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Abstract: Supervised hyperspectral image (HSI) classification has been acknowledged as one of
the fundamental tasks of hyperspectral data analysis. Witnessing the success of analysis dictionary
learning (ADL)-based method in recent years, we propose an ADL-based supervised HSI classification
method in this paper. In the proposed method, the dictionary is modeled considering both the
characteristics within the spectrum and among the spectra. Specifically, to reduce the influence
of strong nonlinearity within each spectrum on classification, we divide the spectrum into some
segments, and based on this we propose HSI classification strategy. To preserve the relationships
among spectra, similarities among pixels are introduced as constraints. Experimental results on
several benchmark hyperspectral datasets demonstrate the effectiveness of the proposed method for
HSI classification.

Keywords: dictionary learning; sparse representation; hyperspectral image classification; supervised
method

1. Introduction

Hyperspectral imaging is a technology which simultaneously captures hundreds of images from
a broad spectral range. The spectral information provides the hyperspectral image (HSI) with the
ability to accurately analyze the image, which makes HSI widely applied in lots of remote sensing
related tasks such as classification, anomaly detection, etc. [1–6].

Supervised HSI classification has been acknowledged as one of the fundamental tasks of HSI
analysis [7–10], which aims to assign each pixel a pre-defined class label. It is commonly realized
that supervised HSI classification method consists of a classifier and a feature extraction method.
The classifier defines a strategy to identify the class labels of the test data. For example, by selecting
k training samples which have the closest distance to the test sample, k-nearest neighbor (k-NN)
method [11] assigns the test sample a label which dominates the selected k training samples. Support
vector machine (SVM) [12,13] looks for a decision surface that linearly separates samples into two
groups with a maximum margin. In addition, some advanced classifiers are proposed for HSI
classification [14–18].

Feature extraction [19–21], in contrast to the classifier, is used to convert the spectrum of the pixel
into a new representation space, where the generated features can be more discriminative than the
spectrum. An ideal feature extraction method can generate features discriminative enough, for which
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the classifier is unimportant, i.e., simple classifiers such as k-NN or SVM can also lead to a satisfied
classification result with an ideal feature extraction method. Thus, researchers pay attention to this goal,
and propose different feature extraction methods from different perspective [22,23], such as principal
component analysis method [19], and sparse representation-based method [24], etc. Considering
sparse representation has demonstrated its robustness and effectiveness for HSI classification [24–27],
we focus on sparse representation-based method, and aim to propose a more effective method.

HSI data itself is not a sparse data. When we apply sparse representation method on HSI data,
we need to convert HSI into a sparse data first, which is accomplished by introducing extra dictionary.
According to the way in which dictionary is generated, sparse representation can be roughly divided
into synthesis dictionary model-based methods [28] and analysis dictionary model-based ones [29].

For synthesis dictionary model-based methods, the dictionary D and the sparse representation Y
is learned via

min
D,Y
‖X−DY‖2

F

s.t.D ∈ D
‖yi‖0 ≤ T0, i = 1, 2, . . . , n

(1)

X = [x1, x2, ..., xn] ∈ Rm1×n denotes a set of pixels, which includes n pixels and xi ∈ Rm1 .
Y = [y1, y2, ..., yn] ∈ Rm2×n represents a set of m2-dimensional sparse coefficients generated from
X. D is a set of constraints on D. T0 controls the sparsity level of Y. Some synthesis dictionary
model-based methods are proposed. Sparse representation-based classification (SRC) [30] method
directly uses the training samples as the dictionary. Label consistent k-singular value decomposition
(LC-KSVD) algorithm [31,32] learns the dictionary as well as the sparse representation via KSVD
method. To promote the discriminability of the generated sparse representation, fisher discrimination
dictionary learning (FDDL) [33] is proposed by introducing an extra discriminative term. In addition,
dictionary learning with structured incoherence(DLSI) method [34] promotes the discriminability by
encouraging dictionaries associated with different classes.

Different from the synthesis dictionary model, the analysis dictionary model (ADL) is a newly
proposed dictionary learning model, which is a dual model of the synthesis dictionary model. It models
dictionary and sparse code as in [29]

min
Ω,Y
‖Y−ΩX‖2

F

s.t.Ω ∈ W ,
‖yi‖0 ≤ T0, i = 1, 2, . . . , n

(2)

where W is a set of constraints on the dictionary Ω. Based on Formula (2), a discriminative analysis
dictionary learning (DADL) [35] method was proposed specifically for classification. Though analysis
dictionary model shows its power and efficiency for feature representation compared with synthesis
dictionary model, to the best of our knowledge, it has not been used for HSI classification before,
which drives us to propose a HSI classification method based on analysis dictionary model.

A new HSI oriented ADL model is proposed in this paper, which fully uses the characteristic
of HSI data. First, to reduce the influence of nonlinearity within each spectrum on classification,
we divide the spectrum the sensor captured into some segments. Second, we build analysis dictionary
model for each segment, where the relationship of spectra is exploited to boost the discriminability
of the generated codebook. Then, a voting strategy is used to obtain the final classification result.
The main ideas and contributions are summarized as follows.

(1) We introduce analysis dictionary model for supervised HSI classification, which is the first time
analysis dictionary model used for HSI classification.

