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Abstract: Vegetation indices, such as the normalized difference vegetation index (NDVI) or enhanced
vegetation index (EVI) derived from remote sensing images, are widely used for crop classification.
However, vegetation index profiles for different crops with a similar phenology lead to difficulties in
discerning these crops both spectrally and temporally. This paper proposes a feature filtering and
enhancement (FFE) method to map soybean and maize, two major crops widely cultivated during
the summer season in Northeastern China. Different vegetation indices are first calculated and the
probability density functions (PDFs) of these indices for the target classes are established based
on the hypothesis of normal distribution; the vegetation index images are then filtered using the
PDFs to obtain enhanced index images where the pixel values of the target classes are ”enhanced”.
Subsequently, the minimum Gini index of each enhanced index image is computed, generating at
the same time the weight for every index. A composite enhanced feature image is produced by
summing all indices with their weights. Finally, a classification is made from the composite enhanced
feature image by thresholding, which is derived automatically based on the samples. The efficiency
of the proposed FFE method is compared with the maximum likelihood classification (MLC), support
vector machine (SVM), and random forest (RF) in a mapping operation to determine the soybean and
maize distribution in a county in Northeastern China. The classification accuracies resulting from
this comparison show that the FFE method outperforms MLC, and its accuracies are similar to those
of SVM and RF, with an overall accuracy of 0.902 and a kappa coefficient of 0.846. This indicates that
the FFE method is an appropriate method for crop classification to distinguish crops with a similar
phenology. Our research also shows that when the sample size reaches a certain level (e.g., 2000), the
mean and standard deviation of the sample are very close to the actual values, which leads to high
classification accuracy. In a case where the condition of normal distribution is not fulfilled, the PDF
of the vegetation index can be created by a lookup table. Furthermore, as the method is rather simple
and explicit, and convenient in terms of computing, it can be used as the backbone for automatic crop
mapping operations.

Keywords: Feature enhancement; feature filtering; probability density function; crop classification;
supervised classification method; random forest
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1. Introduction

The conventional means of acquiring information about crop planting areas include field survey
and statistics sampling as well as remote sensing image analysis. For example, using remote
sensing data, the US National Agricultural Statistics Service (NASS) established a sampling frame
for agricultural statistics, estimated crop planting areas and offered crop-oriented land cover data
for an analytic system [1,2]. In the LUCAS (land use/cover area—frame survey) project in the
European Union, the crop planting area and yield were estimated by means of area frame sampling [3].
These methods are considered accurate and objective, with disadvantages in terms of resource
requirements [4]. In addition to this, they cannot provide precise spatial distribution information for
crop areas.

Remote sensing mapping has the advantages of larger area coverage and low cost and, therefore,
a relatively high efficiency [5,6]. In recent years, high-resolution imagery (Landsat-8, Sentinel-2,
Gaofeng-1, etc.) has become the main data source to derive crop area information [7–12]. Different
classification methods or their improvements have been routinely applied including maximum
likelihood classification (MLC), support vector machine (SVM), random forest (RF), neural networks
(NNs), and so on [12–16]. For example, the SVM method is considered to be suitable for dealing with
small data samples and has been widely used in remote sensing-based crop classification [17–19];
RF is another state-of-the-art machine learning method and is considered to be effective in avoiding
over-fitting, and has the advantages of being accurate and efficient [20–22]. A review of machine
learning classification methods was proposed by Holloway and Mengersen [23]. One of their
conclusions is that there is usually no one true or correct approach, but it is of interest to consider
approaches for selecting an appropriate method for a given problem. However, most of these machine
learning methods are considered as ‘black boxes’, in which the specific crop classification processes
are fuzzy, which requires a great deal of experience to optimize the classification model parameters
and to improve the classification accuracy. Another classification method is to construct decision trees
based on expert knowledge and classify crops by setting some decision rules artificially based on
the features of ground objects [24]. The classification mechanism of this method is clear and easy
to understand, and has been widely used in crop classification. Nevertheless, the construction of
classification rules may be difficult for classes with similar phenology. Therefore, a series of indices are
proposed to enhance the difference between different classes. For example, the normalized differential
vegetation index (NDVI) could improve the difference between vegetation and non-vegetation, and
the normalized difference water index (NDWI) could improve the difference between water and other
objects [25–27]. Wardlow and Egbert [28] completed the mapping of crops in Southeast Kansas by
using the NDVI and EVI time series data of Moderate-resolution Imaging Spectroradiometer (MODIS)
and obtained a high accuracy of 85% to 90%; Mansaray et al. [29] computed the NDVI and MNDWI
(modified normalized difference water index) from Landsat-8 and Sentinel-1A imagery and produced
a high-accurate paddy rice distribution map based on the decision tree approach.

