflect the gridded drought characteristics of the YRB;
(3) the drought severity in each season of the YRB was highest in summer, followed by spring,
autumn, and winter, with an average GSPEI of −1.51, −0.09, 0.30, and 1.33, respectively; and (4) the
drought showed an increasing trend on the monthly scale in March, May, August, and October, and a
decreasing trend on the seasonal and annual scale.

Keywords: gridded standardized precipitation evapotranspiration index (GSPEI); CMORPH satellite
precipitation data; gridded drought characteristics; Yellow River basin (YRB)

1. Introduction

Drought disaster is the natural disaster with the highest frequency, the most serious
socio–economic and ecological losses and the most extensive impact [1–3]. Therefore, it is very
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important to monitor and evaluate drought reliably and effectively. Traditionally, drought indices
are calculated by using the observational data from surface meteorological stations. However, due
to the influence of geographical and economic factors, meteorological stations often have problems
such as sparse and uneven distribution and a lack of appropriate spatial representation. As a direct
or indirect parameter for various drought indices, precipitation is more uncertain and discontinuous
in spatial and temporal distribution compared to other meteorological data such as temperature and
wind speed [4,5]. It is generally difficult to obtain accurate precipitation information in areas of missing
data by spatial interpolation. When the available precipitation data are relatively sparse, the drought
indices calculated from the station-observed data are usually unable to reflect the drought information
of the entire area [6,7].

In recent years, with the rapid development of remote sensing and data inversion technology, a
series of precipitation data products have emerged based on satellite remote sensing inversion [8,9].
Remote sensing precipitation data has wide coverage and high spatial and temporal resolution, which
effectively compensates for the shortcomings of insufficient spatial distribution of ground stations,
thus, providing a new data source for the calculation of drought indices. Among the remote sensing
satellite precipitation products, the Climate Prediction Center morphing technique (CMORPH) satellite
precipitation products released by the National Oceanic and Atmospheric Administration (NOAA) in
the United States are currently the best comprehensive satellite precipitation products with the highest
spatial and temporal resolution [10,11]. CMORPH can provide precipitation data with a temporal
resolution of 0.5 h and a spatial resolution of 8 km, and it has been widely evaluated and validated
in mainland China. The CMORPH data grid is uniformly distributed in space, which effectively
compensates for the errors caused by meteorological station interpolation. Therefore, CMORPH
precipitation products can be used to monitor and evaluate regional drought, even in areas with sparse
and uneven spatial distribution of meteorological stations and where there is a lack of data or no
data [12]. CMORPH also provides technical support for future regional hydrological forecasting and
disaster monitoring. Numerous research results have showed that CMORPH satellite precipitation
products have comparable accuracy with ground station observation data, and can replace station
observation data to a certain extent [13]. Therefore, CMORPH satellite precipitation products have
broad application prospects. Xu et al. studied the error characteristics of CMORPH precipitation
data in China [14]. The results showed that there was a strong positive correlation between the
precipitation area of CMORPH and station observation data, and the correlation coefficients in June
and July reached 0.813 and 0.827. Wang et al. analyzed the applicability of CMORPH remote sensing
precipitation products in Shaanxi Province of China, and found that CMORPH data can better reflect
the spatial distribution characteristics of annual precipitation in Shaanxi Province [15]. Jiang et al.
assessed the applicability of the latest Tropical Rainfall Measuring Mission (TRMM) Multi–satellite
Precipitation Analysis (TMPA) and CMORPH satellite precipitation products in the Yellow River basin
(YRB), and indicated that CMORPH performed much better than TRMM 3B42 Real Time Applications
(TRMM–3B42RT) in the YRB [16]. Lu et al. adopted the Standardized Precipitation Index (SPI)
to evaluate the drought monitoring effectiveness of CMORPH products, and discovered that the
CMORPH-based SPI can effectively capture typical drought events in China [17].

Due to the complexity of the causes and influencing factors of drought, a variety of drought
indices have been developed to quantify the impact of drought [18]. The commonly used Palmer
Drought Severity Index (PDSI) can monitor regional drought severity, however, PDSI needs more
calculation parameters and cannot reflect the multi–time scale characteristics of drought. The SPI is
also a commonly used drought index, and it has multi–time scale characteristics but cannot reflect the
impact of temperature on drought [19]. On the basis of assessing the advantages and disadvantages of
PDSI and SPI, Vicente–Serrano et al. introduced potential evapotranspiration items to construct the
Standardized Precipitation Evapotranspiration Index (SPEI) [20]. The SPEI is statistically robust and
easily calculated, and has a clear and comprehensible calculation procedure. The SPEI combines the
advantages of the PDSI and SPI, and it not only considers the influence of temperature on drought,
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but it also has multi–time scale characteristics [21,22]. Thus, the SPEI has become the most favorable
tool for monitoring drought development. Tirivarombo et al. compared the drought monitoring
effectiveness of SPEI and SPI in the Kafue basin of Zambia, and proposed that SPEI was superior to SPI
because temperature variability played an important role in characterizing droughts [23]. Using SPEI,
Gao et al. concluded that the Loess Plateau showed a more humid and warmer trend under climate
change in the period of 2001–2050 [24]. Zhao et al. indicated that SPEI was suitable for short-term and
long-term drought monitoring [25]. SPEI could be applied to better monitor the initiation, aggravation,
alleviation, and relief of drought and should have greater application prospects in China.

Due to its geographical location and East Asian monsoon climate, water resources in the TRB
are inherently inadequate and its precipitation distribution is asymmetrical. Additionally, the YRB
is the most seriously drought-affected region in China’s major river basins [26]. Therefore, it is
particularly important to assess the drought situation in the YRB. Previous drought assessment of
the YRB was mostly based on the calculation of drought indices of meteorological stations, and then
the drought distribution in the whole basin could be obtained by spatial interpolation. However,
an inadequate number and uneven distribution of meteorological stations limits the accuracy of
spatial interpolation. Although the accuracy of station-based drought indices is relatively high, it
is vulnerable to the inadequate spatial distribution of meteorological stations, and it is difficult to
produce large-scale, dynamic drought information. The drought index calculated by using CMORPH
data can be applied to large-scale drought monitoring. The YRB spans 23 longitudes and 10 latitudes,
and the geographical scope of the YRB is very large. Different climatic types and topographic features
lead to obvious differences in the spatial distribution of drought in the YRB; thus, it is necessary to
study each subzone on the spatial scale [27]. Currently, there are few studies on drought monitoring
effectiveness evaluation of CMORPH products at the basin scale, and drought effectiveness evaluation
of CMORPH data has not been carried out in the YRB. In view of this, this paper divided the YRB
into eight subzones. The Gridded Standardized Precipitation Evapotranspiration Index (GSPEI) was
innovatively proposed to identify the gridded drought characteristics for the first time in the YRB,
combining CMORPH data and the SPEI. The correlation between CMORPH satellite precipitation
data and station–based observation data was compared and analyzed, and the drought monitoring
effectiveness of CMORPH products was comprehensively evaluated in the YRB. The spatial and
temporal pattern of drought was specifically and systematically revealed in the YRB from 1998 to 2016.
The research results provide a scientific basis for the application of CMORPH products in drought
control and drought resistance, and have very important practical significance for the prevention and
mitigation of drought disasters in the YRB.

