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Abstract: A in situ hyperspectral dataset containing multiple growth stages over multiple growing
seasons was used to build paddy rice leaf area index (LAI) estimation models with a special focus
on the effects of paddy rice growth stage development. The univariate regression method applied
to the vegetation index (VI), the traditional multivariate calibration method of partial least squares
regression (PLSR), and modern machine learning methods such as support vector regression (SVR),
random forests (RF), and artificial neural networks (ANN) based on the original and first-derivative
hyperspectral data were evaluated in this study for paddy rice LAI estimation. All the models were
built on the whole growing season and on each separate vegetative, reproductive and ripening
growth stage of paddy rice separately. To ensure a fair comparison, the models of the whole growing
season were also validated on data for each separate growth stage of the standalone validation
dataset. Moreover, the optimal band pairs for calculating narrowband difference vegetative index
(DVI), normalized difference vegetation index (NDVI) and simple ratio vegetation index (SR) were
determined for the whole growing season and for each separate growth stage separately. The results
showed that for both the whole growing season and for each single growth stage, the red-edge and
near-infrared band pairs are optimal for formulating the narrowband DVI, NDVI and SR. Among the
four multivariate calibration methods, SVR and RF yielded more accurate results than the other two
methods. The SVR and RF models built on first-derivative spectra provided more accurate results
than the corresponding models on the original spectra for both whole growing season models and
separate growth stage models. Comparing the prediction accuracy based on the whole growing
season revealed that the RF and SVR models showed an advantage over the VI models. However,
comparing the prediction accuracy based on each growth stage separately showed that the VI models
provided more accurate results for the vegetative growth stages. The SVR and RF models provided
more accurate results for the ripening growth stage. However, the whole growing season RF model
on first-derivative spectra could provide reasonable accuracy for each single growth stage.
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1. Introduction

Leaf area index (LAI), which is defined as half of the all-sided green leaf area per unit ground
area [1], is a key biophysical parameter that reflects biochemical and physiological processes
of plants. LAI mapping is important for a wide range of agricultural studies such as stress
evaluation [2–4], growth status monitoring, and yield estimation [5–7]. Remote sensing is a prevalent
technique that can provide cost-effective and nondestructive LAI estimation both at regional and
global scales. Hyperspectral remote sensing, which is done with narrower spectra bands, allows
for characterizing vegetation with a considerably greater amount of information than traditional
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multispectral techniques [8]. Studies have suggested that hyperspectral data may improve LAI
estimation accuracy [9–13].

There are two main approaches to build LAI estimation models from remote sensing
data; the empirical statistical approach and the radiative transform model (RTM) approach [8].
The former approach includes univariate regression models built on a vegetation index (VI) and
multivariate-calibration-based models using the full reflectance spectrum [14–16]. These multivariate
calibration techniques include the partial least squares regression (PLSR) methods and modern machine
learning methods such as support vector regression (SVR), random forests (RF), and artificial neural
networks (ANN). The latter approach generally combines an RTM with different inversion techniques.
The RTM approach suffers from ill-posed problems and high computational cost. Furthermore,
the accuracy of the RTM inversion results are highly reliant on the realism of the RTM simulation and
appropriate RTM parameter initialization [8,17,18].

Vegetation indexes (VIs) are designed to enhance the vegetation signal by simply combining two
or few more bands of measured spectra response. The VI method is preferred to the RTM approach
and other empirical statistical methods because it is easy to design and parameterize. New possibilities
have opened up with the advent of hyperspectral data. The established index formulations such
as normalized difference vegetation index (NDVI) [19], simple ratio vegetation index (SR) [20] and
difference vegetative index (DVI) [21] computed from specific optimization narrow bands could
improve the accuracy of LAI estimations [22–25]. Hansen et al. [22] showed that red-edge bands are
important for building narrowband VI-LAI estimation models by studying field-collected multiple
growth stages and cultivars data of winter wheat. Moreover, they concluded that narrowband VI-LAI
relationships are optimal and cannot be significantly improved (in wheat crops) by the PLSR method
using all hyperspectral bands. Zhao et al. [23] reported that calculating NDVI with 690–710 nm
and 750–900 nm bands provides better LAI estimation accuracy for cotton canopy, the red band of
which is not consistent with the common broadband red channel centers (640–660 nm) onboard the
current generation of earth-orbiting satellites. Delegido et al. [24] demonstrated that NDVI(674nm,712nm)

exhibited the highest linear relationship with the LAI of nine crop types (without paddy rice).
Tanaka et al. [25] showed that difference between reflectance values at 760 nm and 739 nm showed
outstanding performance for winter wheat LAI assessments. Although the excellent performance of
narrowband VIs has been widely demonstrated, how the growth stage development of crops affects the
optimal band combinations for the narrowband VIs and its performance has not been fully evaluated.

