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Abstract: Soil moisture is often considered a direct way of quantifying agricultural drought since it is a
measure of the availability of water to support crop growth. Measurements of soil moisture at regional
scales have traditionally been sparse, but advances in land surface modelling and the development of
satellite technology to indirectly measure surface soil moisture has led to the emergence of a number
of national and global soil moisture data sets that can provide insight into the dynamics of agricultural
drought. Droughts are often defined by normal conditions for a given time and place; as a result,
data sets used to quantify drought need a representative baseline of conditions in order to accurately
establish a normal. This presents a challenge when working with earth observation data sets which
often have very short baselines for a single instrument. This study assessed three soil moisture data
sets: a surface satellite soil moisture data set from the Soil Moisture and Ocean Salinity (SMOS)
mission operating since 2010; a blended surface satellite soil moisture data set from the European
Space Agency Climate Change Initiative (ESA-CCI) that has a long history and a surface and root
zone soil moisture data set from the Canadian Meteorology Centre (CMC)’s Regional Deterministic
Prediction System (RDPS). An iterative chi-squared statistical routine was used to evaluate each data
set’s sensitivity to canola yields in Saskatchewan, Canada. The surface soil moisture from all three
data sets showed a similar temporal trend related to crop yields, showing a negative impact on canola
yields when soil moisture exceeded a threshold in May and June. The strength and timing of this
relationship varied with the accuracy and statistical properties of the data set, with the SMOS data
set showing the strongest relationship (peak X2 = 170 for Day of Year 145), followed by the ESA-CCI
(peak X2 = 89 on Day of Year 129) and then the RDPS (peak X2 = 65 on Day of Year 129). Using short
baseline soil moisture data sets can produce consistent results compared to using a longer data set,
but the characteristics of the years used for the baseline are important. Soil moisture baselines of
18–20 years or more are needed to reliably estimate the relationship between high soil moisture and
high yielding years. For the relationship between low soil moisture and low yielding years, a shorter
baseline can be used, with reliable results obtained when 10–15 years of data are available, but with
reasonably consistent results obtained with as few as 7 years of data. This suggests that the negative
impacts of drought on agriculture may be reliably estimated with a relatively short baseline of data.
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1. Introduction

Agricultural droughts occur when water shortages lead to reductions in crop productivity, and are
most often associated with increases in evapotranspiration coupled with reductions in root zone
soil moisture. This type of drought has been traditionally difficult to monitor with tools such as
meteorological stations, since neither soil moisture nor evapotranspiration are typically measured.
As a result, indicators of agricultural drought are most often modelled using water budget models [1–3].
While these approaches have shown robust results in monitoring global changes in drought occurrence,
they are often limited at more regional to local scales due to the uncertainty in both the data and the
models at finer spatial resolutions. In recent years, soil moisture data sets derived from microwave
satellites have emerged as a new source of information to support drought monitoring. Satellites
collecting passive microwave emissions at X-, C-, and L-band frequencies have been used to derive
soil moisture with varying levels of accuracy at coarse spatial resolutions every 1–3 days globally.
Newer satellites, such as the Soil Moisture Ocean Salinity (SMOS) mission and the Soil Moisture
Active Passive (SMAP) mission were designed explicitly for soil moisture monitoring. These soil
moisture data sets have been validated around the world using in situ station networks. Validation
results have shown that the volumetric soil moisture derived from L-band frequencies is more accurate
than those using higher radiometric frequencies such as X- and C-band, but the temporal trend in
soil moisture (i.e., wetting and drying cycles) can be captured reasonably well using all three types
of data [4,5]. Satellites are sensitive to the moisture in a thin layer of soil at the surface, limiting
their use for monitoring root zone soil moisture most closely associated with agricultural droughts.
Data assimilation into land surface models has been used successfully to improve the estimation of
water storage in the root zone, particularly in areas where soil properties are not well characterized,
or precipitation estimates have low accuracy [6,7]. The greater availability and accuracy of soil moisture
data sets provides a promising tool for agricultural drought monitoring.

Droughts are most often characterized not by aridity or absolute thresholds in moisture but by the
relative dryness in the context of historical conditions for a given time and place. For this reason, most
drought indicators are reliant on creating a baseline of normal conditions using historical data, and then
determining drought severity by comparing to this normal [8,9]. Current soil moisture conditions
alone, therefore, are rarely enough to fully characterize drought. Two general approaches have been
used to estimate drought severity using satellite soil moisture data sets. The first set of approaches use
a baseline of historical conditions to define statistical characteristics of soil moisture for each location
to develop a relative indicator of drought severity [10–12]. Another approach to involves using the
field capacity, wilting point or the available water holding capacity of soils to determine water storage
in a particular soil [13,14]. A key limitation to the first approach is the lack of historical satellite soil
moisture data to define these baseline statistical conditions [10]. A limitation of the second approach is
the need to define soil characteristics which are not often available at a suitable spatial scale and which
can be statistically incompatible with the satellite data sets. [14]. The historical baseline for a single
satellite is typically short, spanning the operating lifetime of an instrument, (~1 to 20). To address the
need to contextualize and quantify long term changes in soil moisture, the European Space Agency
(ESA) developed a multi-sensor satellite soil moisture data set under the Climate Change Initiative
(CCI) essential climate variables program (hereafter referred to as ESA-CCI) providing a statistically
consistent soil moisture data set from 1979 to the present [15]. This opens up the potential to better
quantify relative drought conditions using earth observation data [16].

