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Abstract: This study focuses on the comparison of hybrid methods of estimation of biophysical
variables such as leaf area index (LAI), leaf chlorophyll content (LCC), fraction of absorbed
photosynthetically active radiation (FAPAR), fraction of vegetation cover (FVC), and canopy
chlorophyll content (CCC) from Sentinel-2 satellite data. Different machine learning algorithms
were trained with simulated spectra generated by the physically-based radiative transfer model
PROSAIL and subsequently applied to Sentinel-2 reflectance spectra. The algorithms were assessed
against a standard operational approach, i.e., the European Space Agency (ESA) Sentinel Application
Platform (SNAP) toolbox, based on neural networks. Since kernel-based algorithms have a heavy
computational cost when trained with large datasets, an active learning (AL) strategy was explored
to try to alleviate this issue. Validation was carried out using ground data from two study sites: one
in Shunyi (China) and the other in Maccarese (Italy). In general, the performance of the algorithms
was consistent for the two study sites, though a different level of accuracy was found between the
two sites, possibly due to slightly different ground sampling protocols and the range and variability
of the values of the biophysical variables in the two ground datasets. For LAI estimation, the best
ground validation results were obtained for both sites using least squares linear regression (LSLR) and
partial least squares regression, with the best performances values of R2 of 0.78, rott mean squared
error (RMSE) of 0.68 m2 m−2 and a relative RMSE (RRMSE) of 19.48% obtained in the Maccarese
site with LSLR. The best results for LCC were obtained using Random Forest Tree Bagger (RFTB)
and Bagging Trees (BagT) with the best performances obtained in Maccarese using RFTB (R2 = 0.26,
RMSE = 8.88 µg cm−2, RRMSE = 17.43%). Gaussian Process Regression (GPR) was the best algorithm
for all variables only in the cross-validation phase, but not in the ground validation, where it ranked
as the best only for FVC in Maccarese (R2 = 0.90, RMSE = 0.08, RRMSE = 9.86%). It was found that the
AL strategy was more efficient than the random selection of samples for training the GPR algorithm.
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1. Introduction

Accurate quantitative estimation of biophysical variables is of crucial importance for different
agricultural and ecological applications. Such variables include leaf area index (LAI), leaf chlorophyll
content (LCC), fraction of absorbed photosynthetically active radiation (FAPAR), fractional vegetation
cover (FVC), and canopy chlorophyll content (CCC). Their knowledge is valuable, for example,
for precision agriculture [1], crop traits monitoring [2], and improved yield prediction and reduction
of fertilizer usage [3,4]. The retrieval of vegetation biophysical variables from multispectral optical
satellite data has been performed by many studies in the last decades [2,5]. In time, there have been
significant developments in the algorithms used for such tasks, with a shift from empirical to more
physically-based approaches. Starting from simple parametric regressions between vegetation indices
and biophysical variables such as LAI and LCC [6–8], the current state of the art relies on hybrid
methods exploiting at the same time radiative transfer models (RTM) and non-linear non-parametric
regression algorithms [5,9,10]. The methods based on the relationship of, for example, vegetation
indices and biophysical variables by the means of fitting functions, typically use the information
provided by two or a few spectral bands. This limits the strength of such methods in today’s scenarios
where tens or even hundreds of spectral bands are available, respectively, in current super-spectral [11]
or forthcoming hyperspectral [12,13] spaceborne sensors.

On the other hand, many of the approaches that have been more recently developed for the
retrieval of biophysical variables exploit machine learning regression algorithms (MLRAs). These
algorithms have gained wide popularity since they allow the use of more complex models, by requiring
only one time-consuming training phase, but allowing their fast application any time thereafter for
the retrieval [14,15]. Another advantage of these algorithms is the possibility of training them with
full spectral information, thus overcoming issues of band selection or transformation, as in the case
of parametric regression methods [16]. These algorithms are adaptive and have the ability to cope
with the strong non-linearity inherent in remote sensing data [17,18]. Despite their advantages, these
algorithms are computationally demanding, so for some MLRAs it is difficult to carry out a training
phase with a large number of samples, though there are some that perform well also when trained
with small datasets [19]. Some of the MLRAs are also considered black boxes, e.g., neural networks
(NNs) [11,20], in which no insight is given about the physical processes linking the spectral reflectance
with the biophysical variables. Others, such as partial least squares regression (PLSR) or Gaussian
processes regression (GPR), can instead provide some information on what spectral bands are more
relevant. In hybrid methods, MLRA can be trained using physically-based modelling approaches
that describe the transfer and interaction of radiation inside the canopy based on physical laws,
thus providing explicit relations between the biophysical variables and canopy spectral reflectance.
When used in the direct mode, biophysical variables are used as input to the physical based RTM,
which in turn simulates the top-of-canopy (TOC) spectral reflectance [9]. Using turbid-medium
RTMs it is easy to generate during a short time a large simulated database, with realistic ranges of
variation of biophysical variables and their corresponding simulated spectra, within the limits of the
assumptions of the RTM on canopy properties. These pairs of biophysical variables and reflectance
spectra can be used either in numerical optimization or in look up table (LUT) retrieval methods,
by minimizing a cost function expressing the differences between observed (e.g., from satellite data)
and RTM model’s simulated reflectance and looking up the corresponding values of the biophysical
variables [21]. For operational applications, due to the pixel-by-pixel calculations, these algorithms are
computationally very demanding. These methods are also strongly affected by noise and measurement
uncertainties [11]. As inversion methods of physically-based RTMs, they suffer from the limitation of
the ill-posed nature of model inversion [22,23], by which different combinations of canopy variables
lead to local minima having similar reflectance spectra [24].