Moreover, to efficiently resolve the problem of misclassification due to similar crop phenology,
different approaches to enhance the features (or variable) of target classes and improve the classification
accuracy have been proposed. Li et al. [30] reported a texture feature enhancement (TFE) method
to improve the texture features of hyperspectral data, and then deep belief networks (DBNs) were
employed on hyperspectral reconstructed data for classification. They found that, after using the
TFE method, the texture features of the hyperspectral image became more obvious and clear, and the
classification accuracies were increased. Zhang et al. [31] published a block-based synthetic variable
ratio (block-SVR) method aimed at a pixel-level fusion for optical and synthetic aperture radar (SAR)
images to combine these two types of remotely-sensed imagery for feature enhancement. The study
indicated that the larger the regression block, the more the spatial and textural features were enhanced.
Nevertheless, all these approaches focused on specific types of image data, such as hyperspectral or
SAR images, and none of them was aimed at enhancing the spectral or index features of multi-spectral
remote sensing data.
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Due to the similar spectral profiles of crops, it is always interesting to enhance the spectral
difference between different crop classes in remote sensing images. This paper proposes a novel feature
filtering and enhancement (FFE) method based on probability density functions (PDFs). Different
indices are computed from raw images, and the PDFs are then calculated and used to filter the image
and enhance the difference between the target class and background. In this way, the index value of
the target class is maximized. Four index features—normalized difference vegetation index (NDVI),
modified normalized difference water index (MNDWI), the mean of Shortwave Infrared (SWIR) bands
(SWIRmean) and visible light index (VLI)—are included in this investigation. A weighted addition
method based on the Gini index is used to combine all the enhanced images together and generate a
single image (called the composite enhanced feature image, or CEF image) in which the pixels of the
target class have much higher values than those of other classes. Thus, a single threshold could be
used to distinguish the target class and background classes. In this case, classes of maize and soybean
are identified based on the CEF images. Finally, the performance of the FFE method is compared with
the MLC, SVM and RF methods. In order to evaluate the relationship between sample size and PDF
approximation, a series of sample sets with different sample size are used to generate the PDFs of
soybean, and then compare these with the actual PDFs which are calculated from all soybean pixels.
Moreover, a look-up-table (LUT) method is used to generate PDFs in cases when the features are not
normally distributed, and the accuracy of LUT-based FFE classification is also discussed.

2. Study Site and Data

2.1. Study Site

To test the FFE method, a study area located within Bei’an county in Heilongjiang, a northeastern
province of China, was selected, see Figure 1. The area situated between the Songnen Plain and Greater
Khingan Range is characterized by the presence of black soil, which is particularly suitable for grain
cultivation, as well, of course, as weather conditions which are very favorable for agriculture. Soybean
and maize, respectively, take up approximately 29% and 59% of the total sowing area of grains in the
area [32].
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Figure 1. Location of study area (a) and the false color Landsat-8 image of study area (near infrared
(NIR), red, green as R, G, B) (b).

2.2. Phenology of Maize and Soybean

The phenology of maize and soybean in the study site is related to the sowing date, sunlight
duration, accumulated temperature, and rainfall. The period may vary slightly from one year to
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another including sowing, emerging, three-leaf, seven-leaf, jointing, tasseling, milk ripening, and
ripening. Maize is sown usually in late April. Harvest begins from late September or early October.
The stages of sowing to emerging, emerging to three-leaf, three-leaf to seven-leaf, seven-leaf to jointing,
jointing to tasseling, tasseling to milk ripening, and milk ripening to ripening are, respectively, 9, 9, 12,
23, 15, 29, and 19 days. The whole growing period lasts around 116 days. The NDVI value of maize
usually increases rapidly after entering the jointing stage and decreases slowly after the tasseling stage.