With a large number of potential models and satellite data sets available for monitoring droughts,
it raises the question on what characteristics of the data are critical to adequately monitoring drought
and drought impacts. There are multiple modelled and satellite soil moisture data sets that exist,
and each has its flaws: satellites only monitor the surface conditions; models can provide root zone
soil moisture but often have higher errors and biases; L-band sensors provide the highest accuracy,
but they have only been available for a short period of time; longer satellite blends have a relatively
long temporal record, but may not be as accurate or timely for monitoring. The impact of these data
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characteristics for quantifying agricultural droughts has not been clearly identified based on existing
research. Different satellite soil moisture data sets have different accuracies relative to in situ networks,
have different historical baselines and are only sensitive to surface soil moisture. The impact of these
differences on drought monitoring and assessment are not clear from the current research.

The emerging research on satellite soil moisture and drought has shown that there is a broad
sensitivity to drought risk, shown in several studies in Canada, the US, Europe and Africa [17–20].
Indices calculated from the longer-term ESA-CCI data set have shown good correspondence with
drought events or agricultural yields, making use of longer, more robust historical baselines on which
to establish the relationship with drought or yield [11,12,21]. As an absolute measure of soil moisture,
ESA-CCI does show variations in accuracy and may provide less accuracy than SMOS or SMAP as
an absolute measure of soil moisture [15]. Satellite soil moisture-based drought indices have been
found to be primarily indicative of short-term dry conditions, which may be expected given that they
measure only the surface conditions [22,23]. Soil moisture from satellites have large uncertainties
in areas with dense vegetation (forests), complex topography or organic soil types [15]. However,
satellite soil moisture data sets have been shown to provide higher accuracy than modelled data sets,
particularly where the data inputs for models have higher uncertainty [24]. Satellite soil moisture
data sets have been shown to exhibit similar error structures to other satellite soil moisture data sets,
whereas models have different error structures than satellite data sets, but are often similar to other
modelled data sets [25].

Based on this limited research, an ideal data set for monitoring agricultural droughts would be
one with high and consistent accuracy over time, and provide a measure of soil moisture at both the
surface and root zone. Currently, this data set does not exist, so there is a need to evaluate the tradeoffs
in using the data sets that currently do exist. While both modelled and satellite derived soil moisture
datasets have shown sensitivity to drought, it is not clear how they differ in capturing these conditions
and what the advantage of using one data set over another provides. The objective of this research
is to evaluate the sensitivity of earth observation and modelled data sets to agricultural drought
conditions in terms of three conditions: accuracy, length of the temporal baseline and estimation of
root zone conditions. This was evaluated by examining changes in the statistical relationship between
soil moisture and crop yield using an iterative chi-squared modelling approach. This approach was
selected since it has been used in the past for examining the relationship between soil moisture and crop
yield so the expected behaviour is well-understood [26–28]. Three different data sets were evaluated: a
short record soil moisture data set from a dedicated soil moisture sensor (SMOS), a longer term but
potentially lower accuracy soil moisture data set from ESA-CCI and a modelled soil moisture data set
from the Canadian Meteorology Centre (CMC)’s Regional Deterministic Prediction System (RDPS)
that captures soil moisture at the surface and in the root zone. The three data sets were compared over
a coincident time period as well as over the full period of record for each data set.

2. Methodology

2.1. Study Area

The province of Saskatchewan in the western Canadian prairies was selected for this study. This
area is largely agricultural and has a low vegetation biomass that is consistent with high accuracy
satellite soil moisture retrievals [4]. Located in the North American Great Plains, Saskatchewan is
characterized by fertile soils that support the largest land area of agricultural production in Canada,
consisting primarily of small grains and cool season oilseeds [29]. Inter-annual variations in crop yield
in this region are largely driven by moisture variability due to its geographic position east of the Rocky
Mountain range, and a generally semi-arid climate. Canola, a variant of oilseed rape and the largest
area crop grown in Canada, was selected to evaluate the impacts of soil moisture data characteristics.
Canola is a cool season crop that is highly sensitive to drought conditions, making canola yields a
good indicator of the occurrence of agricultural droughts [27,30,31].
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Crop yield data in Saskatchewan is distributed through administrative districts known as Census
of Agriculture Regions (CARs) [32]. For this study, the 20 CARs from the 2011 census by Statistics
Canada were used (Figure 1), ranging in size from approximately 9000 to 350 000 km2. Canola yield
data is collected annually through a statistical survey of farmers by Statistics Canada in kilograms per
hectare for each year from 1992 to 2015 [32]. Crop yields tend to trend positively over time, reflecting
improvements in farming practices and seed hybrid development, so for the purposes of this study,
a linear detrending was applied to the yield data prior to analysis. For this analysis, all soil moisture
data sets were averaged to the CAR level to facilitate assessment against crop yield.
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Figure 1. Census agricultural regions (CARs) of the province of Saskatchewan. Canola growing regions
across Canada are depicted in light grey.