In the hybrid methods of retrieval, the database obtained from RTM simulations can be used
to train MLRA which are able to establish complex non-linear, non-parametric models linking the
biophysical variables and the spectral reflectance [9,11]. Hybrid methods have found widespread
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application and have reached the operational stage, in particular with the application of NNs [25–27]
trained with the RTM PROSAIL [28,29], such as the algorithm implemented in Sentinel Application
Platform (SNAP) biophysical processor tool [29], developed by the European Space Agency (ESA). Leaf
area index retrieval using NNs trained with PROSAIL is also carried out operationally for Cyclopes
and Moderate Resolution Imaging Spectrometer (MODIS) products [30]. However, NN training is a
delicate phase and requires the tuning of multiple parameters, which greatly impacts the robustness
of the approach [18]. Thus, in recent years, increasing attention has been paid to alternatives to
NNs that are simpler to train and have better potential for retrieval accuracy, such as kernel-based
methods [31]. These methods solve non-linear regression problems by transferring the data to a
higher dimensional space by the means of a kernel function [16]. Kernel-based algorithms have
been suggested to offer some advantages in comparison to NNs. Kernel ridge regression (KRR) has
proven to be simple for training and to yield competitive accuracy [18]. Gaussian process regression
(GPR) is partially transparent compared to the black box nature of NNs. It allows the use of different
kernel functions, ranging from simple to very complex, and it also provides uncertainty estimates
with the mean value of prediction [10,32]. Gaussian process regression and KRR have been used to
estimate successfully LAI and LCC [10,33]. Unfortunately, some kernel-based algorithms, such as GPR
and KRR, are computationally very expensive if trained on large sets of simulations [9,10]. In order
to have a general-purpose database, including a wide range of vegetation types, generally a huge
number of simulations are performed [10]. However, not all pairs of the reflectance and corresponding
biophysical variables will be relevant. Few attempts have been made by the researchers to optimize
the simulations that are generated by the physically-based models [10,34]. Active learning (AL) has
been proposed as a useful strategy to reduce the size of the RTM-generated database, to make the
training of the kernel-based algorithms such as GPR more feasible [10]. Active learning is a sub-field
of machine learning, also called optimal experimental design in statistics [35]. It initially starts with a
small subset of the samples, and then, based on query strategies using either uncertainty or diversity
measurement criteria, adds iteratively new samples to the initial training set of samples. In this way,
the most informative samples in a dataset are selected, avoiding redundancy [10]. Active learning
techniques have a great potential to optimally sample sets generated by RTM.

Very few studies [9,10] have reported the potential of kernel-based methods using AL
techniques in relation to the retrieval of biophysical variables such as LAI, LCC, FVC, FAPAR, and
CCC. In particular, although the estimation of these variables from hyperspectral data has been
demonstrated [28], the suitability of multispectral satellites has yet to be fully proven, especially for
biochemical variables such as LCC. The European Space Agency Sentinel-2 mission has been shown to
provide data of a high radiometric quality [36] and has a higher revisit frequency than what is planned
for hyperspectral satellites in the near future. Because of the availability of a larger number of spectral
bands than other multispectral satellites, and of the inclusion of the red edge region of the spectrum,
Sentinel-2 has a good potential for the estimation of these variables [9].

This work explores the application of kernel-based GPR using AL for biophysical variables
retrieval from Sentinel-2, comparing the potential of this algorithm with other MLRAs and in particular
of the version implemented operationally in SNAP.

The main objectives of this study are thus: (1) to compare the performances of different MLRAs,
in particular with respect to the algorithm based on NNs implemented in the biophysical processor
tool of the ESA SNAP toolbox, by using the same database of PROSAIL simulations [29]; (2) to assess
the accuracy of estimation of the biophysical variables LAI, LCC, FAPAR, CCC, and FVC in the wheat
crop, for kernel-based (GPR) and non-kernel-based MLRA hybrid methods of retrieval; (3) to explore
the feasibility and potential of the use of AL strategies to optimally sample redundant PROSAIL
simulations, to minimize computational time and complexity and allow the use of computationally
demanding MLRAs (such as GPR) in hybrid methods.
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2. Materials and Methods

The methodology adopted in this work (Figure 1), for the comparison of hybrid methods of
biophysical variables retrieval, employed simulations carried out with the model PROSAIL [37] for
training MLRA and finally applying them to Sentinel-2 data for assessment with ground measurements
collected in two study areas, respectively in Italy and China. The procedure involved the following
steps, illustrated in detail in the following sections: (1) generation of simulations with the model
PROSAIL; (2) training MLRAs with model simulations and cross-validation; (3) Sentinel-2 data
pre-processing; and (4) validation using ground data.
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Figure 1. Flow-chart of the methodology used for the present study. Retrieval of biophysical variables:
Leaf area index (LAI), Leaf chlorophyll content (LCC), Fraction of vegetation cover (FVC), Fraction
of absorbed photosynthetically active radiation (FAPAR) and Canopy chlorophyll content (CCC).
Radiative Transfer Model (RTM) parameters abbreviations are reported in Table 1. The RTM was used
to train Machine Learning Algorithms (MLRA) including Gaussian Process Regression (GPR) using
Active Learning (AL). Accuracy was assessed using the root mean squared error (RMSE) and relative
RMSE (RRMSE).

2.1. Generation of PROSAIL Simulations

The model PROSAIL [37] is a widely used RTM for generating realizations of TOC canopy
reflectances by considering measured biophysical variables of the crop of interest. It is a combination of
the leaf level model PROSPECT [38] and canopy level model SAIL [39]. It has been inverted over a large
range of vegetation canopies [40–46] with varying degrees of success. Reflectance and transmittance
of a leaf from the PROSPECT model was used as an input for the SAIL model with the soil optical
properties and illumination and observation geometry.