(2) We propose an analysis dictionary model-based HSI classification framework. By modeling the
characteristics of HSI within spectrum and among spectra, the proposed discriminative analysis
dictionary model can generate better features for HSI classification.
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(3) Experimental results demonstrate the effectiveness of the proposed method for HSI classification,
compared with other dictionary learning-based methods.

The remainder of this paper is structured as follows. Section 2 describes the proposed analysis
dictionary model-based HSI classification method. Experimental results and analysis are provided in
Section 3. Section 4 discusses the proposed method and Section 5 concludes the paper.

2. The Proposed Method

Denote a 3D HSI cube the sensor captured as H ∈ Rr×c×m, where r is row number, c is column
number and m is band number. We extract all labeled pixels from H and aggregate them as a set
H = [h1, h2, ...hn] ∈ Rm×n , where n is the pixel number. In the following, we give the framework of the
proposed method first. We then introduce the details of the proposed method.

2.1. The Framework of the Proposed Method

We use the characteristics of HSI data to model a new HSI oriented ADL model in this paper.
The entire flowchart is shown in Figure 1. Given an HSI, we divide the high-dimensional spectrum
hi ∈ Rm the sensor captured into multiple segments to reduce the influence of nonlinearity within each
spectrum on classification. Second, we build analysis dictionary model for each segment, where the
relationships among the spectra are exploited to boost the discriminability of the generated codebook.
Then, a voting strategy is used to obtain the final classification results.

Figure 1. The proposed architecture.

2.2. Piecewise Representation of Spectrum

It is commonly realized that the difficulty of classification comes from class ambiguity,
i.e., the sample variations come from within-class maybe larger than that from between-class. For HSI
data, lots of factors will lead to class ambiguity, such as the nonlinearity of spectrum, pixel difference
caused by different imaging conditions, etc. In this subsection, we pay our attention to nonlinearity of
spectrum first.

Due to the nonlinearity of spectrum, directly model analysis dictionary on the entire spectrum
hi ∈ Rm the sensor captured is not a good choice, which also can be seen from the experimental results.
Considering that piecewise linear representation [36] is a common strategy to deal with nonlinearity,
we divide the high-dimensional spectrum hi into multiple segments first to address this problem.
Then, we apply the analysis dictionary model for each segment independently.

Different methods can be used to divide the spectrum into segments. Considering correlation
within spectrum shows obvious block-diagonal structure, it is used to segment the spectrum in this
paper [37]. Specifically, given H, we calculate the correlation matrix on spectral domain (i.e., the row
direction of the matrix) as

Cor (i, j) =
Cov (i, j)√

Cov (i, i)Cov (j, j)
, (3)
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where Cor(i, j) is the correlation coefficient between the i-th band and the j-th band of H.
In Equation (3), Cov is the covariance matrix of H and is calculated by

Cov = E
[
(H− E (H)) (H− E (H))T

]
. (4)

In Equation (4), E (·) denotes the mathematical expectation. Figure 2 illustrates Indian Pines
dataset and the generated correlation matrix obtained via Equation (3). In Figure 2, white
color represents strong correlation while black color represents low correlation. More brighter,
more corrleated. It can be seen from Figure 2 that block-diagonal structure exists in the generated
correlation matrix, which justify the rationality of dividing the entire spectrum hi into segments.
To simplify the representation, we use xi ∈ Rm1 to denote the generated segment in the following.
It is noticeable that the correlation matrix is only used as an example to separate the spectrum.
Other methods [38,39] can also be introduced to divide the spectrum into segments. However, this is
not the focus of this paper.

(a) Indian Pines (b) Correlation matrix

Figure 2. Indian Pines dataset (a) and the generated spectral correlation matrix (b).

2.3. Analysis Dictionary Learning Constrained with the Relationship of Spectra

By dividing the spectrum into segments, the nonlinearity problem of spectrum classification can
be alleviated. We then construct analysis dictionary independently for each segment.

Equation (2) demonstrates a basic analysis dictionary learning method. Though it shows
superiority over typical synthesis dictionary learning methods, it considers the spectrum individually
without considering the relationship of spectra. However, such relationship is also an important
characteristic of HSI. To take advantage of such characteristic, we propose a new analysis dictionary
learning method inspired by discriminative analysis dictionary learning [35], which generate codebook
with a triplet relation constraint. The constructed analysis dictionary model is given as follows.

min
Ω,Y

n
∑

i=1
dist (yi, Ωxi) + λ1

n
∑

i=1
dist(yi, zi)− λ2

n
∑

i=1

n
∑

u=1

n
∑

v=1
T′i(u, v) [dist(yi, yu)− dist(yi, yv)]

+ λ
n
∑

i=1

n
∑

j=1
Si,jdist(yi, yj)

s.t.Ω ∈ W

‖yi‖0 ≤ T0,
∥∥∥yj

∥∥∥
0
≤ T0, ‖yu‖0 ≤ T0, ‖yv‖0 ≤ T0,

i = 1, 2, . . . , n, j = 1, 2, . . . , n, u = 1, 2, . . . , n, v = 1, 2, . . . , n

(5)

In Formula (5), dist (·) represents a kind of measure. zi is the target code, which can be label
of spectrum hi or other equivalent representation of the label. λ1,λ2 and λ are weighting coefficients
which control the relative importance of different constraints. The minimization problem consists of
the following four terms.
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(1) The first term is the fidelity term. Minimizing it can guarantee the obtained sparse coefficient
matrix Y and the dictionary Ω will reconstruct segments X = [x1, x2, ..., xn].