2.2. Soil Moisture Data Sets

Three soil moisture data sets were evaluated against crop yields that had different periods of
record, different accuracies, and representing different soil depths.

2.2.1. SMOS

Soil moisture data from the Soil Moisture and Ocean Salinity (SMOS) mission was used covering a
period from 2010 to 2015. SMOS collects passive microwave emitted radiation from a surface foot print of
approximately 40km, with repeat coverage over most locations in Canada every 1–2 days. Volumetric
soil moisture from SMOS was used from version 6.50 of the SMOS soil moisture processor, which uses
the tau-omega model to quantify soil dielectric constant and vegetation opacity using multi-angular
brightness temperatures [33]. Daily volumetric soil moisture measurements were interpolated to a
0.25-degree spatial grid and masked for the occurrence of snow, rain, high radio frequency interference,
and frozen soil temperatures at the time of acquisition using the data quality flags supplied. Daily
values were averaged for each Census of Agriculture Region (CAR) in Saskatchewan over the study
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period. For this study, data covering a period from 2010 to 2015 were used to analyze the relationship
between soil moisture and crop yield as described in [28]. This previous study found a strong statistical
relationship between high soil moisture in the late spring (June) and low crop yield, which was
associated with extreme wetness over the study period, leading to water logging that could negatively
impact crop growth and development. This data set was used as a baseline to determine if similar
trends could be found using other soil moisture data sets.

2.2.2. ESA-CCI

The ESA-CCI soil moisture data was developed to provide a long-term climate data set for
evaluating long term trends. For this study, version 4.2 of the data was used, and covers a period
from 1979 to 2016. Past research has indicated that the period from 1992 to the present provides the
most consistent data, and for the purposes of this study, the data set was restricted to this time period.
This data set includes a blend of active and passive soil moisture data sets, from the Special Sensor
Microwave Imager (SSM/I), the Advanced Microwave Scanning Radiometer (AMSR2 and AMSR-E),
Windsat and the Metop Advanced Scatterometer (ASCAT) [15]. Level 2 soil moisture products are
derived using two sets of models: for passive sensors, the Land Parameter Retrieval Model (LPRM)
model is applied, which uses a multi-frequency approach to separate emissions from vegetation and
soils, and for active sensors, the TU Wien method is applied, which uses a change detection approach
to normalize for scattering from different surface elements [15,34,35]. Level 2 soil moisture data sets
are statistically rescaled by the data providers to a consistent long-term modelled soil moisture data
set from the NASA Global Land Data Assimilation System (GLDAS) using a set of decision rules based
on the error characteristics of each data set and gridded to a 0.25 degree spatial grid. For this study,
daily volumetric soil moisture observations from the ESA-CCI active-passive data set were spatially
averaged for each CAR in Saskatchewan over the period from 1992 to 2015. This data set represents
a long-term, temporally stable data set that was used to evaluate the impact of baseline length on
determining crop yield sensitivity to soil moisture.

2.2.3. Canadian Meteorological Centre Soil Moisture

Surface and root zone soil moisture from the Canadian Meteorological Centre (CMC) was used
from the Regional Deterministic Prediction System (RDPS) land surface model. The RDPS uses the
Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface scheme, which comprises two
soil layers with associated soil characteristics variables and describes the evolution of temperature
and water content based on a “force–restore” mechanism [36,37]. The ISBA land surface model is
forced with atmospheric data from short-range forecasts from the Canadian Meteorological Centre’s
Numerical Weather Prediction (NWP) models. The atmospheric forcing variables required are short-
and long-wave radiation incident at the surface, air temperature, specific humidity, wind, surface
pressure, and precipitation. Air temperature, specific humidity, and wind forcing are taken from the
lowest vertical level in the NWP model (40 m), with the other variables representing surface values [8].
The soil moisture analysis from the model is derived after assimilation of screen level observation of
temperature and relative humidity to correct for model errors. The surface is modelled at a 10km grid
resolution. Soil moisture estimates at depths of 0–10 cm and 0–100 cm were output by the model and
used for this analysis. Data were analyzed over a period from 2011 to 2015 since 2010 data was not
available on a 10 km grid.