The benchmark against which the different hybrid methods were assessed in this study was the
NN algorithm implemented in the ESA SNAP Sentinel-2 Toolbox, as biophysical processor. For this
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reason, PROSAIL simulations were generated using the same input parameter values and configuration
as used for SNAP (M.Weiss personal communication), by following the Sentinel-2 Toolbox level 2
products Algorithm Theoretical Basis Document (ATBD) [29], with the exception of the geometry of
observation and illumination which was set only for the conditions of our validation dataset (Section 2.3).
The PROSAIL parameters were sampled using a fully orthogonal experimental plan [47], using a
component of the BV-NNET (Biophysical Variables Neural Network) tool developed by Reference [48].
This procedure consists of identifying classes of values for each variable. Then all the combinations of
classes are sampled once. Finally, the actual values of each variable are randomly drawn within the
range of variation defined by the corresponding class, according to the distribution law specified for
the variable considered. This process allows to take into account all the interactions among parameters,
while having the range of variation for each variable densely and near randomly populated [29].

Table 1 reports the parameter ranges, statistical distribution, and number of classes of the PROSAIL
model that were used in the present work, which were the same as those employed for training NNs in
SNAP (M. Weiss personal communication). A total of 41,472 simulations were generated, representing
an extensive range of vegetation properties.

The PROSAIL model top of the canopy (TOC) full spectra (at 1 nm resolution) were then
resampled, using Sentinel-2 spectral response functions, to the same eight bands as used in the
Sentinel-2 level 2 products ATBD [29], i.e., bands 3 to 7, 8a, 11, and 12, excluding the bands most
affected by atmospheric attenuation. The spectral resampling was carried out according to Equation (1):

ρ =
N

∑
i

[
β(λ)

∑N
i β(λ)

]
∗ ρ(λ) (1)

where ρ and ρ(λ) are, respectively, the resampled Sentinel-2 reflectance and the PROSAIL reflectance at
wavelength λ. β(λ) represents the weight of the band’s spectral response function of the Sentinel-2 MSI
sensor, whereas i and N are, respectively, the minimum and maximum wavelengths of the Sentinel-2
band. Similarly, a Gaussian noise model was used to better describe actual Sentinel-2 characteristics
as well as the ability of the RTM used to represent actual reflectance. The noise was computed as
follows [29]:

R∗(λ) = R(λ)(1 + MD(λ) + MI)/100) + AD(λ) + AI (2)

where R(λ) and R*(λ) are the raw simulated reflectance and reflectance contaminated with noise,
respectively. Multiplicative wavelength dependent noise and multiplicative wavelength independent
noise are represented as MD and MI. Similarly, AD and AI are the additive wavelength dependent
noise and independent noise, respectively. A value of 0.01 was used for AD and AI and a value of 2%
was used for MD and MI for all the bands.

Table 1. Input parameter value ranges, number of classes, and statistical distributions used for
generating the training database with the PROSAIL model.

Variable Units Min Max Mode SD Class Law

Canopy

Leaf area index (LAI) - 0 15 2 2 6 log_normal
Avearge leaf angle (ALA) - 30 80 60 20 3 gaussian
Hot spot parameter (HsD) - 0.1 0.5 0.2 0.5 1 gaussian
Leaf structure index (N) - 1.2 1.8 1.5 0.3 3 gaussian

Leaf

Leaf chlorophyll content (LCC) µg
cm−2 20 90 45 30 4 gaussian

Leaf dry matter content (Cdm) g cm−2 0.003 0.011 0.005 0.005 4 gaussian
Leaf water content (Cw_Rel) - 0.6 0.85 0.75 0.08 4 uniform
Brown pigments (Cbp) - 0 2 0 0.3 3 gaussian

Soil Soil brightness (Bs) - 0.5 3.5 1.2 2 4 gaussian
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2.2. Training Machine Learning Algorithms

Some of the most widely-used parametric and non-parametric regression algorithms were trained
(or calibrated) with the simulations generated by the PROSAIL model, including linear regression,
non-linear regression, hierarchical tree-based approaches, and kernel-based algorithms (Table 2).

The non-kernel-based regression methods evaluated in this study were: least squares linear
regression (LSLR), partial least square regression (PLSR), NNs, regression trees (RegT), bagging trees
(BagT), boosting trees (BooT), random forest fit ensemble (RFFE), and random forest tree bagger
(RFTB). We also assessed the kernel-based MLRA GPR, by combining it with an AL strategy. A brief
description and the references where these methods are described in detail are reported in Table 2.

Table 2. Summary of the algorithms compared in this study.

Algorithm Brief Description References

LSLR Least Square Linear Regression relies on the linear relationship between
explanatory variables, parameters, and the output variable. [49]

PLSR Partial Least Square Regression performs the regression on the projections
generated using partial least squares approach. [50]

NN

Neural Networks is an architecture composed of multiple layers of artificial
neurons. For this study, hyperbolic tangent function was used and NN
architecture was optimized with the Levenberg–Marquardt learning algorithm
with a loss function.

[5,18,51]

RegT Regression Trees was initially a classical approach of decision trees, in which
sorting and grouping methods were added to model non-linear relationships. [52]

BooT
Boosting Trees works by sequentially applying a classification algorithm to
reweighted versions of the training data and then taking a weighted majority
vote of the sequence of the classifiers thus produced.

[5,53]

BagT Bagging Trees is a method for generating multiple versions of a predictor and
using them to obtain an aggregated predictor. [54]

RFFE

Random Forest Fit Ensemble is an ensemble to decision tree-based approach for
improving the prediction accuracy, such that each tree depends on the values of a
random vector sampled independently and with the same distribution for all
trees in the forest.

[55]

RFTB Random Forest Tree Bagger combines the bagging approach with the generalized
approach of random forest of aggregating multiple decision trees. [54,55]

GPR

Gaussian Process Regression are non-parametric kernel-based probabilistic
models, based on Gaussian processes. They are described as a collection of
random variables, any finite number of which have a joint Gaussian distribution.
GPR also provides uncertainty estimates with the mean value of prediction.