2. Materials and Methods

2.1. Study Area

The Yellow River basin (YRB) lies between 95◦53′–119◦05′E and 32◦10′–41◦50′N, covering a total
drainage area of 752,443 km2. It originates from the Tibetan Plateau, wandering eastward through nine
provinces in China. Since Chinese ancestors originated from the YRB, the YRB is the symbol of China’s
ancient civilization; thus, the YRB is also known as the mother river of China [28]. The average annual
precipitation in most areas of the basin is approximately 200–600 mm. The precipitation decreases
gradually from southeast to northwest. The Yellow River is the second longest river in China, and
most of the YRB is arid and semi-arid. Under the influence of climate change and human activities, the
ecological environment of the YRB is fragile and has the basic characteristics of drought [29]. Because
of the large area and varied topography, the spatial distribution of drought is varied. The YRB can
be divided into eight subzones based on the secondary basin boundary in China, including above
Longyangxia (AL), Longyangxia to Lanzhou (LL), Lanzhou to Hekou (LH), Inner Flow region (IF),
Hekou to Longmen (HL), Longmen to Sanmenxia (LS), Sanmenxia to Huayuankou (SH), and below
Huayuankou (BH) (Figure 1). The land use types of the YRB mainly include farmland, forest, grassland,
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shrub, wetland, water, artificial cover, bare land, and glacier. Land use data are derived from Globeland
30–2010 products produced by the National Geomatics Center of China (NGCC). The distribution of
64 meteorological stations is shown in Figure 1. These meteorological stations are well-distributed and
represent the entire basin well.
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Figure 1. Location map of the Yellow River basin (YRB) with meteorological stations and land cover.

2.2. Dataset

2.2.1. CMORPH Precipitation Data

The high-resolution Climate Prediction Center morphing technique (CMORPH) satellite
precipitation datasets were used in this study. The CMORPH product is available at a temporal
frequency of 0.5 h and a spatial resolution of 8 × 8 km2. The principle algorithm of CMORPH
data is to splice microwave precipitation data from multiple satellites into global precipitation
data, then calculate the displacement of precipitation cloud cluster using infrared precipitation data
between two time periods, and complete the final precipitation calculation utilizing time weight
interpolation. The algorithm makes full use of the advantages of the high accuracy of microwave
precipitation data and high spatial and temporal resolution of infrared data. The temporal and
spatial resolution of CMORPH satellite precipitation data is higher than that of other satellite
precipitation data, which have been widely used in precipitation observation and research in
China [30,31]. The starting time of CMORPH precipitation data is January 1998. Therefore,
this paper adopted the latest CMORPH products with time series of 19 years from 1998 to 2016
(ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/CRT/8km-30min/). Since the period of daily
observation data of meteorological stations was from 20:00 to the next 20:00 Beijing Time, the CMORPH
data were preprocessed first. CMORPH data are based on World Time, which can be converted into
Beijing Time (UTC+8) by adding 8 hours. CMORPH precipitation data for 0.5 h can be accumulated into
corresponding daily and monthly precipitation data. The spatial resolution of CMORPH precipitation
data was 8 km, so the analysis and evaluation of drought were carried out at the spatial resolution of
8 km in the following sections.

2.2.2. Rain Gauge Data

Monthly precipitation and temperature data from 64 meteorological stations were obtained from
the National Meteorological Information Center (NMIC) at the China Meteorological Administration

ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/CRT/8km-30min/
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(CMA) for 1998–2016 (http://data.cma.cn/). The homogeneity and reliability of the meteorological
data were checked and revised by CMA before their release. The revised data showed good
homogeneity and the data quality was obviously improved. The corrected precipitation and
temperature data from each meteorological station were reliable and of good quality during the
research period (1998–2016). Precipitation data from meteorological stations were used primarily to
evaluate the accuracy of CMORPH products in estimating precipitation values in the YRB. Compared
with CMORPH precipitation data, the observed precipitation data from these meteorological stations
were used as the true value of the spatial distribution of precipitation, in order to calculate the drought
index and evaluate the drought situation in the YRB.

2.3. Gridded Standardized Precipitation Evapotranspiration Index (GSPEI)

The Standardized Precipitation Evapotranspiration Index (SPEI) is considered as a robust index for
regional drought monitoring and analysis under global climate change scenarios because of its simple
form, multiple time scales, low data requirement, and ability to identify the effects of temperature on
drought conditions [32]. The SPEI fulfills the requirements of a drought index since its multi-scalar
character enables it to be used by different scientific disciplines to detect, monitor and analyze droughts.
The SPEI is suitable for regions with annual precipitation greater than 200 mm; the average annual
precipitation is approximately 466 mm in the YRB [33]. Therefore, the SPEI can effectively reflect
drought characteristics in the YRB. The SPEI of the meteorological stations was calculated using the
precipitation and temperature data from the 64 meteorological stations. In this paper, we proposed the
Gridded Standardized Precipitation Evapotranspiration Index (GSPEI) to evaluate the gridded drought
characteristics of the YRB during 1998–2016. The monthly temperature data from the meteorological
stations were interpolated to the same resolution as CMORPH (8 km) for calculating the GSPEI. In this
study, 8 different geo-spatial interpolation methods were compared to choose the optimal one (Table 1).
Spatial interpolation of temperature data based on 51 randomly selected stations, accounting for 80% of
the total 64 stations, was performed using all of the interpolation methods to choose the best one. Then,
the interpolated temperature data of the remaining 13 stations using each method were compared
with the actual observation data. Cross-validation was used to compare and select the most suitable
interpolation method by calculating the root mean square error (RMSE), mean relative error (MRE),
and correlation coefficient (CC). Through comparative analysis, the Ordinary Kriging was found to be
the most suitable method, having the lowest RMSE (0.19), MRE (0.03), and highest CC value (0.98).
Hence, the Ordinary Kriging interpolation method was adopted to interpolate the temperature data
from the meteorological stations to the gridded temperature data with spatial resolution of 8 km, and
then the GSPEI was calculated with CMORPH gridded precipitation data. The calculation procedure
of the GSPEI was the same as that of the SPEI in [34]. In the process of calculating GSPEI, each grid
point was regarded as a station. According to the relevant references [35,36] and the actual drought
conditions in the YRB, the classification scales of the GSPEI are shown in Table 2.

Table 1. Comparison of different geo-spatial interpolation methods.

Interpolation Methods RMSE MRE CC

Kriging Interpolation Ordinary Kriging 0.19 0.03 0.98
Universal Kriging 1.35 1.87 0.82

Inverse Distance Weighting IDW 0.77 0.91 0.91

Polynomial Interpolation Global PI 1.75 2.60 0.75
Local PI 1.05 1.11 0.89

Radial Basis Function
Completely Regularized Spline 0.22 0.05 0.94

Spline with Tension 0.25 0.07 0.92
Thin Plate Spline 0.22 0.05 0.94

http://data.cma.cn/
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Table 2. Classification of the Gridded Standardized Precipitation Evapotranspiration Index (GSPEI).

Grade Classification GSPEI

I No drought −0.5 < GSPEI
II Mild drought −1.0 < GSPEI ≤ −0.5
III Moderate drought −1.5 < GSPEI ≤ −1.0
IV Severe drought −2.0 < GSPEI ≤ −1.5
V Extreme drought GSPEI ≤ −2.0

2.4. Statistical Methods

2.4.1. Evaluation Indicators

In this study, the consistency between CMORPH satellite precipitation data and reference
meteorological station data was quantitatively evaluated by six evaluation indicators, including the
correlation coefficient (CC), mean absolute error (MAE), root mean square error (RMSE), Nash–Sutcliffe
efficiency (NSE), probability of detection (POD), and false alarm ratio (FAR). The CC represents
the linear correlation between CMORPH precipitation and meteorological station observation data.
The MAE represents the average magnitude of the absolute error. The RMSE is very sensitive to
extremely large or small error values, which can well reflect the accuracy of CMORPH precipitation
data. The NSE measures the consistency of the CMORPH precipitation and gauge observation values
both in amount and temporal distribution. The POD describes the fraction of the observed precipitation
events detected correctly by the evaluated product. The FAR describes the fraction of events detected
by the product but not observed. The unit, formula, range, perfect value, and reference of these
evaluation indicators are presented in Table 3.