Univariate regression models based on VIs, which typically use two to three bands, are considered
to be too simple for capturing the intrinsic relationships between the observed remote sensing
data (particularly hyperspectral data) and the biochemical or biophysical parameters of interest.
These models also lack the ability to parameterize spatiotemporal variability [26]. PLSR has been
considered to be a powerful alternative to univariate methods and provides better performance in most
cases [27–29], although there is a study that reported the opposite results [22]. Moreover, the potential
performance of the state-of-the-art machine learning methods, such as SVR, RF and ANN, has been
explored in several studies [14,15,30]. These studies showed that the state-of-the-art machine learning
techniques appear to be more efficient than the VI and PLSR methods in most LAI estimation cases.
Furthermore, several studies [14,15] also point out that performance of PLSR and machine learning
method is affect by the development of growth stage. Kiala et al. [14] built SVR and PLSR models
at different growth stages (early, mid, late and combined) of tropical grassland for LAI estimation.
Their results showed that the SVR model yielded better accuracy at the mid-growth stage and whole
growing season, whereas the PLSR models performed better at the early and late growth stages.
Yuan et al. [15] used PLSR and three machine learning methods (RF, ANN and SVR) to predict soybean
LAI over a single growth stage (full pod period) and the whole growing season, and their results
showed that the RF model was more accurate for the whole growing season, whereas the ANN model
was more suitable for the single growth stage. Whether this pattern also exists in other plants, such as
paddy rice, has not been fully explored.
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Paddy rice is one of the main crops in the world. Accurately monitoring its growing status will
benefit the guidance of its management. Thus, based on a field-collected multiple growth stages over
multiple growing seasons canopy reflectance and LAI dataset of paddy rice, this study assessed the
performance of VIs, PLSR and three machine learning techniques—SVR, RF and ANN—in estimating
paddy rice LAI with a special focus on the effects of growth stage development.

2. Materials and Methods

2.1. Study Area and Experimental Setup

The study was conducted during the 2014–2017 growing seasons (from May to October) on a
farmland located in the Ningxia Yellow River irrigation region, China (38◦7′25′′ N, 106◦11′35′′ E).
This region is characterized by a temperate continental semiarid climate. The average annual
precipitation and average annual accumulative temperature are 192.9 mm and 3866.3 ◦C [31],
respectively. The paddy rice variety Ningjing NO. 37 was used as the test material. The paddy rice
was sown in a nursery bed in late April and was transplanted in late May for all four growing seasons.

To acquire the necessary reference observations, paddy rice fields with different biochar and
nitrogen treatments were used to conduct the field data collection campaigns (detailed in Figure 1).
Three nitrogen fertilizer levels (N0 is no fertilizer, N1 is 240 kg ha−1, and N2 is 300 kg ha−1) and four
biochar levels (C0 is no biochar, C1 is 4500 kg ha−1, C2 is 9000 kg ha−1, and C3 is 13,500 kg ha−1) were
applied. The phosphates and potash fertilizers were applied for each plot at recommended levels
for this region [31], which were P2O5 90 kg ha−1 and K2O 90 kg ha−1. The biochar was produced by
pyrolysis of wheat straw at 350 ◦C to 550 ◦C by the Sanli New Energy Company, Henan Province,
China. The biochar had C, N, P and K contents of 65.7%, 0.49%, 0.1% and 1.6%, respectively [31].
Fertilizers and biochar were broadcast on the soil surface and incorporated into the soil by plowing to
a depth of approximately 13 cm. Each plot was 14 m by 5 m. Different treatments were separated by
plastic film to 130 cm in depth, preventing water interchange.

2.2. Field Data Collection

Canopy reflectance was measured with an SVC HR1024i spectroradiometer with an 8◦

field-of-view lens. The spectroradiometer has 1024 channels ranging from 350 nm to 2500 nm. In each
plot, canopy reflectance was measured at three randomly selected sample points. Five measurements
were conducted at each sample point. The fifteen measurements were averaged to represent the canopy
reflectance of the plot. During the measurement, the spectroradiometer was mounted on a tripod and
fixed at 1 m above the canopy. All measurements were collected under cloudless weather conditions
between 11 am and 2 pm at local time near solar noon. A 2nd-order Savitzky–Golay filter [32] was
used to filter the sensor noise, and then the reflectance data were resampled to a spectra resolution of
10 nm. The bands beyond 2400 nm were omitted because of the low signal-to-noise ratio. LAI was
measured on the same day with a SunScan Canopy Analysis System. For each plot, two sample points
were selected randomly. For each sample point, measurements were taken every 45◦, starting from the
across-ridge direction. The eight measurements were averaged to represent the LAI of the plot.

