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Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification has become more and
more widely used in recent years. It is well known that PolSAR image classification is a dense
prediction problem. The recently proposed fully convolutional networks (FCN) model, which is very
good at dealing with the dense prediction problem, has great potential in resolving the task of PolSAR
image classification. Nevertheless, for FCN, there are some problems to solve in PolSAR image
classification. Fortunately, Li et al. proposed the sliding window fully convolutional networks (SFCN)
model to tackle the problems of FCN in PolSAR image classification. However, only when the labeled
training sample is sufficient, can SFCN achieve good classification results. To address the above
mentioned problem, we propose adversarial reconstruction-classification networks (ARCN), which is
based on SFCN and introduces reconstruction-classification networks (RCN) and adversarial training.
The merit of our method is threefold: (i) A single composite representation that encodes information
for supervised image classification and unsupervised image reconstruction can be constructed;
(ii) By introducing adversarial training, the higher-order inconsistencies between the true image and
reconstructed image can be detected and revised. Our method can achieve impressive performance in
PolSAR image classification with fewer labeled training samples. We have validated its performance
by comparing it against several state-of-the-art methods. Experimental results obtained by classifying
three PolSAR images demonstrate the efficiency of the proposed method.

Keywords: polarimetric synthetic aperture radar (PolSAR); fully convolutional networks (FCN);
sliding window fully convolutional networks (SFCN); reconstruction-classification networks (RCN);
adversarial reconstruction-classification networks (ARCN)

1. Introduction

Polarimetric synthetic aperture (PolSAR) image classification is one of the most prominent
applications in geoscience remote sensing [1]. Over the last few years, substantial amount of
PolSAR image data has been put into use [2]. Consequently, PolSAR image classification has gained
significant research attention [3,4] and many methods to accomplish this task came into existence [4,5].
The majority of the available methods are based on physical scattering mechanisms, which are
obtained through various polarimetric decomposition methods [6]. Polarimetric target decomposition
is one of the most powerful and widely used methods for PolSAR image classification. The physical
characteristics corresponding to the target are used to describe the architecture in the polarimetric
target decomposition theorem. Several polarimetric target decomposition methods are reported in
the literature. To name a few, they are Krogager decomposition [7], Cloude-Pottier decomposition [8],
Pauli decomposition [9], Huynen decomposition [10], Freeman decomposition [11], and the extensions
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of the above mentioned decomposition methods [12,13]. Besides, some researchers believed that
the statistical distribution of PolSAR data can be used for classifying the PolSAR images [14,15].
For instance, derived from the complex Wishart distributions of the covariance and coherency matrices,
Lee et al. [15,16] used Wishart distance to accomplish the task of the PolSAR image classification.
In addition, the research on PolInSAR technique has also received a lot of attention [17–21]. However,
all these methods mentioned above are highly depend on a complex analysis of PolSAR data [22], and
the extensive analysis of the physical mechanism is hard [23].

In addition, with the advancements seen in computing technology, machine learning-based
methods became crucial for PolSAR image classification. Plethora of image classification techniques
based on k-nearest neighbor (KNN) [24], support vector machine (SVM) [25–27], Bayes [28], sparse
representation [23,29], neural networks [30–32] and stacked auto-encoder (SAE) [33] etc. are available
in the literature. Previously, many researchers have successfully used such methods for PolSAR image
classification and have obtained satisfactory results.

In recent years, the convolutional neural network (CNN) model, derived from convolution, pool
and nonlinear transformation operations, has obtained good results in many applications [34,35], i.e.,
action recognition [36], semantic segmentation [37], image classification [38] and scene labeling [39].
Nonetheless, the existing CNN model are not suitable for PolSAR image classification. It is well known
that PolSAR image classification task is dense prediction problem. For the existing CNN’s classification
framework, input is image and output is class of image. Nevertheless, CNN’s classification result
cannot describe the image detail [40]. Consequently, for the existing CNN’s classification frameworks
for PolSAR image [41–43], pixel’s neighborhood is set as the input image. In this way, the pixel’s
class can be obtained. In other words, CNN has no advantage in memory occupation. Luckily,
Long et al. proposed fully convolutional networks (FCN) model [40], which can be trained in an
end-to-end, pixels-to-pixels manner. FCN converts fully connected layers of traditional CNN model
into convolutional layers. By this means, an efficient classification net for end-to-end dense learning
can be enabled. Accordingly, FCN has great potential in processing PolSAR image classification task.
Nevertheless, because each PolSAR image has a different size, FCN cannot be directly applied to
PolSAR image classification. Consequently, the existing FCN frameworks does not have a specific
framework capable of processing all PolSAR images. Larger size input image also increases the
complexity of the classification framework. Recently, Li et al. [44] proposed sliding window
fully convolutional networks (SFCN) to tackle the problems of FCN in PolSAR image classification.
The sliding window operation of SFCN is similar to that of CNN, and Li et al. [44] have designed a new
training framework for SFCN. Nevertheless, because of the relatively complex network architecture of
SFCN, it cannot obtain excellent classification results with fewer labeled training samples.