(2) The second term is the discriminability promoting term [35], with which the label information
zi can be introduced to generate discriminative sparse code yi. Minimizing the second term can enforce
segments from the same category to have similar sparse codes.

(3) The third term is the triplet relation preserving term [35,40], which aims to
preserve the local triplet topological structure of X in the generated sparse representation Y,
i.e., dist(yi, yu) ≤ dist(yi, yv) if dist(xi, xu) ≤ dist(xi, xv). Ideal local topological structure

preserving is to maximize
n
∑

i=1

n
∑

u=1

n
∑

v=1
T′i(u, v) [dist(yi, yu)− dist(yi, yv)], which equals to minimize

−
n
∑

i=1

n
∑

u=1

n
∑

v=1
T′i(u, v) [dist(yi, yu)− dist(yi, yv)] in Formula (5). T′i (u, v) is a supervised measure [35]

which is defined as

T′i (u, v) =


−Ti (u, v) sign [Ti (u, v)] , zi = zu 6= zv

Ti (u, v) sign [Ti (u, v)] , zi = zv 6= zu

Ti (u, v) , otherwise
(6)

Ti (u, v) is the element in the u-th row and v-th column of matrix Ti, which is calculated by
dist(xi, xu)− dist(xi, xv). The sign function sign (·) is defined as

sign (a) =


−1, a < 0

0, a = 0
+1, a > 0

(7)

(4) The fourth term is a weighted sparsity preserving term, which guarantees the generated sparse
representations similar enough if their corresponding segments are similar. Si, j measures the similarity
between segments, which is defined as

Si, j =
1

1 + e(SAD(xi , xj))
, SAD(xi, xj) = cos−1 xT

i xj

||xi||2 ·
∣∣∣∣xj
∣∣∣∣

2

(8)

It is noticeable that the third and fourth terms constrain the generated sparse representation
from local structure perspective and pixel-pair perspective, which are mutual complemented.
The effectiveness combing these two terms can be seen from the experimental results.

If we use a weight matrix W ∈ Rn×n to replace T′i(u, v), the local topological structure preserving
term can be reformulated [35] as

max
Y

n
∑

i=1

n
∑

u=1

n
∑

v=1
T′i(u, v) [dist(yi, yu)− dist(yi, yv)] = min

Y

n
∑

i=1

n
∑

j=1
Wijdist(yi, yj), (9)

where Wij =
n
∑

k=1
T′i(k, j). Then Equation (5) evolves to

min
Ω,Y

n
∑

i=1
dist (yi, Ωxi) + λ1

n
∑

i=1
dist(yi, zi) + λ2

n
∑

i=1

n
∑

j=1
Wi,jdist(yi, yj) + λ

n
∑

i=1

n
∑

j=1
Si,jdist(yi, yj)

s.t.Ω ∈ W

‖yi‖0 ≤ T0,
∥∥∥yj

∥∥∥
0
≤ T0, i = 1, 2, . . . , n, j = 1, 2, . . . , n

(10)

By merging the last two terms in Equation (10), we obtain
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min
Ω,Y

n
∑

i=1
dist (yi, Ωxi) + λ1

n
∑

i=1
dist(yi, zi) + λ2

n
∑

i=1

n
∑

j=1
(Wi,j + ρSi,j)dist(yi, yj)

s.t.Ω ∈ W

‖yi‖0 ≤ T0,
∥∥∥yj

∥∥∥
0
≤ T0, i = 1, 2, . . . , n, j = 1, 2, . . . , n

(11)

where ρ = λ2
λ . Considering correntropy induced metric (CIM) [35,41] is a robust metric, it is adopted

as the distance measure dist (·) in this paper and calculate the distance between two given data yi
and yj as

dist(yi, yj) =

[
1− exp

(
−
∥∥∥yi − yj

∥∥∥2

2
/σ2

)] 1
2

(12)

By optimizing Equation (11), we can obtain the dictionary as well as the sparse representation
generated from each segment, with which we can predict the classification result for each segment.
However, Equation (11) is a non-convex problem, which is hard to be optimized directly. Instead,
a half-quadratic technique proposed in [35] is introduced to optimize Equation (11) in this paper.
Specifically, by introducing auxiliary matrices P, Q, R ∈ Rn×n into the optimization problem [35,42],
Equation (11) can be sovled by iteratively optimize Ω, Y and P, Q, R until convergence. In the following,
we only give the updating equation for these variables. We refer the readers to see [35] for the details
of the optimization process.

Step 1: Fixing Y, P, Q, R, we update dictionary Ω by

Ω = YPtXT
[
X
(
Pt + λ2Lt)XT + λ3 I

]−1
, (13)

where t is the iteration number, λ3 is a Lagrange multiplier for Ω, and L is the Laplacian matrix of
W + ρS.