[56,57]

The simulation dataset of 41,472 spectra was used for training the different algorithms. Because
of the long processing time required for the training, and of the necessity of having replicates in
order to carry out a statistical analysis of the results, 10 subsets of 2500 samples were extracted
randomly (with replacement) from the PROSAIL simulated spectra dataset. All the MLRA were
trained (and subsequently validated) ten times with the subsets of 2500 simulations each, except
for GPR. Since the latter was more computationally demanding, we adopted an AL procedure for
selectively further reducing the size of the training set.

Active learning (AL) is a technique which starts from a small set of initial training data and
optimally selects samples from a larger data pool, based on different criteria, such as uncertainty
or diversity indicators. Samples from the data pool are picked up and added to the initial training
dataset, based on diversity criteria. Selecting samples by diversity ensures that added samples are
dissimilar from those already accounted for. To identify the best method for selecting the samples
from the data pool, we have used three different diversity-based criteria which performed as the best
in a previous study [10]. These are angle-based diversity (ABD), Euclidean distance-based diversity
(EBD), and cluster-based diversity (CBD). In the implementation used in this work, these criteria were
applied also to the label information (i.e., the biophysical variables), since this was available in the data
pool (Verreslt J., personal communication). Each process in AL was started with 50 samples as initial
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training data and the remaining 2450 samples in a data pool. Subsequently, a maximum of 50 samples
were added per iteration, with stopping criteria of 100 iterations or a RMSE decrease lower than 50%.
Only when performance was improved were the samples added. The whole AL process was repeated
10 times starting from the different subsets of 2500 records each.

In the comparison of the different diversity-based criteria, the full training set of 2500 samples
was also used as a reference. Following this assessment, since EBD was the best performing method
(see Results section), we only used EBD to further train and validate GPR with AL.

For all the algorithms described above, a cross-validation was performed with a k-fold strategy,
where k is the number of folds with a value of 10.

The implementation of all the MLRAs was performed with the Matlab ARTMO Toolbox version
3.24 [58].

2.3. Validation with Sentinel-2 Data and Ground Measurements

Once the regression algorithms described in the previous section were trained using the PROSAIL
simulations, they were applied to Sentinel-2 data acquired over two sites, Maccarese (Central Italy)
and Shunyi (China). For both sites, cloud-free Sentinel-2 images were selected for the closest date
to ground measurement collection (Table 3). Only the same 8 Sentinel-2 bands that had been used
to resample PROSAIL simulations, i.e., bands 3 to 7, 8a, 11, and 12, were used. This band selection
was established as optimal for biophysical variables retrieval, by reducing the noise introduced by
atmospheric effects [29,59]. The images were initially processed for atmospheric correction with the
Sen2cor tool implemented in SNAP (version 6.0) to obtain level 2A TOC reflectance and then resampled
to a 10-m pixel size.

Maccarese (41.833◦ lat. N, 12.217◦ long. E, alt. 8 m a.s.l.) is located on the west coast of Central
Italy, near Rome. It is a private farm of 3200 ha in a flat area with large fields. Field campaigns to
measure biophysical variables on the durum wheat (Triticum durum Desf.) crop were carried out for
this location from January 2018 to April 2018, for different growing conditions of the crop of interest,
at dates close to Sentinel-2 acquisitions. The variables were sampled according to an elementary
sampling unit (ESU) scheme, to capture the variability within and among different fields. Each ESU
consisted of a quadrat of 20 m by 20 m size, to easily accommodate the Sentinel-2 10-m pixel resolution.
A total of 15 ESUs, placed at different locations were employed at different sampling dates. Each of the
ESUs contained nine points, where LAI and LCC measurements were collected. Leaf area idex was
measured using the LAI-2000 or the LAI-2200C Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA).
Since LAI 2000/2200C measurements were not always acquired under diffuse light conditions, data
were pre-processed by applying the recommended scattering correction procedure [60]. Four readings
were taken above the canopy, with and without diffused cap and six readings below the canopy with
90◦ cap. While processing for scattering corrections five angles of directions 7◦, 23◦, 38◦, 53◦, and 68◦

were considered, i.e., LAI measurements including the extreme rings.

Table 3. Sentinel-2 acquisitions and ground measurements dates.

Site Date-Ground Measurements Date-S2 Acquisition Difference (Days)

Maccarese, Italy

31 January 2018 29 January 2018 2
16 February 2018 13 February 2018 3

6 April 2018 6 April 2018 0
20 April 2018 19 April 18 1

Shunyi, China

7–8 April 2016 10 April 2016 2
20–21 April 2016 23 April 2016 2

3–5 May 2016 3 May 2016 0
18–19 May 2016 14 May 2016 4
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Chlorophyll measurements were obtained using the Force-A Dualex leaf clip reader on the
top-most leaves. The calibration of Dualex on durum wheat was previously performed [61]
with an estimation accuracy with root mean square error (RMSE) values ranging between 7 and
11 µg cm−2. The following equation [61] was used to recalibrate and compute LCC from the Dualex
measured readings

LCC = −3.12 + 1.55 × (Dualex) (3)

LAI 2000/2200C measurements were also used to derive other biophysical variables, i.e., FVC
and FAPAR. FVC was obtained from the LAI values measured on the ground by using the following
equation [62]:

FVC =
(

1 − e−0.43 × LAI
)0.52

(4)

Previous studies have shown that the instantaneous FAPAR value at 10:00 (or 14:00) solar time is
very close to the daily integrated value under clear sky conditions [29,48]. A Matlab script was written
to compute FAPAR from the raw LAI-2200 data measured on the ground. The script extracts time
dimensions, angles, and gaps fraction data from raw data files, computes day of the year and calculates
FAPAR at 10:00 hour solar time. The CCC was estimated by multiplying LAI with chlorophyll content
at leaf level.

