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Abstract: Currently, GNSS reflectometry based on the signal-to-noise ratio (SNR) has become an
established tool in ocean remote sensing. Here, the distance between an antenna and the water
surface is measured by analyzing the oscillation of the SNR observation. Due to the antenna gain
pattern, this oscillation is more pronounced for satellite signals coming from low elevation angles.
Additionally, the sea surface roughness is related to the attenuation of the SNR oscillation. Hence,
the significant wave height (SWH) can be estimated by analyzing the SNR signal. In this work,
a method is presented with which the SWH can be calculated from the attenuation’s damping
coefficient of the SNR observations measured with surface-based receivers. The method’s usability is
demonstrated using data from a static antenna operated in the German Bight and with data from a
ship-based antenna. The estimated SWH values were validated against numerical wave model data.
For both experiments, a high correlation was found.

Keywords: GNSS reflectometry; GNSS SNR; interference pattern technique; damping coefficient;
significant wave height; ship measurement

1. Introduction

The oceans are of major importance for the global climate and life on Earth. In addition to their
ecological impact, they play an important role in civil and economic life. Besides knowledge of global
and local sea level changes, sea state information is used to gain insights into ocean–atmosphere
interaction and is also essential for the planning of coastal protection and shipping safety.

The significant wave height (SWH) is a substantial parameter for describing the sea state in a
specific region. This statistical value is defined as the mean value of the highest one-third of wave
heights observed over a period of time [1]. A standard technique for doing in situ SWH observations
is moored wave buoys where the SWH is calculated from vertical acceleration measurements [1].
Such observations can be used to generate SWH time series for a specific location, which are important
for calibration and validation of remote sensing techniques like satellite altimetry [2], marine radar [3],
or SAR satellites [4]. Another remote sensing technique is GNSS reflectometry with which a surface is
probed using the reflected signal. The SWH can be observed with satellite-based [5] and airborne [6]
systems, which make use of the characteristics of delay Doppler maps. For more than a decade,
the reflections of GNSS signals have been used for the estimation of sea surface parameters from
terrestrial receivers [7]. In particular, during the last few years, the interference of the direct and
the reflected signal that creates a characteristic oscillation in the signal-to-noise ratio (SNR), which is
observed by the majority of GNSS receivers, has been shown to be a useful tool for observing the
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distance between a GNSS antenna and the reflecting water surface [8]. Other surface properties like
snow coverage [9] or soil moisture [10] can be studied with this method as well. The SNR observations
also provide the opportunity to make SWH measurements [11]. While a GNSS satellite moves along
its orbit, the specular point moves over the water surface, yielding an interference variation with the
direct signal, which results in an oscillation of the GNSS SNR observables. The oscillation is attenuated
with increasing elevation angles mainly due to the gain pattern of the receiving antenna. Additionally,
the attenuation depends on the roughness of the reflecting surface. In Figure 1, SNR observations
and the fitted SNR model of two satellites gathered under different wave conditions are presented.
The signal gathered at SWH of 1.5 m is more attenuated and more noisy than the one gathered at SWH
of 0.3 m. For lower elevation angles, the attenuation due to the antenna gain pattern is commonly low,
while an attenuation increase is clearly noticeable when the sea surface is rough.

(a) (b)
Figure 1. SNR observations gathered under different SWH conditions (blue dots) and the fitted SNR
model (red). (a) SNR observations during SWH of 0.3 m. (b) SNR observations during SWH of 1.5 m.

Alonso-Arroyo et al. used a short-time Fourier transform of the attenuated SNR oscillation to
calculate the cutoff angle, at which the signal coherence is lost [11]. They found a non-linear relation
between the cutoff angle and the SWH that was observed in parallel by a radar-based instrument.
The estimation of higher SWH using this approach is somewhat problematic since the decrease of the
cutoff angle is enhanced due to the non-linear structure of the relation. Especially because the influence
of tropospheric refraction and shadowing effects grows with low elevation angles, the quality of the
SWH could become low.