Table 3. Descriptions of evaluation indicators. Notation: n, number of samples; Si, satellite precipitation
data; Gi, rain gauge observations; S, mean values of satellite precipitation data; G, mean values of rain
gauge observations; N11, satellite data is >0 and rain gauge data is >0; N10, satellite data is >0 and rain
gauge data equals 0; N01, satellite data equals 0 and rain gauge data is >0.

Evaluation
Indicators Unit Formula Range Perfect Value Reference

CC NA CC = ∑n
i=1 (Gi−G)(Si−S)√

∑n
i=1 (Gi−G)

2
√

∑n
i=1 (Si−S)

2 [−1,1] 1 [37]

MAE mm MAE = 1
n ∑n

i=1|(Si − Gi)| [0,+∞) 0 [37]

RMSE mm RMSE =
√

1
n ∑n

i=1 (Si − Gi)
2 [0,+∞) 0 [38]

NSE NA NSE = 1− ∑n
i=1 (Si−Gi)

2

∑n
i=1 (Gi−G)

2 (−∞,1] 1 [38]

POD NA POD = N11
N11+N01

[0,1] 1 [38]
FAR NA FAR = N10

N11+N10
[0,1] 0 [38]

2.4.2. Extreme-Point Symmetric Mode Decomposition (ESMD)

Traditional time series analysis methods are mostly based on Fourier transform. The disadvantage
is that they are only suitable for stationary signals with linear change. The latest Extreme-Point
Symmetric Mode Decomposition (ESMD) method is appropriate for time series analysis of non-linear
and non-stationary features [39]. The ESMD method is an improvement on the Empirical Mode
Decomposition (EMD) method, and it can separate oscillation or trend components of different scales
from the original sequence step by step. The ESMD separates the fluctuation of different periods from
the original signal, and the fluctuation is stable. Finally, the trend component is obtained. Because of
its self-adaptability and sequence-based local variation characteristics, the ESMD is widely applied to
the processing and analysis of non-linear and non-stationary data in ocean and atmospheric sciences,
information sciences, ecology and other fields. The ESMD method consists of two parts. The first part
is mode decomposition, which generates several modes and an optimal adaptive global mean line.
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The second part is time-frequency analysis, which analyzes the frequency changes on different time
scales. The detailed decomposition process is described in [40].

2.4.3. The Modified Mann–Kendall (MMK) Trend Test Method

The traditional Mann–Kendall (MK) trend test method is a nonparametric statistical test method
to detect the trend change of time series. The assumption in the M–K method is that the data are
independent and randomly ordered. However, the time series often has autocorrelation, which
influences the significance of the test results. The Modified Mann–Kendall (MMK) trend test method
is the improved MK method, and it eliminates the autocorrelation components in the sequence and
improves the testing ability of the MK method [41–43]. Therefore, the MMK trend test method was
applied in this study, in order to identify the gridded drought trend characteristics in the YRB from
1998 to 2016. The detailed steps of the MMK method are as follows.

Dividing the time series XT by the mean of the sample data, a new set of sample data Xt with
an average value of 1 is obtained, and the trend estimator β of the rank of the new sample sequence
is calculated:

β = median(
xi−xj

i−j ) 1 ≤ i < j ≤ n (1)

where β > 0 indicates an upward trend in the time series, and β < 0 indicates a downward trend in the
time series.

Assuming that the trend term of the new sample sequence Xt is linear Tt, the trend term in the
sample data is removed and the corresponding stationary sequence Yt is obtained:

Yt = Xt − Tt = Xt − β× t (2)

The rank sequence corresponding to sequence Yt is calculated and its autocorrelation coefficient
ri is calculated:

ri =
∑n−i

k=1 (Rk − R)(Rk+i − R)

∑n
k=1 (Rk − R)2 (3)

where Ri is the rank of yi, and R is the average rank.
The variance var*(S) of trend statistic S of autocorrelation sequence is calculated according to

autocorrelation coefficient ri:

η = 1 +
2

n(n− 1)(n− 2)
×∑n−1

i=1 (n− i)(n− i− 1)(n− i− 2)ri (4)

var∗(S) = η × n(n− 1)(2n + 5)
18

(5)

The test statistic Z* is given as:

Z∗ =


S−1√
var∗(S)

S > 0

0 S = 0
S+1√
var∗(S)

S < 0

(6)

The Z–test value is determined using the normal distribution table. For a given significance level
α, if |Zs| is less than Z0.05/2, the original hypothesis is accepted. Otherwise, the original hypothesis
is rejected; that is, the time series has a significant upward or downward trend. Zs > 0 indicates an
upward trend in the time series, and Zs < 0 indicates a downward trend in the time series. Zs values
pass the significance test of α = 0.05 and α = 0.01 when |Zs| is greater than or equal to 1.96, and
2.58, respectively.
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3. Results

3.1. Accuracy Assessment

3.1.1. Temporal and Spatial Validation of CMORPH

It is necessary to verify the temporal and spatial applicability of CMORPH data by comparing
CMORPH with corresponding meteorological station precipitation data before using CMORPH
precipitation data to analyze the drought characteristics of the YRB. The Quantile–Quantile (Q–Q)
plot is an effective tool to visually assess the fitness and bias between the CMORPH data and rain
gauge observations for different quantiles. By comparing and evaluating the accuracy of CMORPH
precipitation data based on station precipitation observation data, the Q–Q plots for the monthly
CMORPH versus rain gauge precipitation can be obtained in the YRB (Figure 2). The correlation
between CMORPH and station precipitation data was very high and meets the accuracy requirement in
the low value range of precipitation in each month. In the high value range of precipitation, compared
with the station data, the CMORPH overestimated the actual precipitation in January, March, May,
and December, but underestimated the actual precipitation in the remaining months. The higher
correlation and the smaller deviation between CMORPH and station precipitation data appeared in
April, May and June, which reflect the actual precipitation most accurately. Overall, CMORPH data
accurately reflected the actual precipitation in the low-value range of precipitation in each month.
In the high-value range of precipitation, CMORPH had some deviations compared with the station
data, and may slightly overestimate or underestimate the actual precipitation, which reflected the
uncertainty of the current satellite remote sensing precipitation products. There was a significant
positive correlation between the CMORPH and the meteorological station precipitation data in each
month, and the CC was close to 1. In conclusion, CMORPH precipitation data met the accuracy
requirement on the temporal scale, and could monitor the drought situation in the YRB.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 20 
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the total number of stations. CMORPH data had quite small FAR value ranging from 0.03 to 0.16, 
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December, respectively.
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This paper not only evaluated the accuracy of CMORPH precipitation data on the temporal
scale, but also verified the applicability of CMORPH data on the spatial scale in the YRB, based
on six quantitative evaluation indicators. Figure 3 shows the spatial distribution of the evaluation
indicators of CMORPH and precipitation data at each meteorological station in the YRB. The evaluation
indicators included CC, MAE, RMSE, NSE, POD, and FAR. Through comparative analysis, it was
found that CMORPH and corresponding station precipitation data were highly correlated in most
stations (CC > 0.5), with an average CC of 0.84, and all correlation coefficients passed the significance
test of α = 0.01 (Figure 3a). Among them, the CCs of 45 stations were above 0.8, accounting for
70.3% of the total number of stations, and the CCs of 4 stations were above 0.9. It can be seen that
the correlation between CMORPH and station precipitation data was relatively high on the whole.
CMORPH and station precipitation data showed the same spatial trend in the MAE and RMSE. The
error decreased gradually from southeast to northwest, which was closely related to the precipitation
intensity distribution (Figure 3b,c). The MAE and RMSE of most stations in the northwest of the
YRB were below 4.5 mm and 4.7 mm, respectively. The spatial distribution characteristic of errors
was the same as that of the precipitation amount in the YRB. The precipitation intensity was high
and the precipitation amount varied greatly in the southeast of the YRB, which made the error value
relatively high, while the error value was also relatively low due to less precipitation in the northwest
of the basin. The evaluation indicator NSE also showed that CMORPH had a strong ability to detect
precipitation events. The NSE value of each station was higher, with an average value of 0.68, and the
NSE value of 10 stations was above 0.8 (Figure 3d). The POD ranged from 0.4 to 0.9, with an average
value of 0.74 (Figure 3e). It can be seen that overall, CMORPH precipitation data had few missed
reports of precipitation events. Similar to the spatial distribution characteristics of MAE and RMSE,
FAR also showed a decreasing trend from southeast to northwest (Figure 3f). A total of 43 stations had
FAR values below 0.07, accounting for 67.2% of the total number of stations. CMORPH data had quite
small FAR value ranging from 0.03 to 0.16, indicating that CMORPH detected a very limited number
of unrealistic precipitation events.