A dataset of ground measurements corresponding to Sentinel-2 data was also collected in the
Shunyi district (40.130 lat. N, 116.654 long. E), Beijing, in China. Ground campaigns were carried
out in the period between April 2016 and May 2016 on the winter wheat (Triticum aestivum L.) crop.
Leaf area index was measured using Licor LAI 2000/2200C and chlorophyll was measured using
Force-A Dualex readings and calibrated using laboratory analysis. From April 2016 to May 2016,
at four different dates, with 24 observations per date, LAI and LCC were collected in different wheat
fields. The FVC was computed as mentioned using Equation (4). Due to the unavailability of raw LAI
data, FAPAR was not computed for this test site.

The ground validation dataset was thus composed of 45 samples for Maccarese (each one the
average of an ESU) and 96 samples for Shunyi.

2.4. Comparative Assessment of MLRAs

We used r2, root mean square error (RMSE), and relative RMSE (RRMSE %) to assess the accuracy
of the retrievals for both the k-fold cross validation and the ground validation. The RRMSE was used
to compare the performances across different MLRAs and variables [18]. In general, the performances
of the models were estimated by comparing the differences among RRMSE of the estimated and
measured values of different biophysical variables. Lower RMSE values corresponded to higher
accuracy of the algorithms for the retrieval of biophysical variables from Sentinel-2.

To assess the presence of statistically significant differences among the performances of the
models, we applied a Friedman test to the computed metrics [63]. Whenever the Friedman
test revealed significant differences (p < 0.001) among the metric means, which indicated the
presence of significant differences among the models, a Friedman’s aligned ranks post-hoc test,
followed by Benjamini/Hochberg (non-negative) adjusted for p-values, was performed for multiple
pairwise comparisons.
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3. Results

The full simulation dataset generated with PROSAIL was used as a source of subsets for
training the different MLAs, as described in the methods section, except for GPR for which a data
reduction procedure based on AL was employed. Preliminarily, for GPR we compared three different
diversity-based criteria used to perform AL, with respect to the full training with 2500 samples. Figure 2
shows the comparison of the different methods of sample selection in terms of R2 and RMSE with
respect to the number of iterations, for all the variables, applied to the Maccarese dataset. Only when
the performance was improved were the samples added. This explains why fewer samples were added
than potentially possible, i.e., less than 50 samples were added for each iteration (e.g., in Figure 2a the
final sample size for CBD was of 1347 at 75 iterations).

The Euclidean distance-based diversity metric EBD surpassed ABD and CBD, achieving higher
r2 and lower RMSE values, i.e., higher accuracy and lower error, with a lower number of samples
and iterations. The best performing EBD was thus subsequently used in all further applications of
AL in the present work. It should be noted that the training of GPR with the full set of 2500 samples,
i.e., without AL, provided worse performance than AL in all cases except for FAPAR, despite using a
larger dataset for training, revealing some redundancy in the full set.
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Figure 2. Comparison of three diversity criteria of data pool samples selection in AL, i.e. angle-based
diversity (ABD), Euclidean distance-based diversity (EBD), and cluster-based diversity (CBD) for the
different biophysical variables for the Maccarese dataset. (a,f) LAI; (b,g) LCC; (c,h) FVC (d,i) FAPAR;
(e,j) CCC. The values in parentheses in the legend indicate the final size of the training dataset after the
Active learning process. The star symbol indicates the final samples after reaching the AL stopping
criteria (see text). The horizontal dashed line indicates the performance of the GPR training with the
full dataset of 2500 samples without AL.
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In the comparison to all the algorithms tested, the cross-validation metrics give an indication
of their performance, though the actual accuracy can be more realistically assessed using ground
validation results. Tables 4 and 5 report the summary of RMSE estimates for both cross-validation and
ground validation for the Maccarese and Shunyi datasets, respectively, for all the algorithms tested.

Table 4. Mean RMSE values of the 10 replicates for the estimation of LAI, LCC, CCC, FVC, and FAPAR
using different machine learning algorithms (MLRAs) for cross-validation (CV) and ground validation
(GV), for the Maccarese test site. Abbreviations for the MLRAs are reported in Table 2. Values sharing
the same letters are not significantly different according to Friedman’s aligned rank post-hoc test.
The best results for each variable are highlighted in bold.

MLRA
LAI LCC CCC FVC FAPAR

CV GV CV GV CV GV CV GV CV GV

BagT 0.99 b 1.01 d 11.4 c 8.90 a 45.83 a,b 46.12 b 0.05 c 0.08 a 0.08 c 0.11 a

NN (ARTMO) 1.04 c 0.90 b 11.02 b 10.68 b,c 46.53 b 52.1 c 0.05 b 0.09 b,c 0.07 b 0.11 a

RFTB 1.00 b 0.93b c 11.55 c,d 8.88 a 46.47 b 44.71 b 0.06 d 0.08 a 0.08 c 0.10 a

PLSR 1.18 e 0.69 a 11.16 b 11.6 c,d 53.25 c 40.44 a 0.06 e 0.13 d 0.09 e 0.12 b

LSLR 1.18 e 0.68 a 11.15 b 12.05 d 53.14 c 40.86 a 0.06 e 0.13 d 0.09 e 0.12 b

BooT 1.14 d 0.98 c,d 11.61 d 10.94 b,c 52.08 c 57.51 c,d 0.06 f 0.09 b 0.08 d 0.11 a

RegT 1.30 f 1.17 e 14.99 e 11.63 c,d 60.26 d 61.22 d,e 0.07 g 0.09 b,c 0.10 f 0.12 b

RFFE 1.40 g 1.44 f 16.03 f 13.18 d 64.36 d 68.32 e 0.08 h 0.10 c 0.11 g 0.12 b

GPR + AL 0.94 a 1.31 f 10.55 a 10.22 b 43.81 a 54.56 c 0.05 a 0.08 a 0.07 a 0.11 a

NN (SNAP) 0.74 10.94 44.61 0.108 0.105

Table 5. Mean RMSE values of 10 replicates for the estimation of LAI, LCC, CCC, FVC and FAPAR
using different machine learning algorithms (MLRA) for cross-validation (CV) and ground validation
(GV), for the Shunyi test site. Abbreviations for the MLRAs are reported in Table 2. Values sharing the
same letters are not significantly different according to Friedman’s aligned ranks post-hoc test. The best
results for each variable are highlighted in bold.