Soybeans grow through the stages of sowing, emerging, flowering, podding, seed filling, and
ripening. In the Bei’an area, the suitable sowing period is usually found in early May. The emerging
stage generally lasts from May 22 to June 2, the flowering stage from June 28 to July 5, the podding
stage from July 12 to 17, the seed filling stage from July 28 to 31, and the ripening stage around
September 22. The NDVI value of soybean usually increases rapidly after emerging and decreases
slowly after seed filling.

2.3. Remote sensing Data

Landsat-8 Operational Land Imager (OLI) images are used to illustrate the classification
methodology proposed in this study. According to the phenological characteristics of the soybean
and maize in the study area, the images registered on the 164th, 180th, 219th and 260th day of 2014 are
acquired. Seven bands of Landsat-8 OLI are used in this paper, including coastal blue (0.43–0.45 µm),
blue (0.45–0.51 µm), green (0.53–0.59 µm), red (0.64–0.67 µm), near infrared (0.85–0.88 µm), shortwave
infrared 1 (1.57–1.65 µm) and 2 (2.11–2.29 µm).

RapidEye imagery is used to establish a ground truth map. The region covered by RapidEye
imagery is limited to 63 km × 54 km with an area of 3402 km2.

Finally, the Landsat images are clipped to the extent of the RapidEye image for consistency and to
make it easy to assess the accuracy of classification.

3. Methods

Figure 2 shows the flow chart of FFE-based crop classification, which includes the following steps:
(1) Image pre-processing, including atmospheric correction, geometric correction (Figure 2a), and

generation of the indices including NDVI, MNDWI, NDSI, and VLI (Figure 2b);
(2) Ground sampling for the parcels including maize, soybean, water, built-up area, bare land,

and grassland. Woodland, water, built-up area, bare land, woodland, and grassland are merged into a
common class, “others”, as the main classification targets are maize and soybean (Figure 2c);

(3) Calculating the probability density function (PDF) of each feature (including NDVI, MNDWI,
SWIRmean, and VLI) for each class (maize, soybean, and others). The mean and standard deviation
(SD) of each feature of each class are calculated previously based on the samples. Thus, the PDFs
are calculated based on the normal distribution assumption and used to filter the raw index images
(Figure 2d);

(4) A weighted addition method based on the Gini index, described below, is used to cumulate
values of all the enhanced features and generate a single composite enhanced feature (CEF) image.
Thus, based on a simple threshold calculated from the samples, the target class can be classified easily
(Figure 2d);

(5) The reference image or the ground truth map is built from the visual interpretation of a
RapidEye image. MLC, SVM, and RF are applied to perform crop classification and the accuracies
from these classifications are compared with those of the FFE method (Figure 2e).

The major steps are elaborated in detail hereafter.



Remote Sens. 2019, 11, 455 5 of 18
Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 18 

 

Atmospheric 

correction

Geometric 

correction

Landsat-8 

OLI

Image preprocessing

NDVI

Index features calculation

MNDWI SWIRmean VLI

estimation of the mean and std. of 

index features 

Classification based on feature filtering and enhancement

Sample 

collection

Samples

Probability density 

function construction

Feature filtering and 

enhancement based on 

PDF 

Calculation of optimal Gini index 

of each index feature 

Weight calculation based on Gini 

index

Weight addition of 

enhanced indexes

Target class extraction based on the optimal threshold 

calculated by Gini index 

Composite enhanced feature image

Resultant crop map Accuracy validation

Unsupervised classication and 

visual interpretation

Reference 

classification result

Rapideye image

SVM MLC

Crop map Crop map

Accuracy assessment

RF

Crop map

(a)

(c)

(b)

(d)

(e)

 

Figure 2. Flowchart of feature filtering and enhancement (FFE)-based crop classification. (a) Image 

processing; (b) Index features calculation; (c) sample collection; (d) classification based on FFE; (e) 

accuracy assessment. SVM: support vector machine; MLC: maximum likelihood classification; RF: 

random forest; NDVI: normalized difference vegetation index; MNDWI: modified normalized 

difference water index . 