Step 2: Fixing Ω, P, Q, R, we update Y via

min
yi

∥∥∥∥yi −
Pt

iiΩxi+λ1Qt
iizi

Pt
ii+λ1Qt

ii

∥∥∥∥2

2
s.t. ‖yi‖0 ≤ T0

(14)

which can be solved easily by applying hard thresholding operation.
Step 3: Fixing Ω and Y, the auxiliary matrics P, Q, R are updated via

Pt+1
ii = exp(−‖yt+1

i −Ωt+1xi‖2
2

σ2 ),

Qt+1
ii = exp(−‖yt+1

i −zi‖2
2

σ2 ),

Rt+1
ij = exp(−‖Ωt+1xi−Ωt+1xj‖2

2
σ2 )

(15)

2.4. Classification via Different Segments

Once we obtain the sparse representation of each segment, i.e., yi, we then use it to predict the
class label for each segment. To discriminate the class label of the entire spectrum (i.e., pixel), we denote
the label of the segment as seg-label in this paper. Any kind of classifier can be adopted to predict the
seg-label for each segment. Considering that the proposed method aims to generate discriminative
feature, simple classifiers including k-NN and SVM are adopted only in this paper.
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Suppose we divide the entire spectrum of one pixel into S segments, we obtain S seg-labels with
the adopted classifier. Denote these seg-labels as l1, l2, . . . , lS, where li is the classification result from
the i-th segment, we then predict the class label l f inal for the pixel based on

l f inal = vote (l1, l2, . . . , lS) . (16)

vote (·) is a voting function. It selects the class that appears most frequently for the test pixel.
In this papar, we divide the spectrum into three segments for simplification. We adopt a simple

voting strategy. If at least two seg-labels are same, we assign pixel the same class with the one dominate
the seg-labels. Otherwise, the seg-labels are different for three segments. In this case, among three
seg-labels, we randomly assign a seg-label to the class of pixel.

3. Experiments

We conduct experiments on HSI datasets to demonstrate the effectiveness of the proposed method.
In the following, we first introduce the HSI datasets we used in the experiments. We then compare
the proposed method with some state-of-the-art dictionary-based methods. Finally, we discuss the
performance of the proposed method varied with different settings for HSI classification.

3.1. Dataset Description

Three benchmark HSI datasets including Indian Pines dataset, Pavia University (PaviaU) dataset
and Salinas Scene dataset are adopted to verify the proposed method [43,44].

Indian Pines Dataset: Indian Pines dataset was acquired by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor in north-western Indiana, USA. The spectral range of Indian Pines
is from 400 to 2450 nm. We remove 20 water absorption bands and use the remaining 200 bands
for experiments. The imaged scene has 145 × 145 pixels, among which 10,249 pixels are labeled.
Class number of Indian Pines dataset is 16.

PaviaU Dataset: PaviaU dataset was acquired in Pavia University, Italy, by the Reflective Optics
System Imaging Spectrometer. The spatial resolution of PaviaU dataset is 1.3 m, while the spectral
range is from 430 to 860 nm. After removing 12 water absorption bands, we keep 103 bands from the
original 115 bands for experiment. The imaged scene has 610×340 pixels, among which 42,776 pixels
are labeled. Class number of PaviaU dataset is 9.

Salinas Scene Dataset: The Salinas scene dataset was collected in Salinas Valley, California,
which has a continuous spectral coverage from 400 to 2450 nm. There are 512× 217 pixels, among
which 54,129 pixels were labeled and used for the experiment. After removing the water absorption
bands, we keep the remaining 204 bands in the experiments. Class number of Salinas dataset is 16.

3.2. Comparison Methods and Experimental Setup

We denote the proposed method as Ours in this paper. Since the proposed method is a dictionary
learning-based HSI classification method, we mainly compare the proposed method with the
existing dictionary learning-based methods. To further testify the performance of the proposed
method, we compare the proposed method with a state-of-the-art deep learning-based method,
i.e., 3D convolutional neural network (3D-CNN) [17], and the method based on the spectrum
hi without feature extraction, which is denoted as Ori in this paper. In addition, since both piecewise
representation and spectra relationship contribute to the final classification result for the proposed
method, we implement two special versions of Ours, termed Ours-Seg and Ours-Sim, to verify the
influence of these two parts on classification. Ours-Seg only considers the piecewise representation of
spectrum whereas Ours-Sim only exploits the relationship of spectra for classification.

The dictionary learning-based methods we compared including sparse representation-based
classification (SRC) [30], dictionary learning with structured incoherence (DLSI) [34], label consistent
k-singular value decomposition algorithm (LC-KSVD) [31], fisher judgement dictionary learning
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method (FDDL) [33], and discriminative analysis dictionary learning (DADL). SRC, DLSI, LC-KSVD
and FDDL are synthesis dictionary model-based methods, whereas DADL and Ours are analysis
dictionary model-based ones. In SRC, segmented spectrum are chosen as the dictionary direclty, while
learned dictionaries are used for DLSI, LC-KSVD, FDDL, DADL and Ours.

We normalize the HSI data into the range of 0 to 1 via a min-max normalization method.
Except 3D-CNN, which is an end-to-end classification method without dividing feature extraction and
classifier, both k-NN and SVM are adopted for all other methods in the experiments to testify whether
the proposed method is applicable to different classifiers. All codes of the comparing methods are
implemented by the authors with tuned parameters for best performance. For the proposed method,
λ1,λ2 and ρ are optimized by cross-validation, which are set to 1, 1 and 0.05, respectively.

For all datasets, we empirically set the number of segments as 3 in the experiments. For Indian
Pine dataset, the generated three segments are bands 1–30, bands 30–75, and bands 75–200. For PaviaU
dataset, the generated three segments are bands 1–73, bands 73–75 and bands 75–103. While for Salinas
dataset, the generated three segments are bands 1–40, bands 40–80 and bands 80–204.