Data collection campaigns were planned to be conducted one time at each of the vegetative,
reproductive and ripening growth stages of paddy rice during the 2014–2017 growing seasons.
The specific dates (in form of day after transplantation, DAT) upon which data collection campaigns
were conducted are summarized in Table 1. The growth stage was determined according to the rules
described by [33].
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Figure 1. Demonstration of biochar and nitrogen treatments. The field was treated with three nitrogen
rates (N0, N1 and N2) and four biochar rates (C0, C1, C2 and C3).

Table 1. Day after transplantation (DAT) on which the data collection campaigns were conducted.

Growth Stages 2014 2015 2016 2017

Vegetative 44 41 48 46
Reproductive 75 70 81 78
Ripening 94 90 103 110

2.3. Methods

Theoretically, there should have been 36× 3× 4 = 432 samples. However, the spectra data of
nine plots were missing because of a spectroradiometer failure during the 2016 vegetative growth
stage data collection campaign, and another four samples were omitted because of invalid spectral
data. Thus, 419 valid data samples were further analyzed. All single growth stage models were
calibrated on the corresponding growth stage data of the 2014–2016 growing seasons and validated
on the corresponding growth stage data of the 2017 growing season. For the whole growing season
models, they were calibrated on the whole growing season data of the 2014–2016 seasons and validated
in two different ways. For the first way, the whole growing season models were validated by the
whole data of the 2017 growing season. For the second way, the whole growing season models were
validated on each separate growth stage data of the 2017 growing season separately. Thus, in this way,
a whole growing season model has one specific validation result for each single growth. Therefore,
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a fair performance comparison could be made between whole growing season models and single
growth stage models.

Ten selected VIs were used to predict paddy rice LAI separately with nonlinear regression
techniques. Additionally, four multivariate calibration techniques were evaluated, namely, PLSR, SVR,
RF and ANN, on the original reflectance and its first-derivative as predictors separately. Both original
reflectance and first-derivative spectra were normalized by subtracting the mean and dividing by
the standard deviation before model calibration. No feature selection procedure was used to reduce
the spectra dimensions. All the VI models were built on the original resolution spectra, whereas the
multivariate calibration models were built on the 10 nm resolution spectra.

All models were built in the R environment [34]. The PLSR, RF and SVR models were built using
the R packages ‘pls’ [35], ‘randomForest’ [36], and ‘kernlab’ [37], respectively, and the ANN model
was built with the R package ‘keras’ [38] with a TensorFlow backend [39].

2.3.1. Vegetation Indices

Ten VIs that have been widely used for LAI estimation were evaluated (Table 2). DVI [21],
NDVI [19] and SR [20] were selected because they are the earliest and simplest VIs, and their
narrowband versions have great potential to improve the LAI estimation accuracy. The modified soil
adjust vegetation index (MSAVI) [40] and enhanced vegetation index (EVI) [41] were used to represent
the soil-line-adjusted VIs. The wide dynamic range vegetation index (WDRVI) [42] was developed
to linearize the relationship between LAI and NDVI by using weighted coefficients. MCARI2705 [16]
is a newly developed index that takes advantage of the narrowband information of 705 nm and 750
nm. The MERIS (Medium Resolution Imaging Spectrometer) terrestial chlorophyll index (MTCI) [43],
red-edge position (lp) [23] and reflectance at red-edge position (Rp) [23] are VIs that characterize the
red-edge information.

First, the optimal narrowband combinations for DVI, NDVI and SR were separately determined
for each individual growth stage and for the whole growing season. The indices were calculated by
taking all possible two-band pairs and were regressed against LAI on a corresponding calibration
dataset. The band pairs that yielded the highest R2 were selected as the optimal bands to formulate the
corresponding index for predicting paddy rice LAI. Then, the DVI, NDVI and SR with optimal band
combinations (denoted as DVIopt, NDVIopt and SRopt) and the remaining seven indices were used to
build separate LAI estimation models for the corresponding growth stages. The relationship between
VIs and LAI was fitted with an exponential function. The simplified Bear’s Law (Equation (1)) was
used as suggested by previous studies [44]. The parameters VIg, VI∞ and KVI were empirically fitted
by the ‘nlsLM’ function in the R package ’minpack’.

VI = VI∞ + (VIg −VI∞) exp (−KVI × LAI) (1)

Table 2. Vegetation indices evaluated in this study.

Index Formula Cite

DVI ρλ1 − ρλ2 [21]
NDVI (ρλ1 − ρλ2 )/(ρλ1 + ρλ2 ) [19]
SR ρλ1 /ρλ2 [20]
EVI 2.5× (ρ830 − ρ670)/(1 + 6× ρ830 − 7.5× ρ475) [41]
WDRVI (α× ρ830 − ρ670)/(α× ρ830 + ρ670) [42]
MSAVI (ρ830 − ρ670)/(ρ830 + ρ670 + L) [40]
MCARI2705

1.5(2.5(ρ750−ρ705)−1.3(ρ750−ρ550))√
(2ρ750+1)2−(6ρ750−5

√
ρ705)−0.5

[16]

MTCI (ρ754 − ρ709)/(ρ709 − ρ681) [43]
lp red edge position [23]
Rp reflectance at lp [23]

1 ρλ stands for reflectance at band λ nm.; 2 α = 0.1 was used.
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2.3.2. Partial Least Squares Regression

PLSR is a bilinear regression method [45]. It performs component projection by successively
reducing the original input data to a few independent latent variables (LVs) while maximizing
covariability to the response variable of interest and then regressing the latent variables against
the response variable. The component projection operation reduces the dimensionality and eliminates
the multicollinearity of the input data, and reduces noise. The number of LVs controls the model
complexity and is determined by a grid search in this study.