MLRA
LAI LCC CCC FVC

CV GV CV GV CV GV CV GV

BagT 0.99 b 1.74 c,d 11.67 d 17.28 a 46.12 b 56.72 a 0.05 c 0.19 c

NN(ARTMO) 1.02 b 1.42 b 11.27 b 24.41 c 46.52 b 98.14 e 0.05 b 0.17 a

RFTB 1.00 b 1.67 c 11.8 e 16.77 a 46.69 b 56.51 a 0.05 d 0.19 c

PLSR 1.18 d 1.01 a 11.43 c 24.77 c 52.94 c 68.11 c 0.06 f 0.18 b

LSLR 1.18 d 1.00 a 11.43 b,c 25.98 b,c 52.86 c 74.33 d 0.06 f 0.18 b

BooT 1.12 c 1.46 b 11.91 e 25.91 d 51.69 c 94.77 e 0.05 e 0.18 b

RegT 1.32 e 1.76 d 15.26 f 20.75 b 60.63 d 62.71 b 0.07 g 0.21 d

RFFE 1.42 e 2.14 e 16.36 g 25.62 b 64.29 d 76.96 d 0.07 h 0.21 d

GPR + AL 0.93 a 1.98 e 10.79 a 22.75 b 42.55 a 61.35 b 0.05 a 0.18 b

NN (SNAP) 1.16 23.61 123.53 0.18

For Maccarese (Table 4), LSLR and PLSR were the best performing algorithms for LAI retrieval
when validated with ground data, in terms of RMSE, with values of 0.68 (R2 = 0.78, RRMSE = 19.48%)
and 0.69 (R2 = 0.78, RRMSE = 19.84%) respectively. These were also the fastest computing algorithms
among all the MLRAs in terms of time required for training (data not shown). The cross-validation
and ground validation results (Figure 3a) indicated that LSLR apparently did not show saturation,
even up to LAI values of 5 or 6. The retrieval of LCC was best performed by RFTB (Figure 3b)
and BagT, with RMSE values of 8.88 µg cm−2 (R2 = 0.26 and RRMSE = 17.43%) and 8.90 µg cm−2

(R2 = 0.27 and RRMSE = 17.46%). An overestimation of LCC was observed (Figure 3b). The lowest
RMSE of 40.44 g cm−2 (R2 = 0.74 RRMSE = 22.7%) (Figure 3e), was obtained for the retrieval of CCC
with PLSR. The retrieval accuracy of LSLR was not significantly different from that of PLSR for CCC
(RMSE = 40.86 g cm−2, R2 = 0.74 and RRMSE = 22.9%). Indeed, PLSR was not significantly different
from LSLR in terms of RMSE for all the variables considered. The lowest RMSE for FVC was 0.08
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(R2 = 0.9 and RRMSE = 9.8%), obtained with the GPR algorithm (Figure 3c). For FVC, RFTB and BagT
were also not significantly different from GPR in terms of RMSE. The FAPAR was best retrieved with
a RMSE of 0.10 (R2 = 0.41 and RRMSE = 12.06%) using the RFTB approach (Figure 3d), although GPR
was not significantly different in terms of RMSE, which was only slightly higher. It was observed
that, even in the best performing algorithms, an underestimation of low values of FVC and FAPAR
was apparent (Figure 3c,d). It should also be noted that these latter variables show a smaller range
of variation in the measured values as compared to the other biophysical variables. As can be seen,
GPR was always the best performing algorithm in the cross-validation results, but this was not
confirmed by the ground validation tests, with the exception of FVC and FAPAR estimation.
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single-point measurements were carried out, but an estimate of the variability for chlorophyll could 
be made since multiple measurements were available for each point (Figure 4b). 

  

Figure 3. Best performing algorithms for the retrieval of (a) LAI, (b) LCC, (c) FVC, (d) FAPAR,
and (e) CCC for the Maccarese test site. The horizontal error bars represent the standard deviation
of measurements inside each ESU. Vertical error bars represent uncertainty estimates using GPR for
FVC (c).

As can be observed from the horizontal error bars of Figure 3, considerable variability occurred
among ground measurements inside ESUs, despite the visually apparent homogeneity of the crop
canopy in the sampled area of each ESU.

For the Shunyi datasets (Table 5), the ground variability could not be reported for LAI, for which
single-point measurements were carried out, but an estimate of the variability for chlorophyll could be
made since multiple measurements were available for each point (Figure 4b).
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Figure 4. Best performing algorithms for (a) LAI, (b) LCC, (c) FVC, and (d) CCC retrieval for the
dataset from Shunyi, China. The horizontal error bars for LCC represent the standard deviation of
single chlorophyll measurements.

The best accuracy for LAI retrieval for the Shunyi site was a RMSE of 1.00 m2 m−2 (R2 = 0.73 and
RRMSE = 24.12%) obtained with LSLR (Table 5), i.e., the same algorithm providing the best results also
for Maccarese. For LAI, PLSR had a similar performance as that of LSLR, with a RMSE = 1.01 m2 m−2

and (R2 = 0.72 and RRMSE = 24.50%), i.e., also consistently with the results of LAI retrieval for Maccarese.
Similarly, for Maccarese, LCC was best retrieved with an RMSE value of 16.77 µg cm−2, (R2 = 0.41 and
RRMSE = 40.19%) using RFTB (Table 5). Although RFTB produced the lowest error for retrieving LCC, its
retrieval using BagT approach was not significantly different, with RMSE = 17.28 µg cm−2, R2 = 0.41 and
RRMSE = 41.41%. For CCC retrieval, the lowest RMSE, 56.51 g cm−2 (R2 = 0.7, RRMSE = 31.63%), was
achieved by the RFTB method. In this case, BagT was not significantly different from RFTB (R2 = 0.71,
RMSE = 56.72 and RRMSE = 31.75%). For this test site, FVC was retrieved with an RMSE of 0.17 (R2 = 0.73
and RRMSE = 23.65%) with NNs (Figure 4c). Also, for the Shunyi test site, GPR was always the best
performing algorithm in cross-validation but not in ground validation tests.