Based on deep learning, Ghifary et al. [45] presented a new model called deep reconstruction-
classification network (DRCN) for object recognition. DRCN can jointly learn a shard feature
representation for two tasks: (i) supervised source data classification; and (ii) unsupervised target
data reconstruction. In this way, the extracted feature representation can preserve discriminability
while encoding meaningful information from the target data. Similar to the standard neural networks,
DRCN can also be optimized by backpropagation. DRCN has obtained considerable improvement
over the state-of-the-art methods in cross-domain object recognition task.

Adversarial training has become the state-of-the-art method for generative image modeling.
Luc et al. [46] proposed an adversarial training method which is very helpful for training segmentation
models. In their approach, a convolutional segmentation network with an adversarial network is
trained to discriminate the segmentation maps coming either from the segmentation network or the
ground truth. Their method can detect and revise the higher-order inconsistencies between the ground
truth maps and segmentation result maps.

Based on the SFCN, DRCN and adversarial training models, we propose adversarial
reconstruction-classification networks (ARCN) in this paper. The merits of our method can be expressed
as: (i) Since our method is based on SFCN, it can be trained end-to-end, pixels-to-pixels while taking
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into account the spatial information; (ii) Our method can jointly learn a shard feature representation
for supervised image classification and unsupervised image reconstruction. In this way, all samples
can be correctly classified, not just labeled training samples; (iii) By introducing adversarial training,
our method can enforce forms of higher-order consistency between the true image and reconstructed
image. The rest of this paper is organized as follows. The methods used to extract features for PolSAR
images are given in Section 2. Section 3 describes the related work. Our proposed ARCN method is
shown in Section 4. Section 5 reports the experimental results. Finally, discussion and conclusions are
provided in Sections 6 and 7.

2. Feature Extraction of PolSAR Images

2.1. Coherency Matrix

On the basis of [22], PolSAR data can be expressed with scattering matrix, which is given by
Equation (1). In addition, PolSAR data’s polarimetric information is contained in scattering matrix.

S =

[
Shh Shv

Svh Svv

]
. (1)

In the case of the monostatic backscattering, there exists the reciprocity theorem, i.e., Shv = Svh.
The scattering matrix can also be expressed as: [47]:

S = a
1√
2

[
1 0

0 1

]
+ b

1√
2

[
1 0

0 − 1

]
+ c

1√
2

[
0 1

1 0

]
, (2)

where
a = (Shh + Svv)/

√
2, b = (Shh − Svv)/

√
2, c =

√
2Shv. (3)

In addition, PolSAR data’s coherency matrix T can be expressed as follows [22]:

T = [a, b, c]T [a∗, b∗, c∗] =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 =


|a|2 ab∗ ac∗

a∗b |b|2 bc∗

a∗c b∗c |c|2

 . (4)

In recent years, many great performances corresponding to PolSAR image classification have
been obtained by the coherency matrix T [22,23].

2.2. Cloude-Pottier Decomposition

As described in the eigen-decomposition model [8], coherence matrix T is decomposed as:

T = U3


λ1 0 0

0 λ2 0

0 0 λ3

U∗3 =
3

∑
i=1

λi~ei~e∗i , (5)

where U3 = [~e1,~e2,~e3] and λi(i = 1, 2, 3) are eigenvector matrix and eigenvalue of T, respectively.
According to the eigen-decomposition model, Cloude and Pottier put forward Cloude-Pottier
decomposition model. The entropy H, the anisotropy A, and the mean alpha angle ᾱ are defined as:
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H = −
3

∑
i=1

pilog3 pi, pi =
λi

∑3
k=1 λk

,

A =
λ2 − λ3
λ2 + λ3

,

α =
3

∑
i=1

piαi =p1cos−1(e1
1) + p2cos−1(e1

2) + p3cos−1(e1
3),

(6)

where e1
i (i = 1, 2, 3) is the first element of~ei (i = 1, 2, 3). Besides, Cloude-Pottier decomposition model

plays an important role in processing PolSAR image classification task [6,8].
The features we extract in this paper are divided into two parts, F = [F1, F2]. To construct the first

part of F, i.e., F1, we use the coherency matrix T; F1 = [T11, T22, T33, Re(T12), Re(T13), Re(T23)]. Here,
Re(Tij) and Im(Tij) represent the real and the imaginary parts of Tij, respectively. Now, by making use
of the Cloude-Pottier decomposition features, we construct the second part of the features as F2 = [H,
A, α, λ1, λ2, λ3].