2.3.3. Support Vector Regression

SVR, which has its roots in Vapnik–Chervonenkis (VC) theory as a generalization of support
vector machines (SVM), is characterized by the use of kernel functions, sparse solutions, and VC control
of the margin and the number of support vectors [37,46]. Using an ε tube, which is an ε-insensitive
region around the objective function, SVR reformulates the optimization problem to minimize a convex
ε-insensitive loss function and finds the flattest tube that contains as many training samples as possible.
The objective function was represented by training samples that lie outside the tube’s boundary
(support vectors). The complexity of an SVR model is based on the number of support vectors other
than the dimension of the input data, and thus, this approach is efficient in high-dimensional space
and is still efficient when the number of observations is less than the input dimension. In this study,
the ε-SVR algorithm with a radial basis kernel function (RBF) was used. The kernel parameter σ of
the RBF kernel and regularization parameter C were determined by a grid search. Here, σ defines
how far a training sample can influence, where a large σ means ‘close’ and a small σ means ‘far’.
C defines the trade-off between the smoothness of the objective function and the maximum deviation
allowed. A large C results in selecting more samples as support vectors, and a small C denotes a
smooth objective function.

2.3.4. Random Forests

The RF algorithm is based on the decision tree algorithm and bagging method with an additional
layer of randomness in the bagging process [47]. The RF algorithm is as follows: first, draw a bootstrap
sample ntree times from the original dataset, and each bootstrap sample is used to build a tree; then,
grow an unpruned tree for each bootstrap sample, and only randomly selected mtry predictors are
used for each tree; finally, perform prediction by aggregating the ntree tree prediction result, where the
aggregation strategy is generally the majority of votes for classification and the average for regression.
ntree and mtry are the two key parameters that control the performance and complexity of RF models.
In this study, ntree was set at 500, as suggested by Breiman [47]. mtry was determined by a grid search.

2.3.5. Artificial Neural Networks

ANNs are fully connected neural nets organized into layers [39,48]. ANNs typically consist of one
input layer, zero to multiple hidden layers and one output layer. Every neuron in a layer is connected
to every other neuron in the next layer. The output of the j-th neuron in layer l + 1 can be calculated
by Equation (2), where xl

i denotes the i-th neuron in layer l, wl
ij denotes the weight between the i-th

neuron in layer l and the j-th neuron in layer l + 1, wl+1
bj denotes the bias for the j-th neuron in layer

l + 1, and f denotes the (nonlinear) active function.

xl+1
j = f (∑

i
wl

ijx
l
i + wl+1

bj ) (2)

In this work, a single-hidden-layer neural network was constructed. The number of neurons
in the input layer was set to 205 according to the input feature dimension (205 bands). The number
of neurons in the hidden layer was determined by a grid search. A parametric rectified linear unit
(Equation (3)) was used as the activation function for the hidden layer, where α was learned in the
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model calibration procedure. A linear function y = x was used as the activation function for the output
layer. The weights and bias were initialized by the Glorot normal initializer and regularized by an L1
regularizer. Finally, the ANN model was optimized by the Adam algorithm [49] with a mean square
error loss function.

f (x) =

{
x, if x ≥ 0

αx, otherwise
(3)

2.3.6. Parameter Optimization and Precision Evaluation

The normalized root mean square error (nRMSE) and coefficient of determination (R2) of model
calibration (cross validated) and validation were used to assess and compare the model precision and
robustness. The nRMSE is defined by Equation (4), where y denotes the observed value, ŷ denotes
the predicted value, ymax and ymin donate the maximum and minimum observed value, respectively.
The key parameters (LVs for PLSR, C, σ for SVR, mtry for RF and units for ANN) were determined by a
grid search with a repeated (5 times) 10-fold cross-validation procedure (CV) on the calibration dataset
(Algorithm 1). The parameter (or parameter combination) associated with the lowest nRMSECV was
considered optimal. After the key parameters were determined, the final models were calibrated on
the full calibration dataset and evaluated on the corresponding standalone validation dataset. For the
VI models, the same CV procedure was used to calculate the cross-validated calibration R2

CV and
nRMSECV . The same fold split scheme across different models was used to ensure a fair comparison.
The model with the lowest nRMSE and highest R2 was considered to be optimal.