In this work, we suggest a different approach using the damping coefficient of the attenuated
SNR oscillation. Since the attenuation depends exponentially on the damping coefficient, the direct
relation between the damping coefficient and the SWH is assumed to show a linear or quasi-linear
behavior. We investigated this assumption and its usability using data from two experiments. If the
accuracy of the estimated SWH is similar to the accuracy of the wave buoys, these data could be useful
for validation purposes. Existing GNSS stations near the coast, on offshore structures, or on ships
could be used for such measurements. Especially the possibility of doing SWH observations with
GNSS aboard ships could provide useful validation data on the open ocean.

After presenting the methodology in Section 2, the experimental datasets are explained in Section 3.
A first experiment was carried out with a one-month dataset from a static antenna. For a second
experiment, data from a three-month set of GNSS data, gathered aboard a moving ship, were used.
In Section 4, the processing steps to derive the damping coefficient out of an SNR signal are described.
Furthermore, antenna-related models of the SWH as a function of the damping coefficient are derived
using in situ SWH data from wave buoys. In Section 5, we present a validation of the results using
SWH data from an independent wave model. A summary of our findings is given in Section 6.
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2. Methodology

According to the full model [12], the SNR is a combination of the direct and reflected power
related to the noise power. For a plane reflecting surface, the SNR at time ti can be decomposed into a
trend and interference fringes that are attenuated with respect to the elevation angle:

SNR = trend + attenuation · oscillation

trend = c0 + c1ti + c2t2
i + · · ·+ cntn

i

attenuation = e−4k2δ2 sin2 ε, k = π/λ

oscillation = A cos
(

4π

λ
hre f ,ti

sin ε + φ0

) (1)

Here, the trend is described by a low-order polynomial function of the n unknown parameters c.
The attenuation depends on the wave number k, the GNSS signal wavelength λ, the elevation angle ε,
and the unknown damping coefficient δ. A and φ0 are the unknown amplitude and phase offset of
the oscillation.

The key parameter describing the oscillation frequency is the reflector height hre f ,ti
. If this

parameter is known, all remaining parameters can be estimated by non-linear least squares estimation
for each satellite separately. Therefore, hre f ,ti

has to be described as well as possible. In the case of a
static antenna, measuring the reflections from a tidally-influenced water surface, this can be done by:

hre f ,ti
= hAPC − hgauge,ti + dhsphere,ti

(2)

The height of the antenna phase center above tide gauge zero hAPC can be assumed to be stable
for a static antenna. It can either be measured by leveling techniques or estimated using GNSS
reflectometry [13]. The tides hgauge cause a height variation with respect to tide gauge zero at epoch
ti. If no tidal data are recorded in the vicinity of the measurement site, tidal interpolation may
be necessary [14]. Such a procedure will reduce the quality of the correction term and, therefore,
the quality of the analysis. In particular, for observations from low elevation angles, the specular
point can be several hundred meters away, and a correction dhsphere due to the curvature of the
spherically-approximated Earth’s surface is required. A simplified geometry is presented in Figure 2a.

For moving antennas, the formula has to be extended for height variations of the antenna.
Antennas aboard moving ships are a special case, as the tide-dependent height variations of the water
surface can be ignored, but additional hydrodynamic and hydrostatic effects have to be taken into
account. The reflector height can be expressed as:

hre f ,ti
= hSRF − hstatic + dhatt,ti + heaveti − squatUKCti ,STWti

+ dhsphere,ti
(3)