2.3. Iterative Chi-Squared Modelling

The iterative chi-square analysis, developed by Caprio [38], is a statistical procedure designed
to investigate the association between climate observations and biological data, including crop
yields. The technique has been applied to numerous applications, including relating temperature and
precipitation observations to wheat yield records in Montana [39]; apple and grape yields in British
Columbia [40,41]; canola yields in Saskatchewan [28]; and cabbage, onion, and rutabaga yields in
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Ontario [26,42]. The technique has also been used to relate temperature and precipitation variables to
tree-ring growth in southern Arizona [43] and in comparing temperature, precipitation and modelled
soil moisture estimates to grasshopper pest populations in Alberta [44].

The iterative chi-square analysis identifies the timing, magnitude and direction (positive or
negative) of the relationship between individual daily climate observations and crop production
throughout the growing season and determines the climate threshold values above or below which the
most significant associations occur [26,27,38,44]. The technique iteratively compares the number of days
that meet a threshold condition in high- or low-yield years (observed) to normal-yielding years (expected)
within a three-week moving window, generating an overall chi-squared statistic (Equation (1))

X2 = [(O − E)2]/E (1)

where O is the observed number of days that meet the condition and E is the expected, or ‘theoretical’,
number of days meeting the condition. If the number of days meeting the threshold condition has a
low probability of occurring by chance, the returned chi-squared value departs from zero indicating a
statistically significant relationship. For this study, chi-squared values greater than +10 or less than −10
were significant at p < 0.01, or where more than twice the number of observed cases meet the condition
relative to the expected [43]. Larger chi-squared values represent a stronger relationship between the
two variables being examined. Positive chi-squared values indicate a positive relationship between
high values of the variable being assessed (in this case soil moisture), whereas negative values indicate
a relationship with low values. For example, low yields associated with high soil moisture would be
indicated by high positive chi-squared values, whereas low yields associated with low soil moisture
would be shown as strong negative chi-squared values. These values can then be plotted over time to
indicate the timing of the peak relationship between crop yields and climatic variables. Two previous
studies using this technique are noteworthy for establishing the robustness of this technique over
the study area. A study by Kutcher [27] found a significant chi-squared relationship between high
temperatures and low precipitation during canola flowering (early July in this region) that resulted
in lower than average yields when examined over a 35-year period from 1967–2001. A follow-up
study over this same study area examined the relationship between SMOS soil moisture, temperature
and precipitation over a shorter time period (2010–2015) and found a similar relationship between
extreme high temperatures during flowering and low yields, but could not replicate the trend in
precipitation data [28]. This same study found a significant relationship between high soil moisture
from SMOS in late May/early June and canola yield, a result of several seasons of excess moisture [28].
The present study uses these established relationships between climatic variables and canola yield in
Saskatchewan to evaluate the impacts of soil moisture data characteristics and the strength and trend
in this relationship. To do this, the iterative chi-square technique was utilized to compare daily soil
moisture observations from the SMOS, ESA-CCI, and RDPS data sets in high- or low-yielding years to
normal canola yielding years between 2010 and 2015 across the 20 CARs of Saskatchewan. The impact
of data set baseline length was evaluated using the ESA-CCI data set from 1992–2015. Low-, normal-,
and high-yield classes were determined based on quartiles, where low-yield years were defined as the
bottom 25% of samples, normal-yield years between 25% and 75%, and high-yield years the top 25%.
Thresholds were searched in steps of 0.2% from 0 to 50% for daily percent volumetric soil moisture by
scanning the data from high-to-low to establish the relationship.

2.4. Climate Conditions

The soil moisture results were interpreted using standard meteorological indices as well as
the Canadian Drought Monitor from the Agriculture and Agri-Food Canada National Agroclimate
Information Service [45]. The period under examination showed a range of drought conditions
and excess moisture conditions that would impact canola yield in this region. Figure 2a shows the
ratings from the Canadian Drought Monitor from 2003 (when assessments began) to 2015. A severe



Remote Sens. 2019, 11, 372 7 of 19

drought impacted the area from 2000–2005, having both high severity and widespread conditions.
Drought events were periodic but regular after 2005, with extreme drought event in 2008 and 2009,
and relatively few events in terms of both extent and severity from 2012 onwards. The longer-term
drought severity conditions are shown in Figure 2b, depicting the average Palmer Drought Severity
Index (PDSI) conditions over the study region for the period of 1992–2015. The PDSI was calculated
using a customized model that includes a soil water balance model to reflect general soil moisture
conditions [46]. The data show the severe drought conditions from 2000–2005, as well as a number of
wetter than average periods, including peaks in 2010, 2011, and 2014.
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3. Results and Discussion