nRMSE =

√
∑n

i=1 (yi − ŷi)2/n

ymax − ymin
(4)

Algorithm 1: Model parameter optimization algorithm
Data: Calibration dataset

1 define sets of model parameters to evaluate;
2 foreach set of parameters do
3 foreach sampling iteration do
4 foreach fold do
5 Hold out the samples in this fold;
6 Calibrate the model on samples in remaining folds;
7 Predict the hold-out samples and calculate nRMSE and R2 between observed and

predicted values.;
8 end
9 end

10 Calculate nRMSECV with nRMSECV = mean(nRMSE) and R2
CV with R2

CV = mean(R2) ;
11 end
12 Determine the optimal parameter set;
13 Fit the final model with full training data using the optimal parameter set;

3. Results

3.1. Descriptive Analysis of Measured LAI

The descriptive statistics for the measured LAI of the whole dataset and each separate growth
stage are shown in Table 3. For the whole dataset, LAI ranged between 0.08 and 7.35, with a mean
of 2.55 and standard deviation (sd) of 1.63. The measured LAI ranged between 0.08 and 4.12, with a
mean of 1.37 and sd of 0.96 for the vegetative growth stage; ranged between 0.65 and 6.62 with a mean



Remote Sens. 2019, 11, 361 8 of 18

of 2.88 and sd of 1.45 for the reproductive growth stage; as well as ranged between 0.72 and 7.36 with
a mean of 3.33 and sd of 1.69 for the ripening growth stage. The mean and variance of the measured
LAI showed an increasing pattern as the growth stages progressed.

Table 3. Descriptive statistics of measured leaf area index (LAI) for each single growth stage and for
the whole growing season.

Dataset Sample Number Min Max Mean SD

Whole dataset 419 0.08 7.35 2.55 1.63
Vegetative 135 0.08 4.12 1.37 0.96
Reproductive 142 0.65 6.62 2.88 1.45
Ripening 142 0.72 7.35 3.33 1.69

Figure 2 shows the boxplot of the measured LAI. For each single growth stage, the ranges of
measured LAI are comparable between the 2014–2016 growing seasons and the 2017 growing season.

0

2

4

6

Vegetative Reproductive Ripening

LA
I

2014−2016 growing seasons 2017 growing season

Figure 2. Boxplot of measured leaf area index (LAI).

3.2. Vegetation Indices

Figure 3 shows the distribution of the calibration R2 between LAI and DVI, NDVI as well as SR
taking all possible two-band pairs. The band pairs that yielded a higher R2 were generally with one
band in the red-edge region around 750 nm and the other band in the near-infrared (NIR) region, which
was around 830 nm for the whole growing season and the vegetative growth stage, around 1130 nm
for the reproductive growth stage and around 860 nm for the ripening growth stage. The optimal
band pairs for different indices within each specific growth stage and the whole growing season
were generally consistent, with slight differences. The band pairs that yielded the highest R2 are
summarized in Table 4.
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Figure 3. Calibration R2 counterplot for linear regression models built on difference vegetative index
(DVI), normalized difference vegetation index (NDVI) and simple ratio vegetation index (SR) (Table 2)
with all possible two band pair combinations against LAI.

Table 4. Band combinations that yielded the highest R2 to predict paddy rice leaf area index (LAI) of
the difference vegetative index (DVI), normalized difference vegetation index (NDVI) and simple ratio
vegetation index (SR) for whole growing season and each single growth stage.

Dataset
DV Iopt NDV Iopt SRopt

Bands (nm) R2 Bands (nm) R2 Bands (nm) R2

Whole growing season (766, 826) 0.71 (762, 828) 0.65 (762, 828) 0.65
Vegetative (744, 944) 0.82 (752, 826) 0.84 (750, 826) 0.84
Reproductive (736, 1124) 0.71 (740, 1128) 0.64 (744, 1128) 0.64
Ripening (754, 860) 0.70 (750, 860) 0.61 (752, 858) 0.61

After the optimal band combinations were determined, the corresponding DVIopt, NDVIopt

and SRopt and the remaining seven VIs in Table 2 were used to build LAI estimation models for the
whole growing season and for each individual growth stage separately. The calibration (with CV)
and validation nRMSE of the ten VIs are shown in Figure 4. The DVIopt, NDVIopt and SRopt all
yielded lower nRMSE both in model calibration and validation than the remaining seven indices.
However, there is one exception that, the DVIopt for vegetative growth stage yielded slightly higher
validation nRMSE. For the whole growing season, the remaining seven VIs yielded nRMSE more
than 50% in both model calibration and validation, which suggested that these VIs are not suitable
to predict paddy rice LAI across growth stages. For the single growth stage, the lp and WDRVI
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yielded reasonable accuracy (with nRMSE less than 20% both for model calibration and validation)
at the vegetative and reproductive growth stages but not at the ripening growth stage. The MTCI
yielded reasonable accuracy at the vegetative growth stage but not at reproductive or ripening growth
stages. The remaining four VIs (MCARI2re, Rp, RDVI, and MSAVI) were always exhibited relatively
lower accuracy.