3.1. Image pre-Processing and Index Computing 

Landsat image pre-processing mainly consists of radiometric calibration, atmospheric and 

geometric correction. 

The radiometric calibration is carried out according to Equation (1): 

𝐿𝜆 = 𝐺𝑎𝑖𝑛 × 𝐷𝑁 + 𝑂𝑓𝑓𝑠𝑒𝑡   (1) 

where 𝐿𝜆 is spectral radiance at the sensor’s aperture in W/(m2·sr·μm), DN is the digital number of 

data, and Gain and Offset are obtained from the metadata of Landsat imagery in units of 

W/(m2·sr·μm). Atmospheric correction is conducted using the fast line-of-sight atmospheric analysis 

of spectral hypercubes (FLAASH) module in ENVI software[33]. Geometric correction is carried out 

to ensure that the positioning accuracy between Landsat images and RapidEye image reaches the 

sub-pixel level. 

Then, NDVI [34], MNDWI [35], SWIRmean, and VLI are calculated based on the following 

formulas: 

𝑁𝐷𝑉𝐼 =
𝑏𝑁𝐼𝑅−𝑏𝑟𝑒𝑑

𝑏𝑁𝐼𝑅+𝑏𝑟𝑒𝑑
    (2) 

𝑀𝑁𝐷𝑊𝐼 =
𝑏𝑔𝑟𝑒𝑒𝑛−𝑏𝑆𝑊𝐼𝑅

𝑏𝑔𝑟𝑒𝑒𝑛+𝑏𝑆𝑊𝐼𝑅
   (3) 

𝑆𝑊𝐼𝑅𝑚𝑒𝑎𝑛 = (𝑏𝑆𝑊𝐼𝑅1 + 𝑏𝑆𝑊𝐼𝑅2)/2  (4) 

𝑉𝐿𝐼 = (𝑏𝑐𝑜𝑎𝑠𝑡𝑎𝑙 + 𝑏𝑏𝑙𝑢𝑒 + 𝑏𝑔𝑟𝑒𝑒𝑛 + 𝑏𝑟𝑒𝑑)/4  (5) 

Figure 2. Flowchart of feature filtering and enhancement (FFE)-based crop classification. (a) Image
processing; (b) Index features calculation; (c) sample collection; (d) classification based on FFE;
(e) accuracy assessment. SVM: support vector machine; MLC: maximum likelihood classification;
RF: random forest; NDVI: normalized difference vegetation index; MNDWI: modified normalized
difference water index.

3.1. Image pre-Processing and Index Computing

Landsat image pre-processing mainly consists of radiometric calibration, atmospheric and
geometric correction.

The radiometric calibration is carried out according to Equation (1):

Lλ = Gain× DN + O f f set (1)

where Lλ is spectral radiance at the sensor’s aperture in W/(m2·sr·µm), DN is the digital number of
data, and Gain and Offset are obtained from the metadata of Landsat imagery in units of W/(m2·sr·µm).
Atmospheric correction is conducted using the fast line-of-sight atmospheric analysis of spectral
hypercubes (FLAASH) module in ENVI software [33]. Geometric correction is carried out to ensure
that the positioning accuracy between Landsat images and RapidEye image reaches the sub-pixel level.

Then, NDVI [34], MNDWI [35], SWIRmean, and VLI are calculated based on the following
formulas:

NDVI =
bNIR − bred
bNIR + bred

(2)

MNDWI =
bgreen − bSWIR

bgreen + bSWIR
(3)

SWIRmean = (bSWIR1 + bSWIR2)/2 (4)

VLI =
(
bcoastal + bblue + bgreen + bred

)
/4 (5)
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where the subscripts are the wave bands of Landsat-8 OLI.

3.2. Sampling

The entire study area is divided into a regular grid of 5 km×5 km consisting of 164 blocks, among
which 110 are entire blocks. Then, simple random sampling is used to select 21 sample blocks from the
set of these 110 blocks. Visual interpretation is applied to obtain the classification result of each block
(Figure 3).
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Figure 3. Landsat image (SWIR1/NIR/Red as R/G/B) and the distribution of sample blocks (a), the
enlargement of one sample block (b), and its classification (c).