Here, hSRF is the antenna height above the ship’s keel. The hydrostatic draft hstatic can be assumed
to be stable for short journeys. For longer journeys, the temporal behavior has to be modeled based on
information about the loading condition or from measurements [15]. The hydrodynamic squat is an
apparent change of trim and draft while the ship moves through the surrounding water. This effect
is caused by the changed pressure conditions around the ship’s hull. The main impact parameters
are the shape of the ship’s hull, the under keel clearance (UKC), and the speed at which the ship is
moving relative to the water (speed through water (STW)). Speed- and depth-dependent empirical
squat models might be applied if available or a method based on GNSS reflectometry can be used [16].
The ship’s attitude dhatt and heave have an impact on the reflector height and must be taken into
account. Both corrections can be obtained by GNSS analysis [16] or from inertial measurement unit
(IMU). data [17]. A simplified geometry showing the connection between the parameters in Equation (3)
is presented in Figure 2b. In order to keep the illustration simple the parameters heaveti and dhsphere,ti

are not shown.
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(a) (b)
Figure 2. Schematic diagrams of the geometries and connections between the parameters of Equations (2)
and (3). (a) Geometry for a static antenna. (b) Geometry for a ship-based antenna.

Since the specular point can be at a substantial distance from the measuring site, the elevation
angle will no longer be the complementary angle of incidence. A correction can be calculated according
to [16,18]. The elevation angle also has to be corrected for refraction effects. For this, astronomic
refraction models can be used [13]. Therefore, the angle ε in Equation (1) must be the elevation angle
corrected for both effects.

3. Datasets

3.1. Experiment 1: Static Antenna

The first experiment was carried out with one month of GNSS data gathered from a Leica GR10
receiver and a Leica AR25.R3 antenna during July 2018 (GPS Day of Year 185–216). This equipment is
operated by the German Federal Institute of Hydrology (Bundesanstalt für Gewässerkunde (BfG)),
and the antenna is installed on a pile atop the tide gauge station TGW2 (Figure 3), which belongs to the
German Federal Waterways and Shipping Administration (Wasserstraßen- und Schifffahrtsverwaltung
des Bundes (WSV)). The tide gauge is located 1.7 km north of the coast of Wangerooge island. The sea
level is recorded with a 1 min sample rate and a 1 cm resolution. The height offset between tide
gauge zero and the antenna reference point is known from BfG information. Depending on the tide,
the reflector height above the water surface varies between 10.1 m and 14.4 m. For this experiment,
BfG increased the sample frequency of the GNSS receiver to 1 Hz. The antenna’s surroundings are free
of static obstacles, and due to the installation structure, negative near-field effects could be assumed to
be ruled out. Hence, no azimuth dependent masks were used.

3.2. Experiment 2: Moving Antenna

For the second experiment, data from a moving GNSS receiver were used. This receiver was
installed together with two additional receivers aboard of a ferry, which sails from harbors on the
German coast to Heligoland island on a daily basis. The installation consists of multiple GNSS Eclipse
P307 receivers and Hemisphere A52 antennas. The equipment was installed as part of another project,
aiming to measure the sea surface height from moving ships.

Dual-frequency 1 Hz GNSS data were gathered between the beginning of July and the end of
September 2017 (GPS Day of Year 186–268). For these 83 days, data from 147 ferry crossings were
available for analyses (Figure 4). Due to several restrictions, the antennas had to be installed at the
observation deck of the ship’s superstructure. The antenna used for this work was fixed to the forward
end of the rail. Hence, an azimuth mask cutting out the superstructure and the mast behind the
antenna was used. The GNSS data were routinely analyzed in the frame of the previously-mentioned
project. Therefore, the parameters hre f ,ti

, hstatic, dhatt,ti , as well as heaveti from Equation (3) are known.
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The squat correction was derived from an empirical model estimated previously from a calibration
experiment [19].

Figure 3. Installation of the GNSS antenna atop the tide gauge station TGW2 (photo: BfG).