Combined Vegetative Reproductive Ripening

35 40 45 50 55 60 10 15 20 25 30 14 16 18 20 22 24 20 25 30 35 40

WDRVI

MSAVI

RDVI

MTCI

Rp

lp

MCARI2re

DVIopt

NDVIopt

SRopt

nRMSE(%)

Calibration(with cv) Validation

Figure 4. Calibration (with cross-validation procedure (CV)) and validation nRMSE of different
vegetation indexes (VIs) for the whole growing season and each single growth stage.

The DVI(766,826), NDVI(752,826), DVI(736,1124) and DVI(754,860) have the top performance
(with lowest or second lowest nRMSE both in model calibration and validation) for the whole growing
season, vegetative, reproductive, and ripening growth stages, respectively. Table 5 shows the validation
nRMSE and R2 of these four indices. Among them, the DVI(766,826) model (for the whole growing
season) was validated by each separate growth stage data of the 2017 growing season, and the
NDVI(752,826), DVI(736,1124) and DVI(754,860) (for vegetative, reproductive and ripening growth stage
respectively) models were validated by the corresponding growth stage data of the 2017 growing
season. Figure 5 shows the relationships between the observed and predicted LAI along the 1:1 line on
the standalone validation dataset of these four top-performing VI models. The single growth stage
models yielded nRMSE values of 14.00%, 15.20% and 20.20%, as well as R2 of 0.79, 0.63 and 0.39,
for the vegetative, reproductive and ripening growth stages, respectively. The validation nRMSE was
comparable with the corresponding cross-validated calibration value (Figure 4). When the whole
growing season model was validated on each single growth stage dataset of the growing season,
it yielded nRMSE values of 18.90%, 17.10% and 29.20%, as well as R2 of 0.67, 0.59 and 0.24, for the
vegetative, reproductive and ripening growth stages, respectively. Comparing the validation nRMSE
of the single growth stage models and the validation nRMSE of the whole growing season model
over the corresponding single growth stage data, the decrease ratios were 25.60%, 10.80% and 30.70%
for the vegetative, reproductive and ripening growth stages, respectively. For the validation R2,
these ratios were 16.71%, 6.73% and 61.54%, respectively. This result suggested that, for the VI method,
building LAI estimation models on separate growth stages could improve the model performance
when compared to building the models on the whole growing season.
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Table 5. The validation nRMSE and R2 of top-performing vegetation index (VI) models for whole
growing season and each separate growth stage. The whole growing season model was validated on
each separate growth stage data of the 2017 growing season.

Validation Dataset Whole Growing Season Model 1 Single Growth Stage Models 2 Differences 3

RMSE R2 nRMSE R2 nRMSE R2

vegetative 18.90 0.67 14.00 0.79 25.60 16.71
reproductive 17.10 0.59 15.20 0.63 10.80 6.73

ripening 29.20 0.24 20.20 0.39 30.70 61.54
1 DVI(766,826) model for the whole growing season. 2 They are models of NDVI(752,826), DVI(736,1124)

and DVI(754,860) for vegetative, reproductive and ripening growth stages, respectively. 3 nRMSEdi f f =

nRMSEwhole−nRMSEsingle
nRMSEcombined

, R2
di f f =

R2
single−R2whole

R2
combined

.

R2 = 0.58
nRMSE = 36.86

R2 = 0.79
nRMSE = 14.03

R2 = 0.63
nRMSE = 15.21

R2 = 0.39
nRMSE = 20.21
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Figure 5. Observed vs. predicted LAI along the 1:1 line on standalone validation dataset of the
best-performing VI models (in Table 5).

3.3. Partial Least Squares Regression and Machine Learning Methods

The calibration (with CV) and validation nRMSE of PLSR and three machine learning
methods—RF, ANN and SVR—on the original spectra and first-derivative spectra for the whole
growing season and each single growth stage are shown in Figure 6. On both original spectra and
first-derivative spectra, the SVR and RF methods clearly showed better performance over the PLSR
and ANN methods with lower calibration and validation nRMSE in most situations. The ANN
models had the highest calibration and validation nRMSE in most situations, which suggested that
the ANN methods are suboptimal for building LAI estimation models. The PLSR models showed
almost identical calibration nRMSE with the corresponding SVR models, but they yielded relatively
lower validation nRMSE compared with the corresponding SVR models. This result suggested that
the PLSR models were also not robust enough. Thus, the ANN and PLSR methods were not considered
for further analysis.