Overall, the accuracy of the CMORPH data was high in the YRB. It can be seen that the differences
between CMORPH and rain gauge observations were generally small and the CCs were relatively
high. Additionally, CMORPH precipitation data met the accuracy requirements on the temporal and
spatial scale. Thus, CMORPH data were considered acceptable for drought monitoring in the YRB.
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3.1.2. Accuracy Assessment of GSPEI

Previous studies have usually calculated the SPEI of a meteorological station based on the
precipitation and temperature, and have then obtained the regional drought distribution by spatial
interpolation [44,45]. In order to quantitatively explore the correlation between grid-based GSPEI and
station-based SPEI, we interpolated the calculated the SPEI to the same spatial resolution (8 km) as the
GSPEI, and then compared the correlation between the GSPEI and SPEI (Figure 4). The monthly and
seasonal CCs between GSPEI and SPEI are shown in Figure 5. The CC was 0.456 at the significance
level of 0.05, and was 0.575 at the significance level of 0.01. On the monthly scale, the average CCs
between GSPEI and SPEI in the whole basin from January to December were 0.57, 0.58, 0.72, 0.78, 0.83,
0.73, 0.77, 0.73, 0.76, 0.73, 0.62, and 0.49, respectively. Except for a slightly lower CC in December (CC <
0.5), the CCs between GSPEI and SPEI were higher in the other months, and reached a maximum value
of 0.83 in May. The CC between GSPEI and SPEI passed the significance test of α = 0.05 in January and
December, and passed the significance test of α = 0.01 from February to November. The average CCs
of each subzone were calculated, and the maximum CCs between GSPEI and SPEI from January to
December were found in BH (0.81), SH (0.86), SH (0.92), SH (0.89), SH (0.98), IF (0.85), HL (0.88), BH
(0.91), SH (0.95), SH (0.96), SH (0.91), and SH (0.81), respectively. On the seasonal scale, the average
CCs between GSPEI and SPEI in spring, summer, autumn, and winter were 0.72, 0.73, 0.67, and 0.55,
respectively. The CCs passed the significance test of α = 0.01 in spring, summer, and autumn. Although
the CC was slightly lower in winter, it also passed the significance test of α = 0.05. The maximum
CCs in spring, summer, autumn, and winter were found in SH (0.95), BH (0.92), AL (0.95), and BH
(0.68), respectively. In summary, most of the maximum CCs between GSPEI and SPEI appeared in SH
and BH in each month and season. The positive correlation was high in spring, summer, and autumn,
and they all passed the significance test of α = 0.01. CMORPH satellite precipitation data accurately
captures the precipitation information of the YRB, and the GSPEI calculated by using CMORPH data
can better reflect the gridded drought characteristics of the YRB. Because CMORPH precipitation
data had high spatial and temporal resolution, and the drought characteristics reflected by CMORPH
and meteorological station data had strong positive correlation, CMORPH data could be used as a
substitute for meteorological station observation data for drought monitoring in the YRB.
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3.2. GSPEI-Based Drought Characteristics

3.2.1. Temporal Evolution of Drought

The GSPEI calculated by using CMORPH precipitation data can be used to evaluate the gridded
drought characteristics of the YRB. In order to explore the seasonal and annual drought characteristics
of the YRB during 1998–2016 in detail, ESMD decomposition of seasonal and annual GSPEI was carried
out in the whole basin. When the trend item R corresponded to the minimum variance ratio and the
optimal screening times were reached, the ESMD decomposition stopped automatically; thus, the
long-term overall variation trend of drought could be obtained (Figure 6). The trend item R based on
ESMD decomposition can well reflect the temporal evolution characteristics of drought, which was
the adaptive global average line of the sequence. From Figure 6, it can be seen that drought trends in
eight subzones were obviously different on the seasonal and annual scale. On the seasonal scale, the
subzones with an increasing drought trend were AL, LL, LH, and BH in spring; AL, LL, LS, SH, and
BH in summer; SH and BH in autumn; and SH and BH in winter. The subzone with the most obvious
trend of drought was AL in spring, and the linear tendency rate of GSPEI was −0.07/10a. The seasonal
drought in other subzones showed a decreasing trend. The most obvious drought mitigation trend
occurred in HL in autumn, and the linear tendency rate of GSPEI was 0.11/10a. On the annual scale,
the subzones with an increasing drought trend were AL, LL, SH, and BH, with an SPEI linear tendency
rate of −0.09/10a, −0.435/10a, −0.162/10a, and −0.17/10a, respectively. The drought in LH, IF, HL,
and LS showed a decreasing trend, especially in HL (P < 0.01), with an SPEI linear tendency rate of
0.864/10a. It was notable that both seasonal and annual drought showed an increasing trend in BH.

In the whole basin scale, the seasonal and annual drought showed a decreasing trend in the YRB
from 1998 to 2016. The linear tendency rates of spring, summer, autumn, winter, and annual GSPEI
were 0.034/10a, 0.01/10a, 0.045/10a, 0.012/10a, and 0.215/10a, respectively. The average GSPEI values
in spring, summer, autumn, and winter were −0.09, −1.46, 0.30, and 1.33, respectively. It could be
seen that the drought severity in each season of the YRB was highest in summer, followed by spring,
autumn, and winter. Figure 6 indicated that the drought trend based on ESMD decomposition was
exactly the same as that reflected by the GSPEI, showing an identical upward or downward trend. This
showed that the ESMD method can delineate the fluctuation of the original sequence in the research
period, and can separate the variation trend from a time series of several years. The ESMD method has
significant advantages in data analysis and mining.
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and BH (h1–h5), respectively.