Figure 4. Overview of the investigation area. The orange hexagon highlights the position of the tide
gauge station TGW2 and therefore the location of the static experiment. Ferry crossings are shown as
red lines. Green triangles mark the positions of the wave buoys.
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3.3. Additional Data

3.3.1. Wave Buoys

In the German Bight, sensors measuring the SWH were deployed by federal and scientific
institutions, whereby the larger part was installed by the German Federal Maritime and Hydrographic
Agency (Bundesamt für Seeschifffahrt und Hydrographie (BSH)). These sensors are either wave buoys
or radar sensors. In this work, data from two BSH wave buoys, to the northwest of Heligoland
(HelgolandNorthWR) and in the Outer Elbe (ElbeWR) were used. Even if other sensors have higher
sampling rates and better resolution properties they were too far away to represent the SWH at the
measuring sites. The wave buoys use acceleration data from a 30 min interval to calculate the SWH
with a resolution of 0.10 m. As no accuracy information is provided, a standard deviation of 0.05 m
had to be assumed.

3.3.2. Numerical Wave Model

The German Weather Service (Deutscher Wetterdienst (DWD)) operates an implementation of the
numerical wave model (NWM) WAM [20] for sea state modeling. The modeling setup of the so-called
CWAM is especially designed to deal with the conditions in the German coastal regions. The model
is driven by the COSMO-DE atmospheric model and the BSH-CMOD water level model from the
BSH [21]. CWAM is a purely hydrodynamic model, which is nested into other large-scale models.
No in situ observations from wave buoys or other sensors are assimilated. The spatial resolution of
this coastal model is about 900 m, and each hour, a SWH parameter set with a resolution of 0.01 m is
generated. No model accuracy and precision information are provided.

We validated the quality of the model outputs by comparisons with in situ SWH data from three
wave buoys using data from the year 2017. The buoys were located in deep and shallow water areas to
study the model performance under different conditions. The validation results are summarized in
Table 1. All three validation sites showed no systematic offsets and similar root mean square (RMS)
values of up to 0.21 m. Therefore, it was assumed that the model quality was good enough to validate
the functional models that will be calculated in Section 4.

Table 1. Comparison statistics between the numerical wave model and wave buoy observations at
three different sites.

Buoy Name Latitude ◦ Longitude ◦ Water Depth m Mean Difference m RMS m Correlation %

HelgolandNorthWR 54◦13.164′ 7◦49.109′ 26 0.027 0.207 97
ElbeWR 53◦59.825′ 8◦06.630′ 25 −0.002 0.202 97

BunkerHill 54◦47.500′ 8◦16.300′ 6 0.014 0.148 96

4. Processing and Modeling

Besides the roughness of the reflecting surface, the attenuation of the SNR data is governed by the
antenna gain pattern. For antennas of the same type, the gain patterns can be assumed to be similar,
whereas it is commonly different for different antenna types. Hence, if SWH is described as a function
of the damping coefficient of the attenuation, individual models must be constructed for every antenna
type. For that purpose, we used the SNR data from both experiments and calculated the damping
coefficient according to Equation (1) in conjunction with either Equation (2) or (3). Later, we used in
situ SWH data from buoys to find individual describing functions.

For all datasets, we split the satellite tracks into descending and ascending arcs with elevations
above 1◦ and below 10◦. Observations from lower elevation angles were too noisy for evaluation.
The higher elevation limit was chosen due to the antenna gain pattern in the case of the static antenna,
while in the case of the ship’s measurement, the specular point had to lay outside of the ship’s wave
system [16]. The elevation angles were corrected for tropospheric refraction using the refraction model
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of [22]. The required pressure and temperature data were taken from DWD weather stations at Alte
Weser Lighthouse and on Heligoland.

The first experiment was done under ideal circumstances as the GNSS antenna was installed
directly above a tide gauge station. Therefore, the tide gauge readings could be directly used to
generate the height variation correction hgauge. The estimation of the unknown damping coefficient
δ, amplitude, and phase, as well as of the unknown trend function parameters was done for each
GPS and GLONASS satellite separately. To ensure a sufficient amount of data for a reliable parameter
estimation, only arcs with elevation angles ranges of more than 3◦ were analyzed. The estimation
was carried out as a non-linear least squares adjustment. We solved the optimization problem by
applying the Levenberg–Marquardt algorithm to avoid divergence due to insufficient initial values for
the damping coefficients.