Overall accuracy (OA), which defines the ratio of correctly labeled samples to all test samples,
is adopted to measure HSI classification results.

3.3. Comparison with Other Methods

In this section, two experiments are conducted. First, we choose 20% samples from each class as
the training set, based on which we then predict the class label of the test pixel for all methods. Second,
we compare the performance of all methods with different amount of training samples.

Experimental Results with 20% Training Samples

The number of training and test samples for each dataset is given in Table 1, where 20% pixels
are randomly sampled from all labeled data for training. Tables 2–7 report the average classification
results for all methods across 10 rounds of different sampling, from which we can obtain the following
conclusions.

(1) Compared with the synthesis dictionary model-based methods, analysis dictionary model-based
methods including DADL, Ours, Ours-Seg and Ours-Sim can obtain higher classficiation results,
which demonstrate the effectiveness of analysis dictionary model-based methods for HSI classification.

(2) Compared with k-NN, the SVM classifier can obtain better classification results with the same
feature, since k-NN is a simple classifier without training while SVM tune its parameters with training
data. Ours with k-NN classifier has better classification results, compared with all synthesis dictionary
model-based methods with SVM classifier. For example, on Indian Pines dataset, the classification
accuracy of Ours is 87.98% when using k-NN classifier, whereas the highest classification of synthesis
dictionary model-based methods (i.e., FDDL) is only 72.98% even given SVM classifier.

(3) Compared with DADL which only uses the local triplet topology, the classification
performance of the proposed method increases a lot. For example, the classification accuracy for
Ours and DADL with k-NN classifier is 87.98% and 72.5%, respectively. The improvement of Ours
over DADL comes from the fact that we simultaneously model the piecewise representation and the
pixel similarity. The conclusion can also be seen from the experimental results of Ours-Seg, Ours-Sim,
Ours and DADL. By comparing Ours-Seg and DADL, we can find that the classification results can
be increased when we divide the spectrum into segments. By comparing Ours-Sim and DADL, we
can find that the classification results also can be improved when we model pixel similarity into
dictionary learning. Though Ours-Seg and Ours-Sim can obtain better classification results compared
with DADL, they still inferior to Ours regarding HSI classification ability, which demonstrates that
both piecewise representation and spectra relationship is important for the proposed method.

(4) Compared with Ori which is based on the spectrum directly, Ours has better classification
results, which demonstrates the effectiveness of the proposed method. More importantly,
the classification performance of Ours is more stable on all datasets, compared with Ori. For example,
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with k-NN classifier, though the classification accuracy of Ori (86.29%) closes to that of Ours (88.38%)
on Salinas dataset, there is a large difference between Ori (65.08%) and Ours (87.98%) on Indian
Pines dataset.

(5) Compared with 3D-CNN, the accuracy of Ours is lower when using together with k-NN
classifier. However, when using this together with the SVM classifier, Ours can obtain better
classification results compared with 3D-CNN. This is because k-NN is a simple classifier without
training while SVM and 3D-CNN tune their parameters with training data. Thus, the performance of
k-NN inferiors to SVM and 3D-CNN. In addition, since 3D-CNN has large amount of parameters, its
performance relies on large amount of training data. However, when given small amount of (e.g., 20%)
training data as the propose method demands, 3D-CNN cannot be well trained, with which the
classification accuracy of 3D-CNN inferiors to Ours with SVM classifier.

Table 1. Training and test numbers for three datasets (Indian Pines, PaviaU, Salinas) used in this paper.

No. Indiana Pines PaviaU Salinas
Class Name Train Test Class Name Train Test Class Name Train Test

1 Asphalt 1327 5304 Alfalfa 9 37 Brocoli_1 402 1607
2 Meadows 3730 14,919 Corn-notill 286 1142 Brocoli_2 745 2981
3 Gravel 420 1679 Corn-mintill 166 664 Fallow 395 1581
4 Trees 613 2451 Corn 47 190 Fallow_plow 279 1115
5 Sheets 269 1076 Grass-pasture 97 386 Fallow_smooth 536 2142
6 Bare Soil 1006 4023 Grass-trees 146 584 Stubble 792 3167
7 Bitumen 266 1064 Grass-pasture-mowed 6 22 Celery 716 2863
8 Bricks 735 2947 Hay-windrowed 96 382 Grapes 2254 9017
9 Shadows 189 758 Oats 4 16 Soil_vinyard 1241 4962
10 Soybean-notill 193 779 Corn_weeds 656 2622
11 Soybean-minill 491 1964 Lettuce_4wk 214 854
12 Soybean-clean 119 474 Lettuce_5wk 385 1542
13 Wheats 41 164 Lettuce_6wk 183 733
14 Woods 252 1013 Lettuce_7wk 214 856
15 Bulidings-Grass 77 309 Vinyard_un. 1454 5814
16 Stone-Steel-Towers 19 74 Vinyard_ve. 361 1446

Sum 8555 34,221 2049 8200 10,827 43,302

Table 2. Classification accuracy (%) of different methods on the Indian Pines dataset via k-NN classifier.
The highest accuracy in each row is boldfaced.