3.2.2. Spatial Distribution of Drought

Figure 7 illustrates the spatial distribution characteristics of monthly and seasonal drought based
on the GSPEI in the YRB. The monthly and seasonal GSPEI was the average value during 1998–2016.
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On the monthly scale, the average GSPEI values for all grids in the YRB from January to December
were 1.34, 1.33, 0.51, −0.02, −0.77, −1.40, −1.67, −1.32, −0.20, 0.49, 0.61, and 1.33, respectively. It
can be concluded that the most serious drought occurred in July, followed by June and August. As
shown in Figure 7g, drought occurred in almost the whole basin in July, and the minimum GSPEI
value reached −1.82. The GSPEI value decreased gradually from January to July, which indicated that
drought was aggravating. And the GSPEI value increased gradually from July to December, indicating
that drought was slowing down. The average monthly GSPEI values in each subzone were calculated,
and the subzones with the most serious drought from January to December were AL (0.97), AL (0.94),
LS (−0.32), LS (−0.43), HL (−1.11), SH (−1.57), IF (−1.80), AL (−1.52), AL (−1.39), BH (−0.74), SH
(−0.52), and AL (0.95), respectively. These subzones should pay attention to drought monitoring
and formulate timely drought prevention and mitigation measures in the months when drought was
relatively serious. Drought was relatively mild in other subzones. On the seasonal scale, drought
disasters were more seriousl in summer in the YRB, with an average GSPEI value of −1.46, and the
drought grade was moderate, as seen in Table 2. Drought was relatively mild in the other seasons, and
the average GSPEI values in spring, autumn, and winter were−0.09, 0.30, and 1.33, respectively, which
was consistent with the conclusions of the seasonal GSPEI in Section 3.2.1. The average seasonal GSPEI
values in each subzone were calculated, and the subzones with the most serious drought in spring,
summer, autumn, and winter were HL (−0.68), AL (−1.49), AL (−0.42), and AL (0.95), respectively.
These subzones should formulate specific drought resisting measures for the season when drought is
relatively serious, which could alleviate the losses caused by drought and help to improve the overall
drought resistance level of the YRB.
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3.3. Drought Trend Characteristics at the Grid Scale

The monthly and seasonal GSPEI trend characteristics of the YRB are depicted based on the
MMK trend test method in Figure 8. Figure 9 shows the trend characteristic Zs values of the monthly
and seasonal GSPEI for the whole basin and each subzone. On the monthly scale, the average trend
characteristic values of all grids from January to December were 0.81, 0.39, −0.24, 0.45, −0.11, 0.13,
0.18, −0.01, 0.79, −0.32, 0.44, and 0.77, respectively. The GSPEI for four months (March, May, August,
and October) showed a downward trend and drought showed an upward trend, while the drought in
the remaining months showed a downward trend. The area percentage of drought increasing trend
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in the YRB from January to December was 18.5%, 29.7%, 69.4%, 15.5%, 53.0%, 46.9%, 39.9%, 52.6%,
14.2%, 78.5%, 23.3%, and 16.1%, respectively. On the seasonal scale, the average Zs values of the GSPEI
in spring, summer, autumn, and winter were 0.03, 0.16, 0.43, and 0.81, respectively. It can be seen
that the seasonal drought trend slowed down in the YRB, while the drought trend characteristic was
different in each subzone, which is consistent with the conclusions of seasonal variation characteristics
of drought in Section 3.2.1. The area percentage with a drought increasing trend in spring, summer,
autumn, and winter was 49.3%, 47.3%, 27.7%, and 16.8%, respectively. The average trend characteristic
Zs values did not pass the significance test of α = 0.05, which indicated that the monthly and seasonal
drought showed a non-significant increase or decrease trend in the YRB (Figure 9).
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4. Discussion

Jiang et al. indicated that CMORPH precipitation data can be successfully applied in the YRB, and
that this data performed much better than TMPA precipitation data [16]. The GSPEI calculated by using
CMORPH satellite precipitation data showed that the drought slowed down in the YRB from 1998 to
2016, which was consistent with the previous research in [46,47]. In recent years, China has invested
significant funds in ecological restoration in the YRB, and has successively implemented ecological
environmental protection projects such as grain for green, natural forest protection, which have led to
a slowdown in drought in the YRB [48]. Additionally, the increase in precipitation (19.88 mm/10a) was
one of the main reasons for drought mitigation [49]. Liu et al. indicated that the most serious drought
in the YRB occurred in summer, followed by spring, which was consistent with the conclusions of
this study [50]. The gridded drought characteristics of the YRB based on CMORPH precipitation data
were the same as the actual drought situation of the basin. It can be concluded that CMORPH data can
be used effectively as a substitute for ground station observation data for drought monitoring and
assessment in the YRB. CMORPH data has wide coverage, it is dynamic, economic, and continuous,
and it has great application prospects in drought monitoring [51].

There were still some deviations between CMORPH and actual observation data in winter,
which was consistent with the results in [52,53]. Liao et al. explored the applicability of six satellite
precipitation products in China, and the results showed that the comprehensive evaluation effect
of CMORPH data was the best, and the accuracy of satellite inversion data in spring, summer, and
autumn was higher than in winter [54]. In winter, the climate is colder and snow is the main form
of precipitation. The CMORPH satellite has limited ability to retrieve solid precipitation data, which
leads to low accuracy of satellite precipitation data in winter [55].

By comparing CMORPH satellite precipitation data with meteorological station data, it could
be seen that there were some differences in the correlation and deviation between them. The
differences reflected the limitations of the CMORPH satellite in retrieving precipitation. This was
because CMORPH satellite infrared data observed the brightness temperature of the cloud top, while
microwave observed the distribution of precipitation particles in the air, and neither of them was a
direct observation of surface precipitation [56]. Also, the precision of satellite precipitation products is
reduced due to the complex topography in the YRB, which covers a large area and spans three steps in
China [57]. Additionally, the gridded precipitation data of satellite precipitation products represent the
average value of a region, while the station observation data reflect the single point observation value.
There are differences between the gridded precipitation data and single point observation data on
the spatial scale, which is also one of the reasons for the low correlation. Because the precipitation of
CMORPH data is retrieved from microwave data, the empty-reported data of microwave precipitation
will be transmitted to CMORPH data, which may lead to the empty-reported phenomenon when using
microwave data to determine precipitation [58]. Compared with the empty-reported data in CMORPH,
the missing-reported data is very limited and has little change in time series, which indicates that
CMORPH data effectively reflects actual precipitation [59]. In view of the CMORPH satellite’s low
detection capability for solid precipitation in winter, it is necessary to improve the ability of the
CMORPH satellite to detect weak and solid precipitation in future research [60].

5. Conclusions

This paper proposed a gridded drought index (GSPEI) to study the temporal evolution,
spatial distribution and trend information of drought, in order to evaluate the drought monitoring
effectiveness of CMORPH remote sensing precipitation products and reveal the gridded drought
characteristics in the YRB during 1998–2016.