The reference SWH values were interpolated from ElbeWR wave buoy data. The reference epochs
for interpolation were set as the mid epochs of the satellite arcs. Due to data gaps at the wave
buoy, epochs with a time gap of larger than 30 min to the next buoy measurement epoch had to be
excluded. Since the distance between the tide gauge station and the ElbeWR buoy is about 24 km,
a correction was required. For that, the SWH from the NWM at both the position of the buoy and
the tide gauge was calculated. The difference between the resulting values was used as a correction
term. Because of the buoy observation resolution and the model uncertainty, the corrected SWH could
become negative during low wave heights. Two percent of the corrected SWH were negative. To avoid
such unrealistic values, the minimal SWH was set to 0.1 m, taking into account the data resolution.
In total, 6193 (3528 GPS/2665 GLONASS) satellite arcs could be processed.

In the second experiment, the 83 days of ship tracks were split into segments of deep or shallow
water, while a water depth threshold of 25 m was assumed. This distinction is useful since, for the
ship used here, the squat does only depend on the easy-to-observe speed when the water is deeper
than 25 m. As a consequence, the quality of the calculated squat can be assumed to be better. In total,
323 segments were found, from which 127 were in deep water and 196 in shallow water regions.
Shallow water segments were used only for validation in Section 5. The estimation of a SWH model as
a function of δ was carried out with data from deep water segments only.

The SNR data were analyzed in the same way as for the first experiment, whereby the correction
terms in Equation (3) were taken from the GNSS processing in the other project mentioned above.
The usable segments had an average length of ca. 40 min twice a day. Due to this fact and,
additionally, due to the necessary azimuth mask, the number of analyzed satellite arcs was only 633
(362 GPS/271 GLONASS). The required SWH values at the ship’s position were spatially interpolated
from the wave buoy data. Unlike the first experiment, no SWH correction had to be used.

In Figure 5, reference SWH data for both the static experiment (Figure 5a), as well as the
kinematic experiment (Figure 5b) are plotted against the damping coefficient derived from SNR
analysis. In both cases, the SWH can be assumed to be a linear function of the damping coefficients
δ. Hence, a first degree polynomial was fitted to both datasets. Both the buoy data and the estimated δ

values are stochastic variables and have to be treated as such in the adjustment. This was done
using a robust total least squat adjustment. Initially, the stochastic model was derived from
the estimated standard deviations of the damping coefficients and, due to the lack of accuracy
information, an assumed uniform standard deviation of 0.05 m for the SWH values. After each
solution convergence, the observation weights were adjusted due to the normalized residuals of
the observations. This procedure was repeated until a termination criterion was reached. The resulting
linear functions are plotted as red lines in Figure 5a,b. The shading of the data relates to the final
weights from the robust adjustment.

As expected, the geodetic antenna’s damping was higher for the same SWH values. Hence, this
antenna is less affected by multipath effects. The estimated parameters and the standard deviation
of unit weight (s0) are shown in Table 2. The s0 of the static experiment was slightly larger than that
of the kinematic experiment. This might be a result of the SWH conditions near the coast and the
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therefore necessary correction term. Nevertheless, since the standard deviations lied in the range of
the resolution of the reference in situ SWH observations, the method worked well in both cases.

(a) (b)
Figure 5. Damping coefficients δ from SNR analysis plotted against in situ SWH from wave
buoys. Shading with respect to their final weights in the robust adjustment. Estimated first degree
polynomial (red). (a) Data from the static antenna. (b) Data from the ship-based antenna.

Table 2. Standard deviation of unit weight and estimated parameters of the linear models.