A summary of the results in terms of RRMSE for all the biophysical variables tested with different
MLRAs for both sites is presented in Figure 5.
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It can be seen from Figure 5, that the k-fold cross-validation (k = 10) provided in some
circumstances worse results (higher RRMSE) than the validation with ground data (e.g., Figure 5a).
This is particularly evident for LAI and CCC for the Maccarese site. Usually, since it was carried
out with subset of the same dataset as used for the training of the MLRAs, the cross-validation error
was lower than the ground validation error, but this was not the case here, as can be seen from
Figure 5a–e. The different statistical distributions of training and ground validation data might be a
possible reason. It appears that the range of variation of the training sets was much larger than that of
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the ground validation sets, with more extreme values. This could have possibly led to more unreliable
retrievals in the cross-validation when extreme values were sampled, which did not happen in the
ground validation.

For the Shunyi test site, RRMSE values were generally higher than for the Maccarese (Figure 5),
probably because of the larger differences in the statistical distributions of the ground validation dataset
from the training set, as compared for the Maccarese and possibly for the larger error introduced by
the sampling protocol.

In general, for LAI, algorithms such as LSLR and PLSR, seemed to outperform more complex
MLRAs such as NNs, for example providing better results than those found by applying the biophysical
processor implemented in the ESA SNAP toolbox.

For leaf chlorophyll (LCC), much worse results were obtained for Shunyi than for Maccarese,
with a clear advantage of RFTB for both sites for ground validation tests. The performance of the NN
implementation of SNAP was particularly poor for Shunyi, though it should be noted that this variable
was back-calculated from the CCC variable generated by SNAP.

Fractional ground cover (FVC) showed the smallest error among all the biophysical variables
tested, alongside FAPAR which was only available for Maccarese. Neural networks provided the best
accuracies with the lowest values of relative RMSEs for the latter variable.

Although different algorithms from different families of MLRAs performed well for different
biophysical variables, the GPR was considered particularly interesting, as it provided uncertainty
estimates with the mean value of prediction (Figure 3c). However, despite its good cross-validation
results, GPR ranked as the top algorithm only for FVC and FAPAR for the Maccarese test site (Table 4).
The AL procedure only selected the most informative samples of the dataset, thus the training of GPR
was performed with a smaller set of PROSAIL simulations compared to the other algorithms, showing
that it was quite efficient and robust.

The time taken for training the models ranged from 0.003 seconds for LSLR to 47.5 seconds for
NNs and a maximum 548.3 seconds for GPR. Although, GPR took longer to train, it should be noted
that it performed AL using EBD and used fewer samples to train and achieved high accuracy in
comparison to other models.

When considering single ground sampling dates separately, generally the retrieval performances
were improved (Table 6) compared to the bulked data (Table 4). In some cases, e.g., LAI and CCC,
the worst results were obtained at the latest date, due to the fact that it was generally more difficult to
estimate higher LAI values.

Table 6. Ground validation estimation results at each ground sampling date, for the best performing
algorithms for the Maccarese test site.

MLRA
29 January 2018 13 February 2018 6 April 2018 20 April 2018

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

LSLR (LAI) 0.89 0.59 0.88 0.55 0.73 0.51 0.55 1.09
RFTB (LCC) 0.91 3.01 0.55 7.75 0.25 12.56 0.11 7.03
GPR (FVC) 0.90 0.12 0.89 0.08 0.90 0.05 0.71 0.05

RFTB (FAPAR) 0.74 0.10 0.45 0.14 0.44 0.09 0.56 0.06
PLSR (CCC) 0.94 26.32 0.87 33.37 0.65 44.46 0.45 55.97

4. Discussion

There are different methods for the retrieval of biophysical variables from remote sensing data
and all the methods have their pros and cons [16]. Currently, hybrid methods have the capability of
combining physical and statistical methods and are considered state of the art. In this paper, different
MLRAs (kernel-based and non-kernel based) were trained and applied for the retrieval of the crop
biophysical variables LAI, LCC, FAPAR, FVC, and CCC with the same configuration and settings of
RTM PROSAIL simulated spectra as those implemented in ESA SNAP biophysical variables retrieval
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toolbox, with the exception of the observation geometry. With the same of configuration of PROSAIL
parameters (Section 2.1), a total of 41,472 simulated spectra was generated, which turned out to be
rather redundant and inefficient for performing the training steps. Subsets of 2500 randomly extracted
simulated spectra were used to perform the training of the algorithms and this procedure was repeated
ten times with different subsets. This was done in order to allow a comparison of alternative MLRAs
to a well-established operational algorithm [29].

The SNAP algorithm relies on the use of PROSAIL simulations for training NNs, which are the
most widely-used tools for operational biophysical variables retrieval [25–28]. The downside of the
NNs are that they require a relatively long time for training, tuning of parameters is a difficult task,
they are black box in nature, and can be unpredictable if training and validation data deviate from each
other even slightly [5]. In this paper, various alternative MLRAs outperformed NNs. For example,
LAI retrieval was best performed with LSLR and PLSR, consistently for both tests, although with
different accuracies, i.e., RMSE of 0.68 for Maccarese and 1 for Shunyi [5], compared with different
retrieval strategies for LAI and reporting the best performing algorithms for each category. In the case
of parametric regression, the best performing algorithm was Tian 3-band formulation (RMSE = 0.615
and R2 = 0.823), whereas VH-GPR performed best among non-parametric regression algorithms
(RMSE = 0.436 and R2 = 0.902). However, it should be noted that the accuracies found by these
authors, somehow better than those of the present study, could be explained by the fact that they
used cross-validation in which the training was carried out using the ground dataset, not independent
model simulations such as in the present work.