3. Related Work

3.1. Sliding Window Fully Convolutional Networks

FCN is a natural extension of CNN to solve the dense prediction problem, for example image
segmentation. To recover the resolution information corresponding to the input at the output layer,
upsampling layers are added to the standard architectures by FCN. Therefore, images of arbitrary size
can be processed with FCN. FCN uses skip connections between the upsampling and downsampling
paths to tackle the resolution problem caused by downsampling operation. Skip connections are
very helpful for the upsampling path to recover the fine-grained information from the downsampling
layers. However, as Section 1 described, FCN cannot be directly applied in PolSAR image classification.
Images of different sizes need different FCN frameworks and larger-size input images generally
increase the difficulty in designing network architecture. Therefore, we cannot design a corresponding
framework for each PolSAR image alone. To design a unified FCN architecture for different PolSAR
images, Li et al. introduced sliding window operator in [44]. The sliding window operation of SFCN
is similar to that of CNN, and the number of the images obtained by sliding window operation can be
acquired through

num = (ceil((Height−W)/S) + 1) · (ceil((Width−W)/S) + 1), (7)

where ceil denotes the upward integer-valued function, Height and width respectively denote the
height and width of the image, W and S respectively denote the size and stride of the sliding window
operation, and num denotes the number of the acquired images obtained by sliding window operation.

3.2. Deep Reconstruction-Classification Networks

DRCN jointly learns two tasks: (i) supervised classification of the source data, and (ii) unsupervised
reconstruction of the target data. The two tasks share the encoding parameters, while the decoding
parameters of the two tasks are separated. DRCN’s core contribution is to construct a single composite
feature representation, which encodes information for both the classification task of the source data
and the structure of the target data. The purpose is that the learned supervised classification function
can obtain good classification results in the target data. That is to say, the unsupervised reconstruction
task can be regarded as the auxiliary task to support the adaption of the classification task.

3.3. Semantic Segmentation Using Adversarial Networks

In [46], Luc et al. use an adversarial training method to increase the performance of segmentation
model. Their method more interested in forcing higher-order consistency than a very specific class of
high-order potentials. Motivated by the generative adversarial network (GAN) model [48], they find a
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method through adversarial training rather than searching to directly integrate higher-order potentials
in a conditional random field (CRF) model. For this reason, their objective function is consisted of a
conventional multi-class cross-entropy loss and an adversarial term. The adversarial term encourages
semantic segmentation model to generate result maps, which cannot be distinguished from the ground
truth maps with an adversarial classification network. Because the adversarial network can evaluate
the joint configuration of multiple label variables, it can force forms of higher-order consistency.

4. Methodology

In this paper, we propose a novel PolSAR image classification method, which we refer to
as adversarial reconstruction-classification networks (ARCN). We first present the architecture of
reconstruction-classification networks (RCN), which based on the SFCN model. Then, we give the
architecture and training details of our proposed ARCN method.

4.1. Reconstruction-Classification Networks

RCN consists of two pipelines: (i) supervised classification network, and (ii) unsupervised
reconstruction network, which can be shown in Figure 1. In addition, the classification network part
of Figure 2 gives the framework of SFCN. The two pipelines can be divided into three functions:
(i) encoding function, which can be expressed by the intersection between the red rectangle and blue
rectangle in Figure 1; (ii) classification function, which can be expressed by the rest part of the red
rectangle in Figure 1; (iii) reconstruction function, which can be expressed by the rest part of the blue
rectangle in Figure 1. That is to say, RCN has two pipelines with a shared encoding representation.
The RCN model is optimized through multitask learning [49], namely, jointly learns the supervised
classification and unsupervised reconstruction tasks. The purpose is that the encoding function can
learn the commonality between the two tasks. In this way, excellent classification results still can be
obtained when the number of the labeled training samples is limited.

We now describe RCN more formally. Let fc: X → Yc be the supervised image classification
pipeline and fr: X → X be the unsupervised reconstruction image pipeline of RCN, where X and Yc

represent the input image space and the ground truth space, respectively. Define the three functions
mentioned above: (i) encoding function genc: X → F , (ii) reconstruction function grec: F → X , and
(iii) classification function gcla: F → Yc, where F represents the encoding feature space. Given an
input image x ∈ X , fc and fr can be described as follow:

fc(x) = (gcla ◦ genc)(x), (8)

fr(x) = (grec ◦ genc)(x). (9)

Let Θc = {Θenc, Θcla} and Θr = {Θenc, Θrec} respectively represent the parameters of the supervised
classification model and unsupervised reconstruction model. Θenc, Θrec, and Θcla are the parameters
of the encoding, reconstruction, and classification functions, respectively. The aim is to find a shared
encoding function genc which supports both fc and fr.