The 0.5-h CMORPH data was merged into monthly data. Through comparative analysis, the
Ordinary Kriging was found to be the most suitable geo-spatial interpolation method, having the lowest
RMSE (0.19), MRE (0.03), and highest CC value (0.98). Hence, the Ordinary Kriging interpolation
method was selected to interpolate meteorological station data to the same spatial resolution as
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CMORPH data (8 km). Thus, the temporal and spatial resolutions of CMORPH and meteorological
stations data were identical. In this way, we related the ground-based meteorological parameters
to remote sensing-based data. By comparing CMORPH with corresponding meteorological station
precipitation data, it was found that CMORPH precipitation data could accurately capture actual
precipitation information in the YRB. CMORPH data met the accuracy requirements on the spatial and
temporal scales, and could be used to monitor the gridded drought situation in the YRB. The positive
correlations were high between the GSPEI and SPEI, and all the CCs passed the significance test of
α = 0.05, which indicated that the GSPEI could better reflect the gridded drought characteristics of
the YRB. Most of the maximum CCs between GSPEI and SPEI appeared in SH and BH in each month
and season. In the whole basin scale, the seasonal and annual drought showed a decreasing trend in
the YRB during 1998–2016. The linear tendency rates of spring, summer, autumn, winter, and annual
GSPEI were 0.034/10a, 0.01/10a, 0.045/10a, 0.012/10a, and 0.215/10a, respectively. The average GSPEI
values in spring, summer, autumn, and winter were−0.09,−1.46, 0.30, and 1.33, respectively. The most
serious drought occurred in summer, followed by spring. The subzones with the most serious drought
in spring, summer, autumn, and winter were HL (−0.68), AL (−1.49), AL (−0.42), and AL (0.95),
respectively. The MMK trend test results indicated that the drought showed an upward trend in March,
May, August, and October, while the drought showed a downward trend in the remaining months.

In summary, the drought index GSPEI was suitable for drought evaluation in the YRB. CMORPH
satellite precipitation data had high spatial and temporal resolution and was suitable for drought
monitoring and assessment in the YRB. Although the CMORPH satellite precipitation data worked
well for drought monitoring in the YRB, there were still some deviations compared with actual
meteorological station data. Future research work includes how to use the mathematical relationship
between deviations and precipitation to establish the corresponding model, and incorporates
underlying surface information in the microwave precipitation inversion model in order to improve
the accuracy of CMORPH data. Therefore, based on the evaluation and analysis of CMORPH satellite
precipitation data, effective measures should be taken to further improve the estimation accuracy and
performance of satellite precipitation data and its scientific and applied values in the future, and so
that it can be better applied to drought research.

Author Contributions: H.Y. and Z.W. formulated the problem and designed the experiments; F.W. analyzed the
data and performed the experiments. Z.L. provided crucial guidance and support through the research. F.W., H.Y.,
and Z.W. contributed to the discussion and edited the manuscript. F.W. and Z.Z. contributed to the validation
work and data interpretation.

Funding: This research was supported by National Key R&D Program of China (2018YFC0407405), Key Scientific
Research Projects of Henan Colleges and Universities (Grant No. 19A170014), Henan Province Scientific and
Technological Project (Grant No. 172102410075), the Open Research Fund of the State Key Laboratory of Simulation
and Regulation of Water Cycle in River Basin at the China Institute of Water Resources and Hydropower Research
(IWHR-SKL-201701), the National Natural Science Foundation of China (51779093), and Science and technology
project of Guizhou Province Water Resources Department (KT201705). The work was also supported by the UK
National Environment Research Council (NERC) through the Drier-China project (ref.: NE/P015484/1).

Acknowledgments: Thanks for the help provided by Enchong Li in data collection and language editing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yao, J.Q.; Zhao, Y.; Chen, Y.N.; Yu, X.J.; Zhang, R.B. Multi–scale assessments of droughts: A case study in
Xinjiang, China. Sci. Total Environ. 2018, 630, 444–452. [CrossRef] [PubMed]

2. Ahmadalipour, A.; Moradkhani, H. Multi–dimensional assessment of drought vulnerability in Africa:
1960–2100. Sci. Total Environ. 2018, 644, 520–535. [CrossRef] [PubMed]

3. Zhang, Q.; Yu, H.Q.; Sun, P.; Singh, V.P.; Shi, P.J. Multisource data based agricultural drought monitoring
and agricultural loss in China. Glob. Planet. Chang. 2019, 172, 298–306. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2018.02.200
http://www.ncbi.nlm.nih.gov/pubmed/29486438
http://dx.doi.org/10.1016/j.scitotenv.2018.07.023
http://www.ncbi.nlm.nih.gov/pubmed/29990902
http://dx.doi.org/10.1016/j.gloplacha.2018.10.017


Remote Sens. 2019, 11, 485 17 of 19

4. Tang, G.Q.; Zeng, Z.Y.; Long, D.; Guo, X.L.; Yong, B.; Zhang, W.H.; Hong, Y. Statistical and hydrological
comparisons between TRMM and GPM Level–3 products over a midlatitude basin: Is Day–1 IMERG a good
successor for TMPA 3B42V7? J. Hydrometeorol. 2016, 17, 121–137. [CrossRef]

5. Sun, Q.H.; Miao, C.Y.; Duan, Q.Y.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation
datasets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [CrossRef]

6. Tao, H.; Fischer, T.; Zeng, Y.; Fraedrich, K. Evaluation of TRMM 3B43 precipitation data for drought
monitoring in Jiangsu Province, China. Water 2016, 8, 221. [CrossRef]

7. Wu, J.W.; Miao, C.Y.; Zheng, H.Y.; Duan, Q.Y.; Lei, X.H.; Li, H. Meteorological and hydrological drought on
the Loess Plateau, China: Evolutionary characteristics, impact, and propagation. J. Geophys. Res–Atmos. 2018,
123, 11569–11584. [CrossRef]

8. Duan, Z.; Liu, J.Z.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded
precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016,
573, 1536–1553. [CrossRef] [PubMed]

9. Zhong, R.D.; Chen, X.H.; Lai, C.G.; Wang, Z.L.; Lian, Y.Q.; Yu, H.J.; Wu, X.Q. Drought monitoring utility of
satellite–based precipitation products across mainland China. J. Hydrol. 2019, 568, 343–359. [CrossRef]

10. Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation
estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol.
2004, 5, 487–503. [CrossRef]

11. Chen, S.; Li, W.B.; Du, Y.D.; Mao, C.Y.; Zhang, L. Urbanization effect on precipitation over the Pearl River
Delta based on CMORPH data. Adv. Clim. Chang. Res. 2015, 6, 16–22. [CrossRef]

12. Lai, C.G.; Zhong, R.D.; Wang, Z.L.; Wu, X.Q.; Chen, X.H.; Wang, P.; Lian, Y.Q. Monitoring hydrological
drought using long–term satellite–based precipitation data. Sci. Total Environ. 2019, 649, 1198–1208.
[CrossRef] [PubMed]

13. Zeweldi, D.A.; Gebremichael, M. Evaluation of CMORPH precipitation products at fine space–time scales.
J. Hydrometeorol. 2009, 10, 300–307. [CrossRef]

14. Xu, S.G.; Niu, Z.; Shen, Y.; Kuang, D. A research into the characters of CMORPH remote sensing precipitation
error in China. Remote Sens. Technol. Appl. 2014, 29, 189–194. (In Chinese)

15. Wang, Y.D.; Chen, H.; Liu, C.R.; Ding, Y.J. Applicability of ITPCAS and CMORPH precipitation datasets
over Shaanxi Province. Arid Zone Res. 2018, 35, 579–588.