3.1. Soil Moisture Data Characteristics

The statistical characteristics of each data set are given in Figures 3 and 4 and Table 1. For the
surface soil moisture data sets covering the core period where all three data sets overlap from 2010 to
2015 (Figure 3; Table 1 top), the SMOS and RDPS data sets have slightly lower means that the ESA
CCI data set, and the SMOS data set has a slightly larger distribution (standard deviation = 7.1%).
The RDPS data has a higher skew and kurtosis than the other two data sets, likely because of the large
number of low moisture values at the extremes of the distribution. The distribution of the three soil
moisture data sets using the full record length of each data set are shown in Figure 4. The full ESA-CCI
data set has a lower mean than the 2010–2015 subset, indicating a wet bias in the more recent years, but
other statistical characteristics of the 2010–2015 data subset are similar. Both the long- and short-term
ESA-CCI data sets show a skew towards lower soil moisture values compared with the SMOS data
set. Examining other six-year subsets from the ESA-CCI data set, the period from 1998–2003 has the
lowest mean value and a slightly higher skew and kurtosis than the 1992–2015 data set, with the
2004–2009 subset being the most similar statistically to the full ESA-CCI data set. The RDPS root zone
soil moisture has a higher mean than the surface value, with a lower standard deviation and a negative
skew, indicating a large number of extreme values in the lower end of the soil moisture range.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 19 

 

 
Figure 3. Comparison of statistical distributions of three surface soil moisture data sets for 
overlapping period 2010 (2011) –2015. 

 
Figure 4. Statistical distribution of three surface soil moisture data sets for full data record. The ESA-
CCI data set from 1992–2015, the SMOS data set from 2010–2015 and the RDPS data set from 2011–
2015. 

3.2. Impact of Data Type on the Relationship Between Soil Moisture and Canola Yield 

The iterative chi-square results relating satellite soil moisture to canola yield for Saskatchewan 
are shown in Figure 5 (A, B ,C) for low and high yielding years. The surface soil moisture conditions 
show a relatively consistent pattern between all three data sets, with the SMOS soil moisture showing 
a strong association between low yield and high soil moisture, particularly in the early season period. 
As was discussed in a previous study, this relationship is likely driven by excess moisture events in 
several years within this time window that resulted in water logging at the surface and substantial 
damage to the growing crop [28]. It should be noted that the period from 2010–2015 show, half of the 
years showed much higher than average precipitation, representing an anomaly for this region. The 
chi-squared statistic indicating the statistical strength of this relationship is higher for the SMOS data 
set (peak Χ2=170 for Day of Year 145), somewhat lower for the ESA-CCI data set (peak Χ2 = 89 on Day 
of Year 129), and weakest for the RDPS surface data (peak Χ2 = 65 on Day of Year 129) . There is also 
a difference in the timing of the peak between the three data sets, with the ESA-CCI and RDPS 
showing a larger peak at day 129 (early May) and a weaker peak around day 142 (Χ2 = 84 on Day of 
Year 142 for ESA-CCI and Χ2 = 65 on Day of Year 142) in late May, consistent with the SMOS data set. 
This timing would be consistent with the seeding and germination growth stages for canola in this 
region. It is not clear why this earlier peak in May is not as pronounced in the SMOS data. This could 
be a result of the statistical distributions of the ESA-CCI and RDPS data sets, which appear to capture 

Figure 3. Comparison of statistical distributions of three surface soil moisture data sets for overlapping
period 2010 (2011) –2015.

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 19 

 

 
Figure 3. Comparison of statistical distributions of three surface soil moisture data sets for 
overlapping period 2010 (2011) –2015. 

 
Figure 4. Statistical distribution of three surface soil moisture data sets for full data record. The ESA-
CCI data set from 1992–2015, the SMOS data set from 2010–2015 and the RDPS data set from 2011–
2015. 

3.2. Impact of Data Type on the Relationship Between Soil Moisture and Canola Yield 

The iterative chi-square results relating satellite soil moisture to canola yield for Saskatchewan 
are shown in Figure 5 (A, B ,C) for low and high yielding years. The surface soil moisture conditions 
show a relatively consistent pattern between all three data sets, with the SMOS soil moisture showing 
a strong association between low yield and high soil moisture, particularly in the early season period. 
As was discussed in a previous study, this relationship is likely driven by excess moisture events in 
several years within this time window that resulted in water logging at the surface and substantial 
damage to the growing crop [28]. It should be noted that the period from 2010–2015 show, half of the 
years showed much higher than average precipitation, representing an anomaly for this region. The 
chi-squared statistic indicating the statistical strength of this relationship is higher for the SMOS data 
set (peak Χ2=170 for Day of Year 145), somewhat lower for the ESA-CCI data set (peak Χ2 = 89 on Day 
of Year 129), and weakest for the RDPS surface data (peak Χ2 = 65 on Day of Year 129) . There is also 
a difference in the timing of the peak between the three data sets, with the ESA-CCI and RDPS 
showing a larger peak at day 129 (early May) and a weaker peak around day 142 (Χ2 = 84 on Day of 
Year 142 for ESA-CCI and Χ2 = 65 on Day of Year 142) in late May, consistent with the SMOS data set. 
This timing would be consistent with the seeding and germination growth stages for canola in this 
region. It is not clear why this earlier peak in May is not as pronounced in the SMOS data. This could 
be a result of the statistical distributions of the ESA-CCI and RDPS data sets, which appear to capture 

Figure 4. Statistical distribution of three surface soil moisture data sets for full data record. The ESA-CCI
data set from 1992–2015, the SMOS data set from 2010–2015 and the RDPS data set from 2011–2015.