As for the unsupervised reconstruction model, we use adversarial training to train it, which is
described next.
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Figure 1. The diagram of RCN, where Conv denotes the convolutional layer, Pool denotes the max
pooling layer, Deconv denotes the deconvolutional layer, three color (including white, blue and black)
arrows denote the convolution, max pooling, and deconvolution operation, respectively, and “+”
represents the add operation. RCN consists of two pipelines: (i) classification network which is
indicated by red rectangle, Image and Classification result respectively represent its input and output,
and (ii) reconstruction network which is indicated by blue rectangle, Image and Image’ respectively
represent its input and output. In addition, the classification network is also the framework of SFCN.
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Figure 2. Diagram of ARCN. (Left): Reconstruction-classification network (RCN) takes Image as input
and produces the classification result and the reconstruction result of Image (Image’), which is shown
in Figure 1. (Right): Adversarial network takes Image or Image’ as input and produces class label
(1 = true image, or 0 = synthetic), where Conv denotes the convolutional layer, Pool denotes the max
pooling layer, F denotes the full connected layer, and three color (including white, blue and black)
arrows denote the convolution, max pooling, and full connect operation, respectively.

4.2. Adversarial Reconstruction-Classification Networks

4.2.1. Adversarial Training for RCN

ARCN can be divided into two parts: RCN and adversarial networks, which can be shown in
Figure 2. The left black rectangle in Figure 2 represents the RCN model, which takes Image as input
and produces the classification result and the reconstruction of the Image. Meanwhile, the right black
rectangle takes image map as input and produces class label (1 = true image, or 0 = synthetic).
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Let Θa represents the parameters of the adversarial networks, and fa: X → Yd be the adversarial
networks, where Yd ∈ [0, 1]. Given an input image x ∈ X , fa can be expressed as follow:

fa(X) =

{
1, X = x

0, X = fr(x)
(10)

Given N1 labeled training samples (xi, yi), where yi ∈ {0, 1}K is a one-hot vector, and N2 unlabeled
training samples xj, the loss can be defined as:

LARCN(Θc, Θr , Θa) =
N1

∑
i=1

lc( fc(xi), yi)− λla( fa( fr(xi)), 0)− λ[
N1

∑
i=1

la( fa(xi), 1) +
N2

∑
j=1

la( fa(xj), 1) + la( fa( fr(xj)), 0)]. (11)

In the above, lc(ŷ, y) = −∑K
k=1 yklnŷk represents the multi-class cross-entropy loss for

predictions ŷ, which is the softmax output. Similarly, we use la(ẑ, z) = −[zlnẑ + (1− z)ln(1− ẑ)],
the binary cross-entropy loss. We minimize the loss with respect to the parameters Θc and Θr of RCN,
while maximizing the loss with respect to the parameters Θa of the adversarial networks.

4.2.2. Training the Adversarial Model

Since only the terms in Equation (11) that contain la depend on the adversarial networks, the loss
of the adversarial model can be described as:

LA(Θa) =
N1

∑
i=1

la( fa( fr(xi)), 0) + la( fa(xi), 1) +
N2

∑
j=1

la( fa( fr(xi)), 0) + la( fa(xj), 1). (12)

The training of the adversarial model minimizes the above loss function, and the architectures of
our adversarial model can be shown by the right black rectangle in Figure 2.

4.2.3. Training the RCN Model

Given the adversarial networks, training the RCN model is equivalent to minimize the multi-class
cross-entropy loss, while decreasing the performance of the adversarial networks. In this way, it is
not easy for the adversarial model to distinguish the reconstructed image produced by the RCN
model from the true image. The objective function corresponding to the RCN model can be described
as follow:

LRCN(Θc, Θr) =
N2

∑
j=1
−λla( fa( fr(xj)), 0) +

N1

∑
i=1

lc( fc(xi), yi)− λla( fa( fr(xi)), 0). (13)

Similar to Goodfellow et al. [48], we replace the term −λla( fa( fr(x)), 0) with λla( fa( fr(x)), 1).
That is to say, we maximize the probability that the adversarial model predicts fr(x) to be the true
image instead of minimizing the probability that the adversarial model predicts it to be the synthetic
image. It is not difficult to prove that −λla( fa( fr(x)), 0) with λla( fa( fr(x)), 1) have the same set of
critical points. The reason of this update is that it produces a stronger gradient signal when the
adversarial model makes an accurate prediction of the true/synthetic image. It has been proven by
the preliminary experiments that this update is very meaningful for accelerating training process [46].
Therefore, the objective function of the RCN model can be updated to follow:

LRCN(Θc, Θr) =
N2

∑
j=1

λla( fa( fr(xj)), 1) +
N1

∑
i=1

lc( fc(xi), yi) + λla( fa( fr(xi)), 1). (14)

The optimization of LARCN can be obtained by alternately minimizing LA and LRCN using
ADAM [50]. We will count the training classification accuracy for each iteration. The algorithm will
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stop in two cases. First, the training classification accuracy of multiple consecutive iterations is higher
than the predefined accuracy value. Second, the iteration number reaches the predefined maximum
iteration number. Our proposed ARCN method is summarized in Algorithm 1. In addition, we use
dropout regularization [51] during the minimization of LRCN to prevent overfitting.

Algorithm 1 The adversarial reconstruction-classificati networks (ARCN) learning algorithm.

Input: Labeled samples: {(xi, yi)}N1
i=1; Unlabeled samples {xj}N2

j=1; Learning rate: αc, αr, αa;
1: Initialize parameters Θc, Θr, Θa;
2: while not stop do
3: for each labeled samples batch do
4: Do a forward pass according to Equations (8)–(10);
5: Update Θc, Θr, Θa:

Θc ← Θc − αc∇ΘcLRCN(Θc);

Θr ← Θr − αr∇ΘrLRCN(Θr);

Θa ← Θa − αa∇ΘaLA(Θa);
6: end for
7: for each unlabeled samples batch do
8: Do a forward pass according to Equations (9)–(10);
9: Update Θr, Θa:

Θr ← Θr − αr∇ΘrLRCN(Θr);

Θa ← Θa − αa∇ΘaLA(Θa);
10: end for
11: end while
Output: ARCN learnt parameters: Θ̂ = {Θ̂c, Θ̂r, Θ̂a}.

5. Experimental Results

As previously stated in Section 2, in this work, we use coherency matrix T and Cloude-Pottier
decomposition features as our extracted original features. The feature dimension is 15. As a matter
of pre-processing, we have used a refined Lee filter [52] to reduce speckle noise. To validate the
performance of our proposed method, we have used the following three PolSAR images: Xi’an,
China; Oberpfaffenhofen, Germany; San Francisco, USA. The performance of the proposed method is
compared against SVM [26], sparse representation classifier (SRC) [53], SAE [33], CNN [54], and
SFCN [44]. Overall accuracy (OA) and Kappa coefficients [55] are used as evaluation criteria.
All methods are implemented in a 3.20-GHz machine with a 8.00-GB RAM and a NVIDIA GTX
1050 Ti GPU.

5.1. Description of Experimental PolSAR Images

5.1.1. Xi’an

The first PolSAR iamge is acquired from a C-band multilook PolSAR image, which covers western
Xi’an, Shaanxi, China. The left of Figure 3a gives its PauliRGB image with its corresponding coordinate,
and the size of which is 512 × 512. The right of Figure 3a gives the photo of the near area of Xi’an,
which is from Google Maps. The corresponding ground truth map is shown in Figure 3b, which is
acquired by referencing [56]. Overall, 237,416 pixels are labeled in Figure 3b. Xi’an image mainly
contains 3 classes, which are water, grass and building. The corresponding code map is shown
in Figure 3c.
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Figure 3. Xi’an. (a) Left: PauliRGB image with its coordinate, right: the photo of the near area with its
coordinate, which is from Google Maps. (b) Ground truth map. (c) Color code.

5.1.2. Oberpfaffenhofen

The second PolSAR image is acquired from an L-band multilook PolSAR image, which covers
Oberpfaffenhofen, Germany. German Aerospace Center’s E-SAR provided this PolSAR image. The size
of this PolSAR image is 1300 × 1200, which is shown in the left of Figure 4a. The right of Figure 4
gives the photo of the near area of Oberpfaffenhofen, which is from Google Maps. The ground truth is
shown in Figure 4b, which is obtained by referencing [43]. In total there are 1,374,298 labeled pixels.
The corresponding ground truth map is shown in Figure 4c. From the ground truth map, we can see
that there are three classes in this PolSAR image: open areas, wood land and built-up areas.
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Figure 4. Oberpfaffenhofen. (a) Left: PauliRGB image with its coordinate, right: the photo of near area
with its coordinate, which is from Google Maps. (b) Ground truth map. (c) Color code.