Within the total area of 525.0 km2 for these 21 blocks, maize occupies 149.7 km2 and soybean takes
up 156.6 km2. Forest, grassland, road, water, built-up area, etc., are merged into the class “others”,
which represents 218.7 km2 of the area. In terms of percentage, the classes maize, soybean, and others,
respectively, account for 28.5%, 29.8%. and 41.7% of the total area.

3.3. Feature Filtering and Enhancement Based on Probability Density Function

Based on the samples, the mean and standard deviation of each index of each class are estimated.
Thus, based on the assumption of normal distribution, the probability density function (PDF) can be
calculated:

X ∼ N
(

µ, σ2
)

(6)

where X is the PDF of index value, µ is the mean value, and σ is the standard deviation. Then, the PDF
can be calculated as follows:

f (x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
(7)

After obtaining the PDFs of all classes (including soybean, maize, and others) for all indices
(including NDVI, MNDWI, SWIRmean, and VLI), the PDFs of the target class are used to filter the raw
index images based on Equation (7). Thus, the value of the target class in the filtered image can be
calculated as follows:

yt =
1√

2πσt
exp

(
− (xt − µt)

2

2σt2

)
(8)
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where xt is the index value in the raw image, µt and σt are the mean and standard deviation of the
target class in the raw image, and yt is the filtered value in the filtered image.

Due to the characteristics of the Gauss filter (Equation (7)), a pixel with a value closer to µt will
have a higher value after filtering:

if |xt − µt| > |xb − µt| then yt > yb (9)

where xb is the index value of the background classes, and yb is the filtered value of background classes.
Under the assumption of normal distribution, the values of pixels of the target class (xt) are mostly

(about 95.4%) concentrated in the range of µt ± 2σt; thus, they will usually have higher values than
other classes with different PDFs (Figure 4).
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Figure 4. Illustration of feature filtering and enhancement based on probability density function (PDF).

3.4. Weighted Addition of Index Features and Crop Classification

Different vegetation index values of a target class in the filtered images are linearly combined into
a single image. As some vegetation coefficients are more important than others in crop discrimination,
the coefficients or the weights for each variable (index) are determined using the Gini index, which is
widely used in some decision tree classification methods, such as the classification and regression tree
(CART) and random forest (RF) [36,37]. The Gini index is an index for estimating the uncertainty of
data; the lower the Gini index, the higher the data purity. If one image is perfectly classified, its Gini
index would be zero. The Gini index is calculated by subtracting the sum of the squared probabilities
of each class from one [38]. Suppose that there are m classes in image D, in which the probability of
occurrence of the class i is pi, then the Gini index of D is:

Gini(D) = 1−
m

∑
i=1

pi
2 (10)

When image D is segmented into two parts (D1 and D2) according to a certain feature A, then the
Gini index of the segmented image D is:

Gini(D, A) =
QTY(D1)

QTY(D)
Gini(D1) +

QTY(D2)

QTY(D)
Gini(D2) (11)
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where QTY refers to the quantity of data in a certain dataset. Gini(D1) and Gini(D2) can be determined
according to Equation (10).

Here, each filtered image is segmented into two parts based on a threshold: the target class and
other classes. As described in Section 3.3, the feature or index value of the target class in the filtered
image is usually higher than that of other classes. A pixel with an index value higher than the threshold
will be classified into target class; otherwise, it will be classified into other classes. An automatic
approach is employed in this study to calculate the optimal threshold which will lead to an optimal
classification (lowest Gini index). Samples collected in Section 3.2 are used to calculate the Gini index
of the classification.

First, the maximum value Vmax and minimum value Vmin of the filter image are calculated, then
100 thresholds for Ti (i = 1, 2, . . . , 100) are obtained based on the following formula:

Ti = Vmin + i·(Vmax −Vmin)/101 i = 1, 2, 3, . . . , 100 (12)

Then, each threshold is used to segment the image into two parts, and the Gini index of each
segmentation will be calculated based on Equation (11). The threshold with the lowest Gini index
will be selected as the optimal threshold, as it can generate the most accurate classification result.
The lowest Gini index of the filtered image will then be used to calculate the weight of the filtered
index image. Suppose the number of index images is n; then, the weight of each filtered image can be
calculated as follows:

Wi = 1− (Ginii)
2

∑n
i=1 (Ginii)

2 (13)

where Wi is the weight of filtered image i, and Ginii is the lowest Gini index of filtered image i.
All filtered images multiplied by their weights are combined to obtain a single composite enhanced

feature (CEF) image:

CEF =
n

∑
i=1

(Wi × Ii) (14)

where Ii is the index image i.
After obtaining the CEF image, an optimal threshold will be applied to classify the image and

obtain the final classification result. The optimal threshold can be calculated automatically in the same
way as the selection of the optimal threshold of each filtered image, as described above. A series
of thresholds will be generated based on Equation (12) and used to classify the CEF image, and the
threshold with the lowest Gini index will be selected as the optimal threshold.

3.5. Accuracy Assessment

The classification of a RapidEye image registered on July 27, 2014 is used as the reference or
ground truth map for accuracy assessment (Figure 5). Unsupervised Iterative Self-Organizing Data
Analysis (ISODATA) classification [39,40] is applied, followed by a visual interpretation to further
reclassify the raw classes into soybean, maize and others. Accuracy assessment is made based on the
confusion matrix, including overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA)
metrics [41,42], and kappa coefficient [43].

In order to evidence the superior capability of discrimination for the FFE method in the study case,
the maximum likelihood classification [44–46], support vector machine [18,47] and random forest [36]
are applied for Landsat image classification using the same sample dataset as in the application of the
FFE method.
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Figure 5. Reference classification result based on RapidEye image. (a) RapidEye image on July 27, 2014,
(b) classification result based on RapidEye image, (c) partial magnification of classification result. The
reference classification result is obtained by the unsupervised Iterative Self-Organizing Data Analysis
(ISODATA) and visual interpretation approaches.

4. Results and Discussion

4.1. Vegetation Index Calculation

The spectral curves of the main classes are shown in Figure 6. Grassland and forest have higher
NIR values, and thus higher NDVI values, at the early growing stage (DOY 164) (Figure 6a,e). The
NIR values (thus, the NDVIs for the values of red band of maize and soybean are similar) for the class
maize are usually lower than those for soybean on DOY 219 (Figure 6c,e), and are higher than those of
soybean on DOY 260 (Figure 6d,e). Shortwave infrared (SWIR) is another critical band for identifying
maize and soybean [48,49]. The SWIRmean of soybean is generally higher than that of maize in the
whole growing season (Figure 6g). The MNDWI of water is much higher than those of other classes
(Figure 6f). VLI represents the brightness of all classes in visible spectral bands, which will be useful
for distinguishing between high brightness classes (e.g., built-up area) and low brightness classes
(e.g., vegetation and water) (Figure 6h). Moreover, the NDVI values of soybean and maize decreased
from day 164 to day 180. This is mainly due to there being some mist in the image of DOY 180, which
resulted in the increase of the reflectance of visible bands (including red band), and then led to the
decrease of NDVI on day 180. Besides this, the significant increase of the NDVI values of soybean and
maize on day 219 was mainly due to the vigorous growth of crops.
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Figure 6. Spectral curves of major classes on DOY 164 (a), 180 (b), 219 (c), and 260 (d), and time series
of NDVI (e), MNDWI (f), SWIRmean (g), and VLI (h).
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4.2. Distribution and probability Density Function (PDF) for three target classes

After obtaining the indices, the PDFs of each index and each class are calculated by Equation (7).
Figure 7 shows the PDFs of the NDVI of maize, soybean and others on DOY 180. This indicates that
the distribution of NDVI values displays the profile of a normal distribution function. The PDFs will
be used to filter the raw index images.

Figure 7. NDVI distributions and PDFs of soybean (a), maize (b), and others (c) on DOY 180.

Figure 8 illustrates the mean and standard deviations of the NDVI of soybean, maize and others
at different growing stages. In Figure 8, the error bar is ±1σ. This shows that the mean NDVIs of
soybean and maize are close to each other on DOY 164, 180, and 219, while they show a significant
difference on DOY 260. The mean values of crops (soybean and maize) and others are significantly
different on DOY 180 and 219.
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Figure 8. The mean and standard deviations of NDVI of soybean, maize, and others at different
growing stage.