Parameter Static Antenna m Moving Antenna m

s0 0.126 0.085
a0 −1.161 −0.157
a1 5.300 3.104

5. Validation

The linear functions calculated in the previous section describe the SWH as linear functions
of the damping coefficients δ individually for the antenna types and can now be used to calculate
SWH from δ. For real applications, it can be assumed that the SWH in a particular area is constant in
space and over longer time spans since the SWH is an average measure of roughness and, commonly,
changes slowly over time. Therefore, the individually-derived δ values can be averaged within a
reasonable time span. This should increase the quality of the derived SWH. The calculation of a mean
δ should take into account a correct stochastic model that adopts the standard deviations derived from
the non-linear robust least squares adjustment. In this way, negative impacts of outliers and false
reflections will be down-weighted, as well. The δ values from the static antenna were sampled into
hourly time slots according to their reference epoch. For the moving antenna scenario, all satellites
from a segment were used to produce a mean value because the segments were always shorter than
one hour. Finally, the SWH was calculated from these mean damping coefficients.

For an independent validation, SWH data that were not used in the previous modeling section
are required. Although many altimeter satellite ground tracks cross the German Bight, altimetry data
are not useful for validation of this experiments. Due to the long revisit time, too few observations are
available. Because of their distance to the measuring sites, data from other wave buoys could not be
used either. Even if high frequency radar systems can be used for wave estimation [23], the system
that is observing the German Bight [24] was only used for surface current calculation during both
experiments. Due to the lack of other suitable data sources, the validation was done in comparison with
NWM data. It should be emphasized that the wave model is independent of the buoy measurements
used in the previous section because no in situ data were assimilated into the model. Therefore,
these data can be used to validate the results obtained from the ship’s measurement without any
concern. In the case of the static experiment, differences of SWM estimates from the NWM were used
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to correct the buoy data. A systematic bias that would have been canceled out by this procedure would
still be in the validation data. Hence, the datasets are not completely independent, which may result in
an underestimation of uncertainty.

Reference values were interpolated from the NWM results for each hourly slot and ship segment.
In total, 733 time slots of the static antenna could be compared. The time series of the reference and
of the empirical calculated SWH for the static antenna are shown in Figure 6. The reference series
was less noisy, and both series matched well. On average, the differences between SWH from wave
model and SWH from the empirical model was −0.022 m. The RMS was 0.146 m. Seventeen percent
of all time slots showed differences above 0.20 m. In Figure 7a, both series are plotted against each
other. The correlation coefficient was 0.92, and both high SWH and low SWH values matched well.
The average σ of the estimates SWH was 0.048 m. The σ increased for higher SWH values, and a
maximum of 0.253 m was found.

Figure 6. Time series of the interpolated wave model SWH values (blue) and of the SWH calculated
with the hourly averaged damping coefficients (red).

(a) (b)
Figure 7. SWH estimated with averaged damping coefficients δ plotted against reference values from a
numerical wave model. Point shading with respect to the σ of the estimated SWH. Function course
for a perfect positive correlation (red). (a) Data from the static antenna. (b) Data from the ship-based
antenna.

In the case of the data resulting from the ship-based experiment, the validation was split into two
parts. First, the deep water segments and second the shallow water segments were compared with
the reference values. In Figure 7b, the results from the 122 deep water segments are plotted against
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the reference values. The mean difference was −0.030 m, hence similar to that of the static antenna,
but the RMS increased to 0.210 m. On average, the σ of the estimated SWH values was 0.083 m and
therefore double the size of the value found for the static antenna. Again, the σ increased for higher
SWH, reaching a maximum σ of 0.438 m. The correlation coefficient between both datasets was 0.90.
In Figure 8, the results of both water depth classes, sorted according to the reference SWH, are shown.
In the case of the segments with a water depth of more than 25 m (see Figure 8a), 29% differed more
than 0.20 m from the reference. More than 50% from these were measured when the SWH was above
1.0 m. For the 184 segments where the water depth was less than 25 m, the mean difference was
significantly larger, reaching −0.108 m (see Figure 8b). Forty two percent of all segments analyzed
showed differences of 0.20 m and more. For SWH below 0.5 m, the empirical model results tended to
be significantly higher than the reference values.