No. SRC DLSI LC-KSVD FDDL DADL Ori 3D-CNN Ours_Seg Ours_Sim Ours

1 23.16 22.22 19.66 14.52 24.70 35.48 70.15 51.41 30.22 61.26
2 82.50 90.96 93.86 96.93 88.25 53.17 96.12 93.19 92.94 95.28
3 92.92 90.96 93.86 94.13 96.31 57.61 93.19 95.91 96.92 96.12
4 64.76 68.70 61.08 66.12 84.40 83.78 94.11 86.10 73.24 94.95
5 72.47 94.52 94.33 85.21 93.12 90.45 96.12 97.18 92.60 95.97
6 95.84 99.59 95.89 94.10 94.02 93.77 97.13 97.81 97.11 96.96
7 17.04 14.20 13.30 14.87 22.18 84.61 60.14 43.10 60.15 57.13
8 85.92 88.02 90.67 92.10 90.19 99.64 90.17 97.28 97.45 95.37
9 31.10 30.42 28.06 30.18 14.17 20.00 80.12 32.27 16.37 51.00

10 86.21 90.74 86.17 88.03 92.10 74.35 90.12 96.22 95.10 96.07
11 79.23 79.71 74.54 77.20 84.11 51.49 96.36 94.21 86.79 96.24
12 96.67 95.95 96.50 75.24 97.62 52.92 98.43 97.30 97.20 96.23
13 68.95 62.89 55.40 73.94 72.12 80.00 93.67 84.16 70.72 90.11
14 81.34 85.30 85.30 88.54 71.92 81.97 93.17 86.86 69.72 91.51
15 83.10 80.85 81.48 86.17 86.22 45.16 98.36 88.99 88.24 97.64
16 39.89 40.08 32.17 35.59 52.46 83.33 98.31 68.10 51.21 87.11

OA 57.15 60.20 55.04 71.55 72.5 65.08 90.75 86.56 74.06 87.98
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Table 3. Classification accuracy (%) of different methods on the Indian Pines dataset via SVM classifier.
The highest accuracy in each row is boldfaced.

No. SRC DLSI LC-KSVD FDDL DADL Ori 3D-CNN Ours_Seg Ours_Sim Ours

1 20.26 21.32 18.46 15.54 25.70 80.66 70.15 53.49 32.62 62.16
2 84.10 89.26 92.16 97.83 89.35 78.75 96.12 94.89 90.90 97.48
3 93.61 87.26 92.46 97.83 95.20 82.70 93.19 98.96 98.90 98.52
4 65.83 70.27 60.98 67.32 86.40 94.59 94.11 89.10 75.24 95.95
5 73.67 93.51 95.33 89.61 94.52 94.70 96.12 99.38 93.60 97.97
6 96.44 98.19 93.89 97.40 97.12 96.04 97.13 99.86 98.91 98.36
7 13.54 19.40 15.30 15.97 18.18 61.54 60.14 45.13 20.60 52.83
8 88.52 85.12 87.27 92.28 91.39 98.56 90.17 99.38 98.15 96.37
9 28.00 35.32 29.06 33.98 12.27 100.00 80.12 30.77 15.87 50.00
10 89.81 87.34 86.17 86.23 93.20 82.90 90.12 97.42 92.90 99.07
11 78.53 81.71 73.14 78.70 85.21 72.73 96.36 95.23 87.99 97.84
12 98.17 91.95 93.50 76.74 98.67 91.35 98.43 99.50 98.50 99.83
13 61.75 68.89 54.20 74.54 71.92 100.00 93.67 86.86 69.72 91.51
14 82.14 83.37 82.13 88.54 71.92 90.42 93.17 86.86 69.72 91.51
15 82.80 83.15 81.28 88.12 87.92 82.80 98.31 90.39 89.14 99.74
16 36.80 45.08 36.27 8.59 50.46 89.74 87.23 69.00 50.81 86.91

OA 65.22 67.35 60.46 72.98 74.92 82.72 90.75 92.14 77.97 94.86

Table 4. Classification accuracy (%) of different methods on the PaviaU dataset via k-NN classifier.
The highest accuracy in each row is boldfaced.

No. SRC DLSI LC-KSVD FDDL DADL Ori 3D-CNN Ours_Seg Ours_Sim Ours

1 95.29 95.99 95.23 95.11 97.02 71.50 98.32 97.04 97.91 97.56
2 87.79 89.53 87.15 89.07 90.01 76.39 96.02 92.47 92.31 95.65
3 82.86 86.20 82.67 83.99 85.29 78.79 93.18 88.94 87.42 93.29
4 92.06 93.24 89.38 91.10 92.90 94.80 95.12 94.77 94.48 97.39
5 69.87 74.02 69.37 71.77 75.69 99.13 86.79 80.49 78.20 85.45
6 99.80 98.98 98.43 98.65 99.60 75.15 97.17 99.56 99.92 99.56
7 69.56 73.27 71.23 72.40 76.00 91.50 88.12 79.64 78.24 86.64
8 96.64 94.92 94.21 96.36 96.92 78.46 98.27 96.59 96.96 97.12
9 62.43 63.77 59.33 63.04 64.81 99.87 85.89 72.90 70.56 81.21

OA 79.23 81.37 78.04 80.25 81.51 78.53 94.16 88.40 84.12 90.52

Table 5. Classification accuracy (%) of different methods on the PaviaU dataset via SVM classifier. The
highest accuracy in each row is boldfaced.