Due to the characteristics of Gauss filtering, the target class pixels will have amplified values
in the filtered images. Figure 9 shows the raw NDVI images and the corresponding filtered images
of soybean at different stages. It is obvious that the difference between soybean and other classes is
significantly expanded after filtering.
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Figure 9. NDVI images of different stages before (a–d) and after filtering (e–h) (soybean as the target
class). Figures (a) and (e) are on DOY 164, figures (b) and (f) are on DOY 180, figures (c) and (g) are on
DOY 219, and figures (d) and (h) are on DOY 260.

4.3. FFE-Based Classification

The CEF images of soybean and maize are shown in Figure 10. This indicates that the FFE method
can significantly enlarge the difference between the target class and background classes, which makes
it easy to extract the target class based on a single threshold. There are two reasons why the FFE
method could enlarge the feature difference of different classes: firstly, the PDF-based filter makes
the feature values of the target class much higher, in that they are concentrated around the mean
value which has the highest PDF value; secondly, the weighted addition of filtered features makes this
high value even higher, because the target class always has the highest values in each image of the
filtered feature.
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Figure 10. Composite enhanced feature images of soybean (a,b) and maize (c,d).

Figure 11 shows that the classification results of FFE, MLC, SVM, and RF methods, which are
very comparable; however, there are some omissions in the MLC result as shown in the circular area of
Figure 11b.

Figure 12 shows the classification accuracies of the FFE, MLC, SVM and RF methods. The result
shows that the overall accuracy of the FFE method (0.902) is much higher than that of the MLC method,
while it is similar to those of SVM (0.899) and RF (0.912).

Moreover, the FFE and RF methods obtain much higher UAs for soybean (0.910 and 0.926,
respectively) and maize (0.911 and 0.943, respectively) than those of MLC (0.729 for soybean and 0.802
for soybean) and SVM (0.864 for soybean and 0.811 for maize). However, SVM obtains the highest PAs
for soybean (0.956) and maize (0.988), and the highest UA for ‘other’ (0.983). This indicates that SVM
has misclassified more pixels of the ‘other’ class into maize and soybean than other way.

The results show that the FFE method is appropriate for an accurate mapping of maize and
soybean in the study area, by higher overall accuracy and Kappa coefficient compared to the MLC and
SVM methods, while having similar accuracy to RF.
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Figure 11. Crop distribution results of the study area based on FFE (a,e), MLC (b,f), SVM (c,g), and RF
(d,h) approaches.
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Figure 12. Accuracy assessment of each classification method. OA: overall accuracy; PA: producer’s
accuracy; UA: user’s accuracy.

The misclassification of the FFE method has been analyzed and indicates that those errors mainly
appear on the fringe of the farmland parcels because the OLI images have a lower resolution than the
RapidEye image, which leads to a mixed pixel phenomenon. Other classification errors are attributed
to the different spectral responses from different subclasses or varieties of a crop. For example, two
sub-classes of maize (marked as maize A and maize B) can be founded in the study area as shown in
Figure 13a. However, maize B is misclassified into the class ‘others’ by the FFE method. In this case,
the spectral values of maize B are different from those of maize A (see Figure 13b) due to a sowing
date delay. Therefore, after the Gaussian filtering of images, the value of maize B is always lower
than maize A, and this leads to the omission of maize B. When this phenomenon is significant, it is
necessary to divide the same crop with different sowing dates or different genotypes into different
classes during the sampling phase.
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4.4. The Impact of Sample Size on Probability Density Function