It can be stated that a significant difference between the validation results of the two water depth
classes was found. The reason for the worse performance in shallow water could be searched for
by either the reference values or by the results from the empirical model. It cannot completely be
ruled out that the reference value from the NWM was only vague estimations in the shallow regions
crossed by the ship. In this region, no in situ measurements were available for model verification.
Nevertheless, it is unlikely that the discrepancies were caused by the reference values. This is because
of the good validation results for the static antenna and because of a comparison done with in situ
data in shallow water where no systematic effects were found (see Section 3.3.2). It is therefore more
likely that the empirical results were responsible for the systematic differences. These results depend
on a precise and accurate estimation of the damping coefficient δ. The estimation requires reliable SNR
observations and information about the reflector height hre f ,ti

. Erroneous observations would result
in incorrectly-solved δ values or may be unsolvable. Such outliers would be down weighted in the
average process and would only cause higher noise, but no offset. Because of this, it is most likely that
the differences were caused by a systematic effect during the hre f ,ti

calculation. The hydrodynamic
squat effect can cause such a systematic change of hre f ,ti

and therefore a false oscillation frequency in
Equation (1). In shallow water, the depth dependence cannot be neglected, and the squat computation
becomes more complicated. Better knowledge of the ship specific squat in shallow regions, as well as
of the necessary input parameters will lead to improved validation results.

(a) (b)
Figure 8. Analyzed ship segments in deep water and shallow water sorted by reference SWH. Reference
SWH from the wave model (blue). Estimated SWH from the averaged damping coefficients δ (red).
(a) Analyzed segments with a water depth of more than 25 m. (b) Analyzed segments with a water
depth of less than 25 m.

6. Summary

In this work, a method for estimating the significant wave height (SWH) from GNSS reflectometry
using the SNR interference pattern was presented. The method uses the damping coefficient δ of the
oscillating SNR signal, which depends on the sea surface roughness and therefore correlates with the
SWH. If the reflector height is known, δ can be estimated using non-linear least squares adjustment.
The coefficients from multiple satellites, gathered during different sea state conditions, can further be
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used for empirical model calculation. The required data can be taken from other SWH sensors like
wave buoys or numerical wave models.

The methodology for static antennas, as well as for antennas installed aboard ships was presented.
One month of data gathered from a static antenna and three months of data gathered aboard a ship
were processed, and the specific processing steps were explained. SWH observations were taken from
wave buoys, and if necessary, an additional correction was calculated from a numerical wave model.
The estimated function was subsequently used for the calculation of SWH values valid for specific time
spans. Due to the lack of useful independent in situ or remote sensing SWH observations, a validation
was done with modeled data. Correlation coefficients of 0.92 for the static antenna and of 0.90/0.79
for the ships antenna in deep/shallow water were found. The mean differences were around −0.02 m
for the static antenna and −0.03 m for ship measurements in deep water. In shallow water, where the
handling of the hydrodynamic squat effect is quite complex, the mean difference was −0.11 m.

It can be concluded that GNSS reflectometry based on the analysis of SNR interference pattern is
an easy-to-apply technique, especially if existing stations are used. Applying the proposed method,
stations located near the coast or on artificial structures could be used to gather observations of the
SWH. The ship experiment showed how such data can be handled, as well. Nearly all ships are
equipped with GNSS for navigation purposes, but better antennas/receivers are necessary to obtain
reliable results. Additionally, the ship’s hydrostatics and hydrodynamics must be known. If all these
requirements are fulfilled, measurements from ships will be a great opportunity to gather more SWH
data in the open ocean or in areas where no other techniques are available.
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BSH. Data are however available from the corresponding author with permission of both institutions.
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Abbreviations

The following abbreviations are used in this manuscript:

BfG Bundesanstalt für Gewässerkunde
BSH Bundesamt für Seeschifffahrt und Hydrographie
DWD Deutscher Wetterdienst
IMU Inertial measurement unit
NWM Numerical wave model
RMS Root mean square
SNR Signal-to-noise ratio
STW Speed through water
SWH Significant wave height
UTC Under keel clearance
WSV Wasserstraßen- und Schifffahrtsverwaltung des Bundes
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