5.1.3. San Francisco

The third PolSAR image is gained from a C-band multilook PolSAR image, which covers the
area around the bay of San Francisco with the golden gate bridge. Because this PolSAR image
provides a good coverage of both natural terrain and man-made terrain, it has been widely used
in PolSAR image classification. The size of this PolSAR image is 1800 × 1380, which is shown in
the left of Figure 5a. The right of Figure 5a gives the photo of the near area of San Francisco, which
is from Google Maps. Figure 5b gives the corresponding ground truth map, which is acquired by
referencing [43]. The number of the labeled pixels is 1,804,087. This data set mainly contains five classes:
ocean, vegetation, developed, low density urban and high density urban, and the corresponding color
code is shown in Figure 5c.
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Figure 5. San Francisco. (a) Left: PauliRGB image with its coordinate, right: the photo of near area
with its coordinate, which is from Google Maps. (b) Ground truth map. (c) Color code.

5.2. Parameter Setting

As for the SVM method, the radial basis function (RBF) kernel is used. For the SRC method,
we set the number of dictionary atoms to 15. For the SAE model, the dimensions of middle layers
are fixed to 300 and 100, respectively. A 21× 21 neighborhood is used for each pixel with the CNN
model, and Figure 6 gives the classification architecture of CNN. The sliding window size and stride
in Equation (7) are fixed to 128 and 64, respectively. For the SFCN model, it has the same architecture
as that of the classification network of RCN model. Figures 1 and 2 show our method’s architecture.
Next, for all experiments, the rate of training samples used for each class for the three PolSAR images
are 1%, 0.2% and 0.1%, respectively. For SFCN and our proposed method, only the training pixels are
involved in modifying the network parameters in the training stage.

Image Conv1

Pool1 Conv2
Pool2 Conv3

21

21

15

18

18

30

9

9
30

6

6
60

3

3
60

1

1
120

Flat
fc1

120

fc2

84

Result

numClass

Figure 6. The architecture of CNN, where image represents the input image, Conv denotes the
convolutional layer, Pool denotes the max pooling layer, flat denotes the flat operation, fc denotes the
full connected layer, and Result denotes the classification result.

5.3. Classification Performance

5.3.1. Xi’an Data Set

As previously stated, 1% of the labeled pixels are used for training and the rest are used for testing.
The classification accuracy of our method and three compared method are shown in Table 1. From
Table 1, we can see that our method has better classification accuracy, which is about 3.97%, 7.06%,
4.80%, 3.09% and 10.84% higher than that of the five compared methods, respectively.
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Table 1. Classification results of Xi’an with various methods.

Methods Water Grass Building OA Kappa

SVM 0.8167 0.9075 0.9012 0.8916 0.8199
SRC 0.5754 0.9169 0.9031 0.8607 0.7624
SAE 0.8861 0.8736 0.8957 0.8833 0.8086
CNN 0.8159 0.8990 0.9382 0.9004 0.8352
SFCN 0.5833 0.8437 0.8957 0.8229 0.7059
ARCN 0.8074 0.9527 0.9540 0.9313 0.8856

The classification results of Xi’an with various methods are shown in Figure 7. As shown in
Figure 7a–c, the results of SVM, SRC and SAE are not well in regional continuity. For example, the
building in the upper left corner is misclassified to grass. From Figure 7d, we can see that CNN does
not perform well in the marginal areas of classes. It is because CNN use a 21× 21 neighborhood
of each pixel as the input image, which increases the difficulty of classifying the pixels in the above
mentioned areas. As for SFCN, it does not perform well in recognizing water, which is shown in
Figure 7e. Because the selected training samples are too few, SFCN cannot learn the internal structure
of Xi’an. On the other hand, as can be seen in Figure 7f, our method has clearly outperformed the
compared methods, with fewer misclassified pixels. Furthermore, we use white ellipse to highlight
the notable different classification results. From the white ellipse, it can be seen that the building is
classified better with our method than five compared methods. In summary, the effectiveness of our
method can be proven.

(a) (b) (c)

(d) (e) (f)

Figure 7. Classification results of Xi’an with various methods. (a) SVM. (b) SRC. (c) SAE. (d) CNN.
(e) SFCN. (f) ARCN.

5.3.2. Oberpfaffenhofen Data Set

Out of the labeled pixels, 0.2% are used for training and the rest for testing. The classification
accuracy on Oberpfaffenhofen obtained with our method and compared methods is listed in Table 2.
From the classification results in Table 2, we can see that the OA of our method is about 8.02%, 8.96%,
7.15%, 3.75% and 2.04% higher than that of the five compared methods, respectively.
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Table 2. Classification results of oberpfaffenhofen with various methods.