Remote Sens. 2019, 11, 372 9 of 19

Table 1. Statistical characteristics of different soil moisture data sets used in this study.

N Mean Sd Median Skew Kurtosis
RDPS surface

2011–2015 15300 16.0 5.1 15.2 1.2 1.8

SMOS
2010–2015 21410 17.3 7.1 17.2 0.2 0.3

ESA CCI
2010–2015 18349 19.6 4.1 19.3 0.4 0.4

ESA CCI
1992–2015 61770 18.9 4.5 18.6 0.5 0.3

ESA CCI
1992–1997 7990 19.2 4.9 19.1 0.4 0.3

ESA CCI
1998–2003 12873 17.7 4.9 17.1 0.7 0.6

ESA CCI
2004–2009 18208 18.8 4.3 18.4 0.5 0.2

RDPS rootzone
2011–2015 15300 17.6 2.8 17.7 −0.4 1.3

3.2. Impact of Data Type on the Relationship Between Soil Moisture and Canola Yield

The iterative chi-square results relating satellite soil moisture to canola yield for Saskatchewan
are shown in Figure 5A–C for low and high yielding years. The surface soil moisture conditions show
a relatively consistent pattern between all three data sets, with the SMOS soil moisture showing a
strong association between low yield and high soil moisture, particularly in the early season period.
As was discussed in a previous study, this relationship is likely driven by excess moisture events in
several years within this time window that resulted in water logging at the surface and substantial
damage to the growing crop [28]. It should be noted that the period from 2010–2015 show, half of
the years showed much higher than average precipitation, representing an anomaly for this region.
The chi-squared statistic indicating the statistical strength of this relationship is higher for the SMOS
data set (peak X2 = 170 for Day of Year 145), somewhat lower for the ESA-CCI data set (peak X2 = 89
on Day of Year 129), and weakest for the RDPS surface data (peak X2 = 65 on Day of Year 129). There is
also a difference in the timing of the peak between the three data sets, with the ESA-CCI and RDPS
showing a larger peak at day 129 (early May) and a weaker peak around day 142 (X2 = 84 on Day of
Year 142 for ESA-CCI and X2 = 65 on Day of Year 142) in late May, consistent with the SMOS data set.
This timing would be consistent with the seeding and germination growth stages for canola in this
region. It is not clear why this earlier peak in May is not as pronounced in the SMOS data. This could
be a result of the statistical distributions of the ESA-CCI and RDPS data sets, which appear to capture
more low soil moisture values than high soil moisture values. For this reason, the earlier peak may be
in reality less significant (as seen in the SMOS results in Figure 5). The later peak in the relationship
between low yields and high soil moisture seen by SMOS may be more agriculturally significant, since
soils that may already be saturated from spring rains become over-saturated if heavy rainfall persists,
and that this persistence in wet conditions negatively impacts the yield more than wet conditions
earlier in the season. In other words, high soil moisture in early May could be less problematic for crop
yields if there is time for the soils to dry within a two-week window, but if they do not dry, yields will
be negatively impacted by saturated soils. This difference in the magnitude of these two peaks may
not be well-captured by ESA-CCI and RDPS because of the bias towards low soil moisture values.

The root zone soil moisture (Figure 5D) showed the weakest relationship with crop yields. There
may be several reasons for this. Since the dominant trend over this time period was the impact of
excess moisture leading to low yields, it may be that the root zone soil moisture may be less relevant
since this is caused by water logging at the surface rather than water storage at depth. Drought
conditions would likely be better reflected in root zone soil moisture deficits, which occur when water
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storage in the root zone is inadequate to support crop growth [47]. Unfortunately, we cannot evaluate
this in this study due to the lack of severe drought impacts during this time period.
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Figure 5. Chi-squared statistics between canola yield and soil moisture for three surface soil moisture
data sets and one root zone soil moisture data set in the 2010–2015 time period: (A) Satellite surface
soil moisture from SMOS; (B) Satellite surface soil moisture from ESA-CCI; (C) Modelled surface soil
moisture from RDPS; and (D) Modelled root zone soil moisture from RDPS. Chi-squared values higher
than 10 or lower than −10 are statistically significant at p < 0.01.