No. SRC DLSI LC-KSVD FDDL DADL Ori 3D-CNN Ours_Seg Ours_Sim Ours

1 96.09 92.19 92.13 91.91 96.12 83.38 98.32 96.24 98.91 98.96
2 88.39 87.23 90.35 92.27 92.21 93.25 96.02 90.17 93.41 96.15
3 83.66 93.70 84.27 85.19 86.89 84.04 93.18 90.14 90.72 94.69
4 90.06 90.64 82.18 93.40 91.40 96.44 95.12 95.17 95.28 95.09
5 74.27 82.42 73.87 78.17 78.19 99.39 86.79 82.99 80.20 88.15
6 95.80 95.18 94.73 95.61 97.20 92.13 97.17 96.96 98.12 97.24
7 76.16 79.97 79.53 76.10 79.20 94.86 88.12 80.84 79.74 89.14
8 94.64 91.92 90.21 93.16 95.12 87.24 98.27 97.29 95.46 98.92
9 67.43 70.77 69.33 73.04 70.81 87.19 85.89 75.78 73.26 86.11

OA 88.60 90.20 85.34 89.50 90.37 91.19 94.16 92.76 93.80 95.21
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Table 6. Classification accuracy (%) of different methods on the Salinas dataset via k-NN classifier.
The highest accuracy in each row is boldfaced.

No. SRC DLSI LC-KSVD FDDL DADL Ori 3D-CNN Ours_Seg Ours_Sim Ours

1 91.79 99.00 98.63 98.20 98.38 97.90 99.75 100.00 99.75 100.00
2 99.06 99.63 99.26 99.53 99.53 99.46 100.00 99.90 99.77 99.93
3 99.24 99.43 98.48 98.99 97.03 98.99 99.94 98.61 98.23 98.55
4 99.46 98.48 97.49 98.30 98.21 99.75 99.55 99.82 99.46 99.91
5 99.07 98.55 98.04 98.41 96.36 96.21 99.11 99.40 99.21 99.44
6 99.84 99.62 99.27 99,53 99.72 99.63 99.84 100.00 99.87 100.00
7 99.69 99.58 99.20 99.48 99.51 98.85 100.00 100.00 99.86 100.00
8 96.13 66.16 66.04 66.13 76.08 64.48 65.63 84.56 84.52 84.57
9 100.00 99.62 99.40 99.56 99.52 96.64 99.86 99.64 99.56 99.66
10 77.27 99.21 98.77 99.09 99.21 90.25 99.68 99.25 99.09 99.29
11 97.42 98.36 97.07 98.01 96.84 94.24 99.77 92.51 92.04 92.62
12 15.24 99.35 98.64 99.16 98.51 99.94 100.00 99.94 100.00 100.00
13 98.36 95.08 94.82 95.91 97.82 96.65 97.95 99.59 99.68 99.73
14 98.25 98.48 97.20 98.13 96.73 93.45 99.88 99.42 99.95 99.53
15 11.01 67.34 67.15 67.29 66.53 69.45 67.54 70.33 70.26 70.61
16 78.91 98.69 97.86 98.41 98.55 98.13 99.38 100.00 99.72 100.00

OA 72.27 81.67 71.95 79,17 80.28 86.29 93.98 87.97 83.92 88.38

Table 7. Classification accuracy (%) of different methods on the Salinas dataset via SVM classifier.
The highest accuracy in each row is boldfaced.

No. SRC DLSI LC-KSVD FDDL DADL Ori 3D-CNN Ours_Seg Ours_Sim Ours

1 98.50 99.44 98.63 99.26 98.94 99.39 99.75 100.00 100.00 100.00
2 99.29 99.87 99.43 99.76 99.83 99.71 100.00 99.97 99.97 100.00
3 99.68 99.87 98.92 99.43 97.60 99.27 99.94 99.81 98.61 99.87
4 100.00 99.10 98.03 98.92 99.01 99.50 99.55 99.73 100.00 100.00
5 99.39 98.88 98.27 98.74 96.78 96.85 99.11 99.44 99.49 99.63
6 100.00 99.84 99.43 99,75 100.00 99.73 99.84 100.00 100.00 100.00
7 99.93 99.83 99.37 99.72 99.83 99.62 100.00 100.00 100.00 100.00
8 96.21 66.24 66.10 66.21 76.18 82.38 65.63 86.02 87.91 84.62
9 99.78 99.76 99.50 99.70 99.70 98.23 99.86 99.90 99.68 99.74
10 78.55 99.48 98.97 99.37 99.56 93.40 99.68 99.84 99.33 99.44
11 98.24 99.18 97.66 98.83 97.89 98.15 99.77 95.08 92.74 93.09
12 15.70 99.81 98.96 99.61 99.09 99.77 100.00 98.51 100.00 100.00
13 99.32 97.27 95.50 96.86 99.05 99.44 97.95 97.81 99.86 100.00
14 99.07 99.30 97.78 98.95 97.78 98.74 99.88 96.73 99.56 100.00
15 11.13 67.46 67.23 67.30 66.68 71.28 67.54 75.13 70.43 70.61
16 79.39 99.10 98.20 98.89 99.17 99.07 99.38 100.00 100.00 100.00

OA 79.48 88.10 76.23 86.17 89.80 91.20 93.98 92.59 90.45 94.91

Figures 3–8 illustrate the classification maps, where (a) represents the ground truth and (b)–(k)
represent the results from different methods. In the classification map, we use a unique color to
represent each category. From these figures, we can see that the proposed method with SVM classifier
obtains more accurate and smoother results compared with the competing methods.