When built on the first-derivative spectra rather than original spectra, the SVR and RF models all
showed a decrease in validation nRMSE for the whole growing season and for each single growth stage.
However, there was one exception of the SVR model at the ripening growth stage. The decrease ratios
were 27.86%, 7.60%, 8.67% and 23.93% for the RF method of the whole growing season, vegetative,
reproductive and ripening growth stages, respectively. For the SVR method, the corresponding
decrease ratios were 19.11%, 28.51%, 5.19% and −11.99%, respectively. This result suggested that the
first-derivative spectra have an advantage over the original spectra for building LAI estimation models.

Therefore, the RF and SVR methods on first-derivative spectra are more suitable for building LAI
estimation models. Table 6 shows the validation results of the RF and SVR models on first-derivative
spectra (RF-D1, SVR-D1). Among them, the RF-D1 and SVR-D1 models of the whole growing season
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(RF-D1-EN, SVR-D1-EN) were validated on each separate growth stage data of the 2017 growing season,
while the RF-D1 and SVR-D1 models of each single growth stage were validated on the corresponding
growth stage data of the 2017 growing season. Figure 7 shows the relationships between the observed
and predicted LAI along the 1:1 line on the standalone validation dataset of these models.

Combined Vegetative Reproductive Ripening

F
irst−

derivative
O

riginal

25 30 35 40 45 50 55 10 15 20 15 20 25 20 40 60 80 100

PLSR

RF

ANN

SVR

PLSR

RF

ANN

SVR

nRMSE(%)

Calibration(with cv) Validation

Figure 6. Calibration (with CV) and validation nRMSE of different multivariate calibration methods.
The whole growing season and single growth stage models built on original and first-derivative spectra
are shown in different panels

Table 6. The validation nRMSE and R2 of random forests (RF) and support vector regression
(SVR) models on first-derivative spectra for the whole growing season and each single growth stage.
The whole growing season models were validated on each separate growth stage data of the 2017
growing season.

Method Validation Dataset Whole Growing Season Model Single Growth Stage Model Difference 1

nRMSE R2 nRMSE R2 nRMSE R2

RF
Vegetative 14.90 0.71 17.80 0.71 −19.52 −1.13

Reproductive 14.10 0.64 15.00 0.63 −6.43 −2.88
Ripening 17.20 0.67 14.90 0.74 13.29 10.78

SVR
Vegetative 22.10 0.70 14.40 0.70 34.66 1.03

Reproductive 19.70 0.55 15.50 0.59 21.18 8.09
Ripening 17.80 0.71 18.80 0.62 −5.58 −12.47

1 nRMSEdi f f =
nRMSEwhole−nRMSEsingle

nRMSEcombined
, R2

di f f =
R2

single−R2whole

R2
combined

.

The RF-D1-VE (single growth stage RF-D1 model of vegetative growth stage) yielded validation
nRMSE and R2 of 17.80% and 0.71. The RF-D1-RP and RF-D1-RI (single growth stage RF-D1 models
of reproductive and ripening growth stages, respectively) models yielded validation nRMSE of 15.00%
and 14.90%, as well as validation R2 of 0.63 and 0.74, respectively. When validated on each separate
single growth data of the year 2017, the RF-D1-EN model yielded nRMSE and R2 of 14.90% and
0.71 for the vegetative growth stage, 14.10% and 0.64 for the reproductive growth stage, as well as
17.20% and 0.67 for the ripening growth stage, respectively. When compared to the single growth
stage specific validation nRMSE of the RF-D1-EN model, the nRMSE of the single growth stage
models (RF-D1-VE, RF-D1-RP and RF-D1-RI ) showed decrease ratios of −19.52%, −6.43% and 13.29%
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for the vegetative, reproductive and ripening growth stages, respectively. The increase ratios of the
validation R2 were −1.13%, −2.88% and 10.78% for the vegetative, reproductive and ripening growth
stages, respectively. This result indicates that building RF-method-based LAI estimation models over
a single growth stage rather than the whole growing season would increase the estimation accuracy
for the ripening growth stage but decrease the estimation accuracy for the vegetative and red-edge
growth stages.

R2 = 0.73
nRMSE = 25.9

R2 = 0.62
nRMSE = 33.35

R2 = 0.71
nRMSE = 17.8

R2 = 0.7
nRMSE = 14.42

R2 = 0.63
nRMSE = 15

R2 = 0.59
nRMSE = 15.53

R2 = 0.74
nRMSE = 14.94

R2 = 0.62
nRMSE = 18.75

SVR, Combined SVR, Vegetative SVR, Reproductive SVR, Ripening

RF, Combined RF, Vegetative RF, Reproductive RF, Ripening
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Figure 7. Observed vs. predicted LAI along the 1:1 line on standalone validation dataset of the random
forests (RF) and support vector regression (SVR) models on first-derivative spectra. ‘Combined’ means
the whole growing season model. ‘Vegetative‘, ‘Reproductive’ and ‘Ripening’ mean the single growth
stage model of the specific growth stages.