The sample size has a direct influence on the accuracy of the estimation of the mean and standard
deviation of the feature values of one class. When the sample size is large enough, the mean value
of the samples tends to be close to the actual mean value. However, a large sample size means large
operational resources. In order to evaluate the impact of sample size on mean and standard deviation
(SD) estimation, five sample datasets are randomly selected from the reference classification data.
The sizes of these five sample datasets are 20, 200, 2000, 10,000, and 30,000 pixels, respectively. The
mean and SD values of each sample dataset are calculated based on the Landsat NDVI image of
DOY 219. All of the five sample datasets are randomly selected 10 times, and the mean and SD of
the mean and SD values are calculated. Furthermore, the actual mean and SD of soybean are also
calculated based on all soybean pixels of the reference classification data. Finally, the classification
accuracy of soybean is evaluated based on the calculated PDFs. The results are shown in Figure 14.
They indicate that the estimated mean values are very close to the actual value, even when the sample
size is very small. The standard deviation of the estimated mean value is also very small, which
indicates the stability of the estimated mean value. The result shows that the impact of sample size
on mean value estimation is limited. However, regarding the estimated SD values, the conclusion
is different; Figure 14b shows that when the sample size is small, the estimated SD could be greatly
different to the actual value. Although the means of the SDs are close to the actual SD, the standard
deviation of SDs tend to increase when the sample size decreases. When the sample size is 20, the
standard deviation of SD is up to 174, which is quite large when compared with the actual SD (463),
and may lead to inaccurate PDF calculation and a low classification accuracy (Figure 14c). Finally, with
the increase of the sample size, the classification accuracy is gradually improved. The results indicates
that it is necessary to obtain a sufficiently large size (e.g., >2000) of sample to ensure the accuracy of
the mean and SD estimation.
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soybean in Landsat image of DOY 219) and (c) the classification accuracy. The actual values are
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4.5. Calculate PDF Based on the Bookup Table (LUT) Method Instead of Normal Distribution Function

If the data do not conform to a normal distribution, the normal distribution function can be
replaced using a lookup table method. Thus, Equation (7) will be replaced by a LUT obtained by
sample data statistics. LUT records the index values of the target class and their corresponding
proportion to the total number of pixels of target class. Other steps remain the same as the normal
distribution function-based classification method. In order to evaluate the effectiveness of the LUT
method, the PDF, calculated by a lookup table, is used to perform the crop classification of the study
area based on the same samples. The classification accuracy is illustrated in Figure 12; it indicates that
the accuracy of classification is not remarkably different from before. There are two possible reasons
for this: one is that the probability density function in this study is almost normal, which limits the
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role of the lookup table; another is that the PDFs calculated by LUT may also deviate from the actual
PDFs. Moreover, the LUT may not be able to represent the actual PDF when the sample size is small.

5. Conclusions

This paper proposes an approach of feature enhancement for crop classification using probability
density function filtering. This led to a better extraction of the cropping areas for maize and soybean
in the study region. This improvement is evidenced by a better classification accuracy compared
to the MLC and SVM methods. The proposed method also achieves a similar accuracy to the RF
method in the study area. Moreover, this method can be considered as a non-parametric method, as
few parameters need to be defined by users except sample selection, which makes it a user-friendly
method for classification. Each step of the FFE method is visible and logical to the user, which makes it
much easier for users to understand. The importance of each index can be calculated based on the
weight of each filtered image. Simple visual methods can also be used to understand the importance
of each index for crop classification based on the filtered images (Figure 9). This will be useful in
the selection of important indices and reduce redundant features in crop classification based on
multi-temporal images.

This paper also discusses the impact of sample size on the estimation of PDF and classification
accuracy. The result shows the estimated mean values of index feature for both crops are close to the
actual value, even when the sample size is small. However, the standard deviation of SD is significant
when the sample size is small, which may lead to an inaccurately estimated SD value. Moreover, the
estimated mean and SD tend to be stable when the sample size is, for example, above 2000 in the FFE
method. The classification accuracy will also increase with the increase of sample size.

When the feature values of crops are not normally distributed, a LUT-based PDF calculated
method could be employed to filter the features in the FFE method. However, the sample size has to
be sufficiently large in order to have an accurate probability density function of feature distribution.

For the classes with binomial or multi-nominal spectral distribution, they have to be further
categorized into sub-classes according to their spectral features, rather than being treated as one class.

It is worthwhile to note that the accuracy of the FFE method may be decreased when the PDFs of
different crops are highly similar. Moreover, because the principle of this method is relatively simple,
when the probability density function of the target class is too complex, it may not be possible to
achieve higher accuracy.

Finally, more works are needed to evaluate the feasibility of the FFE method for different crops
and in different areas. We expect that this method could constitute a simple, easy and accurate way to
improve crop classification in an operational context.
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