Methods Built-up Areas Wood Land Open Areas OA Kappa

SVM 0.6978 0.8665 0.9682 0.8815 0.7959
SRC 0.7237 0.8380 0.9498 0.8721 0.7809
SAE 0.7807 0.8284 0.9604 0.8902 0.8119
CNN 0.8266 0.9234 0.9677 0.9242 0.8704
SFCN 0.9220 0.9157 0.9588 0.9413 0.9006
ARCN 0.9173 0.9551 0.9837 0.9617 0.9348

Figure 8 shows the classification result of Oberpfaffenhofen with different methods. As to SVM,
SRC and SAE, there are a large number of misclassified pixels for all classes, which can be seen in
Figure 8a–c. For CNN, we can see many misclassified pixels between open areas and built-up areas in
Figure 8d. From Figure 8e, we can see that the classification result of SFCN is desirable. However, SFCN
does not perform well in the edge parts of classes. As shown in Figure 8f, our method obtains better
classification result than the methods used for comparison. Simultaneously, the remarkable different
classification results are highlighted by the white rectangles in Figure 8. The visual comparison of
classification results corresponding to the white rectangles shows that large amount of pixels are
misclassified by the five compared methods. For the noted above, the effectiveness of our proposed
ARCN method can be demonstrated.

(a) (b) (c)

(d) (e) (f)

Figure 8. Classification results of Oberpfaffenhofen with various methods. (a) SVM. (b) SRC. (c) SAE.
(d) CNN. (e) SFCN. (f) ARCN.

5.3.3. San Francisco Data Set

In this case, we use 0.1% of the labeled pixels for training and the remaining for testing. Table 3
lists the classification accuracy on San Francisco computed by the six aforementioned methods. From
Table 3, we can see that our method has higher classification accuracy than the five compared methods.
Nevertheless, the gap between the OA of CNN and our method is not large.
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Table 3. Classification results of San Francisco with various methods.

Methods Ocean Vegetation Low Density Urban High Density Urban Developed OA Kappa

SVM 0.9983 0.9146 0.8720 0.7735 0.8163 0.9193 0.8837
SRC 0.9890 0.8830 0.9457 0.7093 0.5142 0.9016 0.8576
SAE 0.9990 0.8978 0.8334 0.7841 0.8583 0.9135 0.8754
CNN 0.9999 0.9611 0.9754 0.9156 0.9514 0.9747 0.9635
SFCN 0.9998 0.9016 0.8273 0.9325 0.8046 0.9340 0.9051
ARCN 0.9977 0.8817 0.9962 0.9873 0.9238 0.9772 0.9672

Figure 9 shows the classification result of San Francisco with the aforementioned four methods.
As shown in Figure 9a–c, the classification results of SVM, SRC and SAE are relatively worse.
From Figure 9d, we can see that the classification result of CNN is well in regional continuity. Because
the structure of San Francisco is not complicated, for example, water itself occupies a large area, where
does not contain other classes. Furthermore, CNN can take into account the spatial information,
which facilitates the image classification. From Figure 9e, we can see that the classification result
of SFCN is acceptable. Furthermore, we use white rectangles to highlight the remarkable different
classification results in Figure 9. Through comparing the classification results of white rectangles, it can
be concluded that our method acquire a better classification result than the five compared methods.
In summary, all these results clearly demonstrate the efficiency of our proposed ARCN method in
classifying San Francisco.

(a) (b) (c)

(d) (e) (f)

Figure 9. Classification results of San Francisco with various methods. (a) SVM. (b) SRC. (c) SAE.
(d) CNN. (e) SFCN. (f) ARCN.
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6. Discussion

6.1. Accuracy

As mentioned in Section 5.2, the amount of training samples used with the three images are 1%,
0.2% and 0.1%, i.e., 2375, 2751 and 1807 of labeled pixels. From our study we see that the number of
selected samples with our method is much less than that of the available state-of-the-art methods [22,33].
Nevertheless, our method still manages to obtain comparatively better results. We strongly believe that
this is due to the following reasons: (i) Because our method is based on SFCN, an efficient classification
net for end-to-end dense learning can be learned; (ii) Our method can jointly learn a shared encoding
representation for two tasks: supervised image classification and unsupervised image reconstruction.
By optimizing unsupervised image reconstruction task, the learnt encoding representation is highly
abstract, which facilitates the image classification task. Since the learnt encoding representation can be
used to reconstruct all the samples and classify the labeled training samples, the rest samples, which
belong to the same distribution as the labeled training samples, can also be classified correctly with
the learnt encoding representation; (iii) By introducing adversarial training, our method can enforce
forms of higher-order consistency between the truth image and reconstructed image. For these reasons,
our method can obtain excellent classification results with a small number of labeled training samples.