The LCC was best retrieved by the RFTB method for both sites, revealing a general overestimation,
but the error of estimation was higher for the Shunyi test site compared to the Maccarese
(Figures 3b and 4b), particularly for SNAP. Also, the error of CCC estimates was very high for the
SNAP tool compared to the other algorithms tested in this work for the Shunyi ground validation
(Figure 5i). It was previously shown by Reference [64] that Sentinel-2 bands at a 10 m spatial
resolution are suitable for estimating LAI, LCC, and CCC. They retrieved LAI (R2 = 0.809), LCC
(R2 = 0.696) and CCC (R2 = 0.818) with vegetation indices approach. Multiple vegetation indices were
compared for identification of potential vegetation index for the retrieval of LAI, LCC, and CCC in [65],
the best correlation for LCC was with the Meris Terrestrial Chlorophyll Index (MTCI) (R2 = 0.77)
and Sentinel-2 red-edge position index (S2REP) (R2 = 0.91), for LAI, inverted red-edge chlorophyll
index (IRECI) (R2 = 0.77) and NDI45 (R2 = 0.62), Normalised Difference Vegetation Index (NDVI) for
CCC (R2 = 0.70). These results are better than those found in the present work, but again, empirical
approaches employing the ground datasets were employed by these authors for the calibration of
the models.

The FVC variable was more accurately predicted than LAI or LCC, though with slightly higher
error for Shunyi. With hierarchical tree-based methods such as BagT, RFTB, and GPR, the error
reached was even lower than 10%, which is in line with Global Monitoring for Environment and
Security (GMES) goal accuracy [66] (Figure 5c). In the case of CCC retrieval, it can be noted that
the lowest RRMSE was provided by RFTB and BagT, though also GPR performs similarly to RFTB.
The FAPAR variable was only estimated for the Maccarese test site, due to the unavailability of the
ground measurements for validation, it was not estimated for the Shunyi test site. The results showed
that this variable was best retrieved with the RFTB method, with the lowest RMSE (Table 3).

The GPR was proved to be an efficient and powerful regressor for the biophysical variables
retrieval in previous reports [18]. A study conducted by Reference [18], retrieved LAI, Chl, and FVC
using different methods, such as NNs, kernel ridge regression (KRR), support vector regression,
and GPR for different Sentinel-2 and Sentinel-3 configurations. They found that an overall good
performance throughout all Sentinel configurations was provided by GPR. A study carried out by
Reference [10] also found that GPR using AL techniques is an efficient and robust method for the
retrieval of LAI and LCC from Sentinel-3 OLCI spectra. However, this was not the case in our study.
The GPR method, coupled with AL procedure, provided the best results in terms of computational
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time and low error only for FVC and FAPAR ground validation tests (Figure 5c,e,h). On the other hand,
GPR generally performed as the best algorithm for the retrieval of all the biophysical variables, only
for the cross-validations tests (Tables 4 and 5). Hence, of importance for further analysis to investigate
how accurately GPR performs when validated against independent ground data. As Reference [10]
pointed out, GPR is based on non-parametric regression in a Bayesian framework, it provides insights
in bands carrying relevant information and also in theoretical uncertainty estimates, thus partially
overcoming the black box problem [5]. These uncertainties are a useful tool for the assessment
of upscaling capabilities of biophysical variables from airborne or spaceborne platforms and their
respective scales [32]. A study conducted by [9] introduced the AL approach with GPR and SVM
regressions to deal with the problems of training sample collection for biophysical variables estimation.
Their results obtained on simulated MEdium Resolution Imaging Spectrometer (MERIS) and real
SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) datasets were characterized by higher
performances in terms of both accuracy and stability with respect to a completely random selection
strategy. The present work seems to support these results highlighting the efficiency of the AL
procedure, since, when using a smaller set of selected training data, comparable results were obtained
than with a random selection of larger size (Figure 2).

5. Conclusions

Hybrid methods of biophysical variables retrieval rely on the generation of simulated spectra
using physically-based RTM for the training of MLRAs, under the assumption of a more general
applicability as compared to the training carried out using measured data, since RTMs allow to
simulate a wider range of leaf and canopy properties. Operationally, so far, only NNs have been
implemented as a hybrid method, e.g., in the ESA SNAP toolbox. Due to complexity of parameter
tuning and the black box nature of the algorithm, in recent years, several studies have focused on
alternative MLRAs such as kernel-based methods. They offer an interesting alternative to NNs in
terms of performance and computational demand, sometimes partially overcoming the black box
nature of NNs. In the present study, it was shown, using the same set of PROSAIL simulations,
that some MLRAs could provide better results than NN-based algorithms implemented in SNAP.
This was particularly evident for chlorophyll and fractional vegetation cover. It resulted that the best
performing algorithms varied according to the biophysical variables to be estimated: e.g., LSLR and
PLSR worked better for LAI, whereas RFTB and BagT for LCC. This study also showed that these
variables’ results were consistent for two different datasets respectively collected in Italy and China on
wheat, though the retrieval accuracies depended somehow on errors introduced during the ground
sampling protocol. The absolute values of the retrieval accuracies are in some cases higher than the
best performances reported in previous studies, but most of these previous studies did not train the
regression algorithms with completely independent datasets, as was done in the present study. Further
studies should be conducted to investigate alternative strategies, e.g., of active learning procedures,
using different kernel functions, and validate the retrievals using a wider range of agricultural crops,
also assessing their performance for canopies that depart more from the assumptions of the turbid
medium used in the PROSAIL RTM.
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