16. Jiang, S.H.; Zhou, M.; Ren, L.L.; Cheng, X.R.; Zhang, P.J. Evaluation of latest TMPA and CMORPH satellite
precipitation products over Yellow River Basin. Water Sci. Eng. 2016, 9, 87–96. [CrossRef]

17. Lu, J.; Jia, L.; Menenti, M.; Yan, Y.P.; Zheng, C.L.; Zhou, J. Performance of the Standardized Precipitation Index
based on the TMPA and CMORPH precipitation products for drought monitoring in China. IEEE J.–STARS.
2018, 11, 1387–1396. [CrossRef]

18. Rajsekhar, D.; Singh, V.P.; Mishra, A.K. Multivariate drought index: An information theory based approach
for integrated drought assessment. J. Hydrol. 2015, 526, 164–182. [CrossRef]

19. Tan, C.P.; Yang, J.P.; Li, M. Temporal–spatial variation of drought indicated by SPI and SPEI in Ningxia Hui
Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [CrossRef]

20. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global
warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [CrossRef]

21. Alam, N.M.; Sharma, G.C.; Moreira, E.; Jana, C.; Mishra, P.K.; Sharma, N.K.; Mandal, D. Evaluation of
drought using SPEI drought class transitions and log–linear models for different agro–ecological regions of
India. Phys. Chem. Earth 2017, 100, 31–43. [CrossRef]

22. Zhang, Y.J.; Yu, Z.S.; Niu, H.S. Standardized Precipitation Evapotranspiration Index is highly correlated with
total water storage over China under future climate scenarios. Atmos. Environ. 2018, 194, 123–133. [CrossRef]

23. Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought monitoring and analysis: Standardised Precipitation
Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth 2018, 106,
1–10. [CrossRef]

24. Gao, X.R.; Zhao, Q.; Zhao, X.N.; Wu, P.T.; Pan, W.X.; Gao, X.D.; Sun, M. Temporal and spatial evolution of
the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change
from 2001 to 2050. Sci. Total Environ. 2017, 595, 191–200. [CrossRef] [PubMed]

25. Zhao, H.Y.; Gao, G.; An, W.; Zou, X.K.; Li, H.T.; Hou, M.T. Timescale differences between SC–PDSI and SPEI
for drought monitoring in China. Phys. Chem. Earth. 2015, 10, 1–11. [CrossRef]

http://dx.doi.org/10.1175/JHM-D-15-0059.1
http://dx.doi.org/10.1002/2017RG000574
http://dx.doi.org/10.3390/w8060221
http://dx.doi.org/10.1029/2018JD029145
http://dx.doi.org/10.1016/j.scitotenv.2016.08.213
http://www.ncbi.nlm.nih.gov/pubmed/27616713
http://dx.doi.org/10.1016/j.jhydrol.2018.10.072
http://dx.doi.org/10.1175/1525-7541(2004)005&lt;0487:CAMTPG&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.accre.2015.08.002
http://dx.doi.org/10.1016/j.scitotenv.2018.08.245
http://www.ncbi.nlm.nih.gov/pubmed/30308891
http://dx.doi.org/10.1175/2008JHM1041.1
http://dx.doi.org/10.1016/j.wse.2016.06.002
http://dx.doi.org/10.1109/JSTARS.2018.2810163
http://dx.doi.org/10.1016/j.jhydrol.2014.11.031
http://dx.doi.org/10.3390/atmos6101399
http://dx.doi.org/10.1175/2009JCLI2909.1
http://dx.doi.org/10.1016/j.pce.2017.02.008
http://dx.doi.org/10.1016/j.atmosenv.2018.09.028
http://dx.doi.org/10.1016/j.pce.2018.07.001
http://dx.doi.org/10.1016/j.scitotenv.2017.03.226
http://www.ncbi.nlm.nih.gov/pubmed/28384575
http://dx.doi.org/10.1016/j.pce.2015.10.022


Remote Sens. 2019, 11, 485 18 of 19

26. Wu, D.; Yan, D.H.; Yang, G.Y.; Wang, X.G.; Xiao, W.H.; Zhang, H.T. Assessment on agricultural drought
vulnerability in the Yellow River basin based on a fuzzy clustering iterative model. Nat. Hazards 2013, 67,
919–936. [CrossRef]

27. Liang, K.; Liu, S.; Bai, P.; Nie, R. The Yellow River basin becomes wetter or drier? The case as indicated by
mean precipitation and extremes during 1961–2012. Theor. Appl. Climatol. 2015, 119, 701–722. [CrossRef]

28. Huang, S.Z.; Chang, J.X.; Leng, G.Y.; Huang, Q. Integrated index for drought assessment based on variable
fuzzy set theory: A case study in the Yellow River basin, China. J. Hydrol. 2015, 527, 608–618. [CrossRef]

29. She, D.X.; Xia, J. The spatial and temporal analysis of dry spells in the Yellow River basin, China. Stoch.
Environ. Res. Risk Assess. 2013, 27, 29–42. [CrossRef]

30. Shen, Y.; Xiong, A.Y.; Wang, Y.; Xie, P.P. Performance of high–resolution satellite precipitation products over
China. J. Geophys. Res. 2010, 115, D02114. [CrossRef]

31. Buarque, D.C.; Paiva, R.C.D.; Clarke, R.T.; Mendes, C.A.B. A comparison of Amazon rainfall characteristics
derived from TRMM, CMORPH, and the Brazilian national rain gauge network. J. Geophys. Res. Atmos. 2011,
116, D19105. [CrossRef]

32. Zhang, B.Q.; He, C.S.; Morey, B.; Zhang, L.H. Evaluating the coupling effects of climate aridity and vegetation
restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [CrossRef]
[PubMed]

33. Wu, L.; Liu, X.; Ma, X.Y. Spatio–temporal evolutions of precipitation in the Yellow River basin of China from
1981 to 2013. Water Sci. Tech.–Water Supply 2016, 16, 1441–1450. [CrossRef]

34. Li, X.; He, B.B.; Quan, X.W.; Liao, Z.M.; Bai, X.J. Use of the Standardized Precipitation Evapotranspiration
Index (SPEI) to characterize the drying trend in Southwest China from 1982–2012. Remote Sens. 2015, 7,
10917–10937. [CrossRef]

35. Wang, F.; Wang, Z.M.; Yang, H.B.; Zhao, Y. Study of the temporal and spatial patterns of drought in the
Yellow River basin based on SPEI. Sci. China Earth Sci. 2018, 61, 1098–1111. [CrossRef]

36. Wang, Q.F.; Shi, P.J.; Lei, T.J.; Geng, G.P.; Liu, J.H.; Mo, X.Y.; Li, X.H.; Zhou, H.K.; Wu, J.J. The alleviating
trend of drought in the Huang–Huai–Hai Plain of China based on the daily SPEI. Int. J. Climatol. 2015, 35,
3760–3769. [CrossRef]

37. Jiang, S.H.; Ren, L.L.; Yong, B.; Yang, X.L.; Shi, L. Evaluation of high–resolution satellite precipitation
products with surface rain gauge observations from Laohahe Basin in northern China. Water Sci. Eng. 2010,
3, 405–417.

38. Zhang, Y.Y.; Li, Y.G.; Ji, X.; Luo, X.; Li, X. Evaluation and hydrologic validation of three satellite–based
precipitation products in the upper catchment of the Red River Basin, China. Remote Sens. 2018, 10, 1881.
[CrossRef]

39. Wang, J.L.; Li, Z.J. The ESMD method for climate data analysis. Clim. Chang. Res. Lett. 2014, 3, 1–5. [CrossRef]
40. Li, H.F.; Wang, J.L.; Li, Z.J. Application of ESMD method to air–sea flux investigation. Int. J. Geosci. 2013, 4,

8–11. [CrossRef]
41. Huang, S.Z.; Chang, J.X.; Huang, Q.; Chen, Y.T. Spatio–temporal changes and frequency analysis of drought

in the Wei River basin, China. Water Resour. Manag. 2014, 28, 3095–3110. [CrossRef]
42. Huang, S.Z.; Huang, Q.; Zhang, H.B.; Chen, Y.T.; Leng, G.Y. Spatio–temporal changes in precipitation,

temperature and their possibly changing relationship: A case study in the Wei River Basin, China. Int. J.
Climatol. 2016, 36, 1160–1169. [CrossRef]