6.2. Execution Time

Table 4 summarizes the execution time of various methods corresponding to three PolSAR images,
where “Train” denotes the training time, "Predict" denotes the time taken to classify entire image, and
“Total” denotes the total time used to train plus predict. From Table 4, we can see that the execution
time of our method is higher than that of the methods used for comparison. The reasons for this can be
stated as follows: (i) Our method requires to process two tasks simultaneously, i.e., supervised image
classification and unsupervised image reconstruction; (ii) Our method introduces adversarial training,
which is time consuming.

Table 4. Execution time of the three PolSAR Images with different methods (S).

Methods Xi’an Oberpfaffenhofen San Francisco

Train Predict Total Train Predict Total Train Predict Total

SVM 0.07 5.13 5.20 0.12 62.52 62.64 0.03 44.48 44.51
SRC 0.49 0.40 0.89 0.34 2.24 2.58 0.27 2.70 2.97
SAE 7.93 0.21 8.14 8.97 0.58 9.55 5.97 1.08 7.05
CNN 41.26 3.02 44.28 33.1 18.94 52.04 35.1 30.66 65.76
SFCN 24.89 0.11 25.00 30.49 0.73 31.22 36.38 1.29 37.67
ARCN 206.57 0.11 206.68 286.72 0.74 287.46 195.05 1.29 196.34

6.3. Memory Consumption

The memory consumption of various methods corresponding to three PolSAR images is given in
Table 5, and the symbol “G” in the caption of Table 5 denotes gigabytes. From Table 5, we can see that
the memory consumption of CNN is the highest among all the methods. The main reason is that for
the classification framework of CNN used in PolSAR images, the neighborhood of the pixel is set as
the input to get the class of the pixel. Compared with CNN, the memory consumption of the rest two
compared methods and our method is satisfied.
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Table 5. Memory consumption of various methods corresponding to three PolSAR Images (G).

Methods Xi’an Oberpfaffenhofen San Francisco

SVM 0.026 0.14 0.24
SRC 0.026 0.14 0.24
SAE 0.026 0.14 0.24
CNN 11.9 66.1 110.5
SFCN 0.076 0.55 0.85
ARCN 0.076 0.55 0.85

In summary, SVM, SRC and SAE cannot obtain satisfactory results in PolSAR image classification,
because they donot take the spatial information of the image into consideration. Nevertheless, they
perform very well in time consumption and memory occupation except that the predict time of SVM
is relatively longer than other two methods. CNN can take into account the spatial information by
setting the neighborhood of the pixel as the input image. Consequently, CNN capable of obtaining
acceptable classification result. However, setting the neighborhood of the pixel as the input image of
the CNN model also results in repeated memory consumption, which causes the shortcoming of CNN
in memory consumption. Because the framework of SFCN is more complex than that of CNN and SAE,
so SFCN needs more labeled training samples to get promising classification results. Therefore, SFCN
does not get ideal classification results in this paper. For our proposed ARCN method, it can jointly
learn a shared feature representation for supervised image classification and unsupervised image
reconstruction while introducing adversarial learning. Therefore, our method can get competitive
classification results with fewer labeled training samples. Furthermore, our method also performs
well in memory consumption. However, our method still has room for improvement in terms of
time consumption.

7. Conclusions

This paper presents a novel classification method, namely ARCN, for PolSAR image classification.
We set the coherency matrix T and Cloude-Pottier decomposition features as the original feature
vectors. In this paper, we have compared our method’s performance against SVM, SRC, SAE,
CNN, and SFCN on classifying three PolSAR images (Xi’an, Oberpfaffenhofen, and San Francisco).
The recently proposed SFCN model can be trained end-to-end, pixels-to-pixels while taking the
spatial information into consideration. Nevertheless, only when the training sample is sufficient can
SFCN get good classification results. To address the above mentioned problem, RCN and adversarial
training are introduced to our method. A shared feature representation can be jointly learned by
RCN for supervised image classification and unsupervised image reconstruction, and the higher-order
inconsistencies between the true image and reconstructed image can be detected and revised by
adversarial training. In this way, our method can achieve impressive performance in PolSAR image
classification with fewer labeled training samples. In addition, our method has a relatively longer
training phase. Our future work is concentrated on finding a method to reduce the time consumed in
the training stage for our method.
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Abbreviations

The following abbreviations are used in this manuscript:

PolSAR Polarimetric synthetic aperture radar
FCN Fully convolutional network
SFCN Sliding window fully convolutional network
RCN Reconstruction-classification networks
ARCN Adversarial reconstruction-classification networks
KNN K-nearest neighbor
SVM Support vector machine
SAE Stacked auto-encoder
CNN Convolutional neural network
DRCN Deep reconstruction-classification network
GAN Generative adversarial network
CRF Conditional random field
SRC Sparse representation classifier
OA Overall accuracy
RBF Radial basis function
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