The consistency of the relationship for all three surface soil moisture data sets shows that they can
all capture the dominant trend between crop yields and soil moisture over this time period, which
is characterized by excess moisture having a negative impact on canola yield. The differences in the
strength and timing of the statistical relationship for all three data sets suggest that the SMOS data set,
which presumably has the highest accuracy since the sensor characteristics were designed specifically
to measure soil moisture, is capturing this trend better than the other two data sets. SMOS soil
moisture has been shown to have a higher accuracy than ESA-CCI in previous studies [5]. The weaker
relationship with the ESA-CCI data set may be due to the statistical rescaling of that data set to the
GLDAS model, which may be reducing the dynamic range of the data set, with a bias toward drier
soil moisture values (Figure 4, Table 1). The reason for this bias is not known and is noteworthy since
the ESA-CCI data set includes SMOS data in its long-term data blend; this could also be a result of
the inclusion of both active and passive soil moisture data sets in the blend, and is worth further
investigation. The weaker chi-squared relationship with the RDPS surface data set may be due to a
similar skew in the soil moisture distribution. The reason for this skew could be due to simplifications
in the model physics to provide a suitable estimate of soil moisture for meteorological applications,
which may result in less accurate overall soil moisture estimates. These could likely be improved
with future enhancements to the land surface scheme, including changes to the land surface model
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and assimilation of satellite soil moisture to improve the accuracy [48,49]. There is also likely some
discrepancy in the depths being represented in the surface satellite soil moisture data sets and the
model; the model represents a depth of 10 cm, but the sensing depth of the satellite products is likely
shallower than this, representing the top 5 cm or less [50]

3.3. Impact of Soil Moisture Baseline Length on Impact Assessment

To examine the impact of the length of the soil moisture baseline on the statistical relationship
with crop yield, the chi-squared trend was examined over different six-year periods in the ESA-CCI
data set, as well as the full 1992–2015 24-year time period. Using the longest baseline, a very strong
relationship is found between low yields and low soil moisture after day 200 (mid to late July, which
coincides with the flowering or reproductive growth phase) (Figure 6d). This is consistent with the
relationship found in [27] between low rainfall in the first two weeks of July and low canola yields
in this region. Similarly, there is a positive association between high soil moisture and high crop
yields somewhat later in the season, approximately in August. This relationship was stronger than
what has been shown in previous studies [27]. There is a weaker relationship between low yields and
excess moisture in the spring (May) than when using the 2010–2015 subset (Figure 5B), but the positive
relationship is still apparent even when a longer soil moisture baseline is used.

When different six-year subsets are used, the relationship between soil moisture and canola
yield is quite variable. The 1992–1997 subset shows the weakest relationship between soil moisture
and both low and high crop yields (Figure 6a) compared with the 1998–2003 and 2004–2009 subsets
(Figure 6b,c). These latter subsets show a similar trend to the 1992–2015 long term data set, but the
strength and timing of the relationship, particularly between low soil moisture and low yields, differs
(peak X2 = −141 on Day of Year 197 for 1998–2003; peak X2 = −104 on Day of Year 200 for 2004–2009
compare to X2 = −290 on Day of Year 206). There is however, a similar trend with low soil moisture
being associated with low yields on or around day 200 (mid-July), and high yields associated with
high soil moisture after Day of Year 230, which is in approximately the middle of August. At this
time of year, canola growth stages would range from peak leaf development to pod development,
depending on the timing of seeding. This variable relationship shows that the 1992–1997 period did
not capture a wide enough range of conditions to build an accurate relationship between canola yield
and soil moisture. This is likely due to the frequency of drought conditions in this area in this time
period (Figure 2). There were few droughts in the 1992–1996 period and the 2010–2015 period, making
the trend between low soil moisture and low yields difficult to detect. The similarities between the
1996–2003 and 2004–2009 subsets to the 1992–2015 suggest that this relationship can be captured
using a shorter climatological baseline, but that the years in question need to be representative of the
broader long term trends that would impact crop yields. Since it is unknowable if a short time series
representative of these longer-term trends unless a longer term data series exists to verify this, short
time series should not generally be considered representative unless otherwise shown to be. The skew
in the ESA-CCI data set towards dry soil moisture values discussed earlier may make this data set
better for capturing dry extremes than wet extremes.