43. Tabari, H.; Talaee, P.H.; Nadoushani, S.S.M.; Willems, P.; Marchetto, A. A survey of temperature and
precipitation based aridity indices in Iran. Quat. Int. 2014, 345, 158–166. [CrossRef]

44. Oertel, M.; Meza, F.J.; Gironás, J.; Scott, C.A.; Rojas, F.; Pineda–Pablos, N. Drought propagation in semi–arid
river basins in Latin America: Lessons from Mexico to the Southern Cone. Water 2018, 10, 1564. [CrossRef]

45. Li, B.Q.; Zhou, W.; Zhao, Y.Y.; Ju, Q.; Yu, Z.B.; Liang, Z.M.; Acharya, K. Using the SPEI to assess recent
climate change in the Yarlung Zangbo River Basin, South Tibet. Water 2015, 7, 5474–5486. [CrossRef]

46. Zhao, Q.; Chen, Q.Y.; Jiao, M.Y.; Wu, P.T.; Gao, X.R.; Ma, M.H.; Hong, Y. The temporal–spatial characteristics
of drought in the Loess Plateau using the remote–sensed TRMM precipitation data from 1998 to 2014.
Remote Sens. 2018, 10, 838. [CrossRef]

47. Wang, F.; Wang, Z.M.; Yang, H.B.; Zhao, Y.; Li, Z.H.; Wu, J.P. Capability of remotely sensed drought indices
for representing the spatio–temporal variations of the meteorological droughts in the Yellow River Basin.
Remote Sens. 2018, 10, 1834. [CrossRef]

http://dx.doi.org/10.1007/s11069-013-0617-y
http://dx.doi.org/10.1007/s00704-014-1138-7
http://dx.doi.org/10.1016/j.jhydrol.2015.05.032
http://dx.doi.org/10.1007/s00477-011-0553-x
http://dx.doi.org/10.1029/2009JD012097
http://dx.doi.org/10.1029/2011JD016060
http://dx.doi.org/10.1016/j.scitotenv.2015.08.132
http://www.ncbi.nlm.nih.gov/pubmed/26379259
http://dx.doi.org/10.2166/ws.2016.072
http://dx.doi.org/10.3390/rs70810917
http://dx.doi.org/10.1007/s11430-017-9198-2
http://dx.doi.org/10.1002/joc.4244
http://dx.doi.org/10.3390/rs10121881
http://dx.doi.org/10.12677/CCRL.2014.31001
http://dx.doi.org/10.4236/ijg.2013.45B002
http://dx.doi.org/10.1007/s11269-014-0657-4
http://dx.doi.org/10.1002/joc.4409
http://dx.doi.org/10.1016/j.quaint.2014.03.061
http://dx.doi.org/10.3390/w10111564
http://dx.doi.org/10.3390/w7105474
http://dx.doi.org/10.3390/rs10060838
http://dx.doi.org/10.3390/rs10111834


Remote Sens. 2019, 11, 485 19 of 19

48. Jiang, W.G.; Yuan, L.H.; Wang, W.J.; Cao, R.; Zhang, Y.F.; Shen, W.M. Spatio–temporal analysis of vegetation
variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [CrossRef]

49. Huang, S.Z.; Huang, Q.; Chang, J.X.; Zhu, Y.L.; Leng, G.Y.; Xing, L. Drought structure based on a
nonparametric multivariate standardized drought index across the Yellow River basin, China. J. Hydrol.
2015, 530, 127–136. [CrossRef]

50. Liu, Q.; Yan, C.R.; He, W.Q. Drought variation and its sensitivity coefficients to climatic factors in the Yellow
River Basin. Chin. J. Agrometeorol. 2016, 37, 623–632. (In Chinese)

51. Sun, R.C.; Yuan, H.L.; Liu, X.L.; Jiang, X.M. Evaluation of the latest satellite–gauge precipitation products
and their hydrologic applications over the Huaihe River basin. J. Hydrol. 2016, 536, 302–319. [CrossRef]

52. Haile, A.T.; Yan, F.; Habib, E. Accuracy of the CMORPH satellite–rainfall product over Lake Tana Basin in
Eastern Africa. Atmos. Res. 2015, 163, 177–187. [CrossRef]

53. Zhang, C.; Chen, X.; Shao, H.; Chen, S.Y.; Liu, T.; Chen, C.B.; Ding, Q.; Du, H.Y. Evaluation and
intercomparison of high–resolution satellite precipitation estimates–GPM, TRMM, and CMORPH in the
Tianshan Mountain Area. Remote Sens. 2018, 10, 1543. [CrossRef]

54. Liao, R.W.; Zhang, D.B.; Shen, Y. Validation of six satellite–derived rainfall estimates over China. Meteorol.
Mon. 2015, 41, 970–979. (In Chinese)

55. Jiang, S.H.; Liu, S.Y.; Ren, L.L.; Yong, B.; Zhang, L.Q.; Wang, M.H.; Lu, Y.J.; He, Y.Q. Hydrologic evaluation
of six high resolution satellite precipitation products in capturing extreme precipitation and streamflow over
a medium–sized basin in China. Water 2018, 10, 25. [CrossRef]

56. Cheng, L.; Shen, R.P.; Shi, C.X.; Bai, L.; Yang, Y.H. Evaluation and verification of CMORPH and TRMM 3B42
precipitation estimation products. Meteorol. Mon. 2014, 40, 1372–1379. (In Chinese)

57. Li, Q.L.; Zhang, W.C.; Yi, L.; Liu, J.P.; Chen, H. Accuracy evaluation and comparison of GPM and TRMM
precipitation product over Mainland China. Adv. Water Sci. 2018, 29, 303–313.

58. Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement,
remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [CrossRef]

59. Yang, Y.F.; Luo, Y. Evaluating the performance of remote sensing precipitation products CMORPH,
PERSIANN, and TMPA, in the arid region of northwest China. Theor. Appl. Climatol. 2014, 118, 429–445.
[CrossRef]

60. Zeng, Q.L.; Wang, Y.Q.; Chen, L.F.; Wang, Z.F.; Zhu, H.; Li, B. Inter–comparison and evaluation of remote
sensing precipitation products over China from 2005 to 2013. Remote Sens. 2018, 10, 168. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ecolind.2014.07.031
http://dx.doi.org/10.1016/j.jhydrol.2015.09.042
http://dx.doi.org/10.1016/j.jhydrol.2016.02.054
http://dx.doi.org/10.1016/j.atmosres.2014.11.011
http://dx.doi.org/10.3390/rs10101543
http://dx.doi.org/10.3390/w10010025
http://dx.doi.org/10.1016/j.atmosres.2009.08.017
http://dx.doi.org/10.1007/s00704-013-1072-0
http://dx.doi.org/10.3390/rs10020168
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Dataset 
	CMORPH Precipitation Data 
	Rain Gauge Data 

	Gridded Standardized Precipitation Evapotranspiration Index (GSPEI) 
	Statistical Methods 
	Evaluation Indicators 
	Extreme-Point Symmetric Mode Decomposition (ESMD) 
	The Modified Mann–Kendall (MMK) Trend Test Method 


	Results 
	Accuracy Assessment 
	Temporal and Spatial Validation of CMORPH 
	Accuracy Assessment of GSPEI 

	GSPEI-Based Drought Characteristics 
	Temporal Evolution of Drought 
	Spatial Distribution of Drought 

	Drought Trend Characteristics at the Grid Scale 

	Discussion 
	Conclusions 
	References