Remote Sens. 2019, 11, 397 12 of 21

(a) GroundTruth (b) SRC (c) DLSI

(d) LCKSVD (e) FDDL (f) DADL

(g) Ori (h) 3D-CNN (i) Ours_Seg

(j) Ours_Sim (k) Ours

Figure 3. Classification maps of different methods on the Indian Pines dataset via k-NN classifier (a–k).
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(a) GroundTruth (b) SRC (c) DLSI

(d) LCKSVD (e) FDDL (f) DADL

(g) Ori (h) 3D-CNN (i) Ours_Seg

(j) Ours_Sim (k) Ours

Figure 4. Classification maps of different methods on the Indian Pines dataset via SVM classifier (a–k).
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(a) GroundTruth (b) SRC (c) DLSI (d) LCKSVD

(e) FDDL (f) DADL (g) Ori (h) 3D-CNN

(i) Ours_Seg (j) Ours_Sim (k) Ours

Figure 5. Classification maps of different methods on the PaviaU dataset via k-NN classifier (a–k).
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(a) GroundTruth (b) SRC (c) DLSI (d) LCKSVD

(e) FDDL (f) DADL (g) Ori (h) 3D-CNN

(i) Ours_Seg (j) Ours_Sim (k) Ours

Figure 6. Classification maps of different methods on the PaviaU dataset via SVM classifier (a–k).
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(a) GroundTruth (b) SRC (c) DLSI (d) LCKSVD

(e) FDDL (f) DADL (g) Ori (h) 3D-CNN

(i) Ours_Seg (j) Ours_Sim (k) Ours

Figure 7. Classification maps of different methods on the Salinas dataset via k-NN classifier (a–k).
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(a) GroundTruth (b) SRC (c) DLSI (d) LCKSVD

(e) FDDL (f) DADL (g) Ori (h) 3D-CNN

(i) Ours_Seg (j) Ours_Sim (k) Ours

Figure 8. Classification maps of different methods on the Salinas dataset via SVM classifier (a–k).

3.4. Experimental Results with Different Small Amount of Training Data

The classification results varied with the different small amount of training data are shown in
Figures 9–11, where the training data is varied from 10% to 25%. From the experimental results, we can
see the classification results of the proposed methods increase when more samples are introduced for
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training, which is natural since classifier can be well trained with more training samples. Nevertheless,
the proposed method outperforms all competing methods stably when using together with SVM
classifier, and only inferiors to 3D-CNN when using together with k-NN classifier since k-NN is
a classification method without training. The experimental results are inconsistent with that in
Section 3.3. From the above results, we can conclude that the proposed method is effective for
HSI classification.

(a) The results obtained via k-NN classifier. (b) The results obtained via SVM classifier.

Figure 9. Classification performance with different numbers of training samples on Indian Pines
dataset via k-NN (a) and SVM (b).

(a) The results obtained via k-NN classifier. (b) The results obtained via SVM classifier.

Figure 10. Classification performance with different numbers of training samples on PaviaU dataset
via k-NN (a) and SVM (b).

(a) The results obtained via k-NN classifier. (b) The results obtained via SVM classifier.

Figure 11. Classification performance with different numbers of training samples on Salinas dataset
via k-NN (a) and SVM (b).
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4. Discussion

In the above experiments, we divide the entire spectrum into three segments, and then
adopt a voting strategy to generate the final classification result. To testify the effectiveness of
the adopted dividing and voting strategies, we compare it with the classification results directly
obtained from each segment and the result from the entire spectrum. In the following, we use
Seg-vote/Ours, Seg1, Seg2, Seg3 and Entire to denote the classification result from the dividing
and voting strategy, the first segment, the second segment, the third segment and the entire spectrum,
respectively. The experimental results are given in Table 8. We can observe that dividing and
voting strategy can obtain better HSI classification results, compared with the segment or the entire
spectrum-based method.

Table 8. Classification accuracy(%)on three datasets with different segments used.

Classifier PaviaU
Seg1 Seg2 Seg3 Seg-vote Entire

k-NN 72.17 80.74 84.35 90.52 84.12
SVM 82.67 91.34 92.89 95.21 93.80

Classifier Indian Pines
Seg1 Seg2 Seg3 Seg-vote Entire

k-NN 69.23 72.70 73.08 87.98 74.06
SVM 70.15 76.50 77.12 94.86 77.97

Classifier Sanlinas
Seg1 Seg2 Seg3 Seg-vote Entire

k-NN 74.56 79.76 84.07 88.38 83.92
SVM 83.67 87.6 89.17 94.91 90.45

5. Conclusions

In the paper, we present a novel analysis dictionary learning model-based hyperspectral image
classification method. The proposed framework naturally considers both the characteristics within the
spectrum and among the spectra. By dividing the spectrum into several segments, the influence of
strong nonlinearity with spectrum can be alleviated. In addition, the relationship among spectra can
further improve the classification performance. Experimental results on three benchmark HSI datasets
demonstrate the superiority of the proposed framework for HSI classification.
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