To further investigate the impact of changing record length on the relationship between crop yield
and soil moisture, each year was removed iteratively from the sample to create multiple subsets of data
ranging from 6–23 years. Figure 7 shows the iterative chi-squared statistics between these soil moisture
data subsets and canola yield. As the length of the data set gets smaller, the strength of the relationship
between soil moisture and yield at key periods is weaker, with the drop in the peak season relationship
between soil moisture and high crop yield substantially lower when the record is 18 years or less.
The relationship between low yielding years and soil moisture is somewhat less reliant on having
a longer record length, with the strength of the relationship dropping most when the data record is
12 years or less. To better assess this, Figure 8 shows the correlation between each data subset and
the calculated chi-squared statistics using the longest data set (1992–2015). The correlation between
different combinations of years becomes much more varied when the data subset is shorter, meaning
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that as the sample size decreases, the chances of getting a sample that accurately reflects the relationship
detectable from a 24-year sample is much less likely. The correlation between the chi-squared statistic
calculated using a 24-year soil moisture data set and a shorter subset for high yielding years starts to
weaken (with a correlation of 0.75 or higher) when the record is 20 years or less. For the chi-squared
relationship between soil moisture and low yielding years, the relationship is much more stable, with
a high correlation for data sets of 7 years or more, and a strong relationship (correlation of 0.9 or
higher), when records are 15 years or more. The data requirements for establishing a statistically
strong relationship between low yields and high yields likely differ due to the multiplicative factors
that influence crop yield. Low yields are often associated with a single constraint that controls crop
growth, in this case an inability to seed fields when soil moisture conditions are wet in the spring,
or conversely when soil moisture is low during reproductive phases when water controls the rate of
seed development. High yielding years, on the other hand, occur when a number of climate related
conditions are ideal, and so the need for ideal water storage becomes only one factor contributing to
good growth, but not the only one. For this reason, a longer data set may be needed to establish what
ideal soil moisture conditions are for high yielding years because it is not the only factor contributing
to higher crop productivity, which might also include factors such as warm springs to allow for early
seeding or ideal temperatures during key growth stages to reduce heat stress.
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than 10 or lower than −10 are statistically significant at p < 0.01.
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The strength of the relationship between yield and the soil moisture at key periods is stronger the
more years there are in the data record (Figure 9). The maximum chi-squared value (shown here as
a negative, since it indicates a relationship between low soil moisture and low yields) gets stronger
as more years are included in the data record. The timing of the peak statistical relationship also
changes somewhat, with the relationship primarily in the mid-range of the data (~DOY 200) as more
years are in the sample size, and the relationship drifting either earlier or later in the season when the
sample size is smaller. The reason for this may be that when fewer years are included in the baseline,
the statistical relationship is influenced to a greater degree by the characteristics of the individual
years in the sample rather than a general pattern. Since the shifts in timing of the peak occur both
earlier and later in smaller samples, this suggests that a longer-term average is more suitable for
establishing a generalizable pattern than a shorter baseline, but that there is a range in timing of the
peak which is critical for interpreting the results. Year to year differences in the timing of seeding and
growth phases may account for this range. For high yielding years, the peak statistical relationship is
similarly stronger and less variable when there are more years included in the baseline. In this case the
relationship is between high yield and high soil moisture, so the chi-squared value is expressed as a
positive. There is no clear pattern of drift in the timing of this relationship for high yielding years.
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4. Conclusions

The relationship between canola yield and different soil moisture data sets was examined to better
understand how data characteristics effect the assessment of how soil moisture impacts crop yields.
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Three soil moisture data sets were examined: a high accuracy satellite surface soil moisture data set
from the Soil Moisture and Ocean Salinity (SMOS) mission, a longer term satellite surface soil moisture
data set from the European Space Agency Climate Change Initiative (ESA-CCI) and a modelled soil
moisture data set at the surface and at root zone from the Environment and Climate Change Canada
Regional Deterministic Prediction System (RDPS). All three data sets showed a similar pattern in the
relationship between low crop yield and high spring surface soil moisture for the 2010–2015 period,
but the timing and strength of the relationship differed with each data set. For the 2010–2015 period
where all three data sets were coincident, the SMOS data set showed the strongest relationship (peak
X2 = 170 for Day of Year 145), followed by the ESA-CCI (peak X2 = 89 on Day of Year 129) and then the
RDPS (peak X2 = 65 on Day of Year 129) between low yielding years and high soil moisture. The SMOS
soil moisture had the highest dynamic range of the three data sets, with modelled data set from RDPS
having the smallest. Both the ESA-CCI and the RDPS data set were skewed towards drier soil moisture
values, and there is some indication that they captured dry extremes better than wet extremes in this
study. The modelled root zone soil moisture was not related to any dominant trend in crop yield in the
2010–2015 time period; this may be due the lack of drought events during this time window, which
would be more reflected in the root zone soil moisture than at the surface.

Using short baseline soil moisture data sets can produce consistent results compared to using a
longer data set, but the characteristics of the years used in the baseline is important to determine the
strength and timing of the relationship. Soil moisture baselines of 18–20 years or more are needed
to reliably estimate the relationship between high soil moisture and high yielding years. For the
relationship between low soil moisture and low yielding years, a shorter baseline can be used, with
reliable results obtained when 10–15 years of data are available, but with reasonably consistent results
obtained with as few as seven years of data. This suggests that the negative impact of soil moisture
deficits on crop yield are more reliably assessed than the positive impacts. This is important for crop
yield modelling, suggesting that even soil moisture data sets with a relatively short number of years
of data can be used to identify soil moisture deficits or drought events that will negatively impact
crop yields. The better performance of L-band measurements than other data sources suggest the
importance of data continuity for missions such as SMOS and SMAP, and the importance of long
term, dedicated measurements in order to properly evaluate the impact of droughts and other climate
extremes on agriculture.
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