The SVR-D1-VE, SVR-D1-RP and SVR-D1-RI models yielded validation nRMSE of 14.40%, 15.50%
and 18.80%, respectively, as well as validation R2 of 0.70, 0.59 and 0.62, respectively. When validated
on each separate single growth data of 2017 growing season, the SVR-D1-EN model yielded nRMSE
and R2 of 22.10% and 0.70 for the vegetative growth stage, 19.70% and 0.55 for the reproductive
growth stage, as well as 17.80% and 0.71 for the ripening growth stage, respectively. When compared
to the single growth stage specific validation nRMSE of the SVR-RF-EN model, the nRMSE of the
single growth stage models (SVR-D1-VE, SVR-D1-RP and SVR-D1-RI) showed decrease ratios of
34.66%, 21.18% and −5.58% for the vegetative, reproductive and ripening growth stages, respectively.
The increase ratios of the validation R2 were 1.03%, 8.09% and−12.47% for the vegetative, reproductive
and ripening growth stages, respectively. This result indicates that building an SVR based LAI
estimation model over a single growth stage rather than over the whole growing season would
increase the estimation accuracy for the vegetative and reproductive growth stages but decrease the
estimation accuracy for the ripening growth stage.

Considering the validation accuracy of the top performance VI models, RF and SVR models
(Tables 5 and 6) together, the DVI(766,826) provided the best paddy rice LAI estimation accuracy for
the vegetative growth stage, and the RF-D1-RI model provided the best paddy rice LAI estimation
accuracy for the ripening growth stage. No whole growing season models or other single growth
stage models could provide better accuracy for these two growth stages. For the reproductive growth
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stage, the single growth VI model of DVI(736,1124), the RF-D1-RP model and the RF-D1-EN model all
provided comparable accuracy. Thus, single growth stage models are recommended to build LAI
estimation models. The VI model of DVI(766,826) and RF-D1-RI model are best options for vegetative
and ripening growth stages, respectively. Considering the low computational cost of the VI method,
the VI model of DVI(736,1124) is the best option for reproductive growth stage.

4. Discussion

The optimal band pairs to formulate narrowband DVI, NDVI and SR were determined within
each single growth stage and for the whole growing season of paddy rice in this study. The result
showed that the optimal band pairs were almost identical within each growth stage or the whole
growing season for these three indices. These band pairs generally have one band in the red-edge
region around 750 nm and the other band in the NIR region, which was around 830 nm for the whole
growing season and vegetative growth stage, around 1130 nm for the reproductive growth stage
and around 860 nm for the ripening growth stage. These three indices with optimized band pairs
showed clearly superior performance to the remaining seven VIs evaluated in this study. Because of
the multiple scattering of light in canopies, the reflectance of NIR bands increases as LAI increases [50].
Furthermore, the importance of red-edge bands for LAI estimation have been demonstrated in previous
studies [22,24,25,51]. These factors may be the reason why simple VIs based on the red-edge and
NIR bands have strong correlations with LAI. Previous studies [22–24,51] showed that the common
broadband red channel center onboard the current generation of earth-orbiting satellites is not the best
choice to calculate the NDVI and also highlighted the importance of red-edge bands. Our results are
consistent with these studies in that all optimal band pairs contain one red-edge band.

The best performance VI model for ripening growth stage provided lower accuracy than the
top performance VI models of other growth stage with validation nRMSE and R2 at 20.21% and 0.39
respectively. A possible reason is that, at this growth stage, the existence of paddy rice panicle adds
additional disturbance to the canopy spectra. Besides, the VIs that only use two spectra bands may be
too simple for capturing the relationship between the canopy spectra and LAI. Furthermore, the VIs
are designed to enhance green vegetation single [23], thus are more correlated with the green LAI.
The SunScan Canopy Analysis System was used to determine field LAI in this study. The SunScan
instrument is known influenced by non-photosynthetic components, and this problem is more obvious
at the reproductive and ripening growth stages. This may additional reduce the goodness-of-fit of the
ripening growth stage VI models. A previous study [52] showed that the LAI value determined by
SunScan instrument is highly correlated with the destructive sample LAI when LAI < 4 for paddy rice.
However, when LAI > 4, compared to the destructive method, this instrument may underestimate the
LAI value. Whether this problem caused the relatively higher estimation error for reproductive and
ripening growth stages will be considered in our future study.

Among the four multivariate calibration techniques evaluated in this study, the RF and SVR
methods showed clearly better performance than the ANN and PLSR methods. The suboptimal
performance of the ANN model may be due to the insufficient model calibration samples such that the
solution may fall into a low local minima. The PLSR models yielded almost comparable accuracy with
the corresponding RF and SVR models but provided a less accurate validation results. These results
suggested that the PLSR models are less robust than the machine learning methods. The excellent
performance of the RF model may be explained by its ’majority vote’ principle that has high tolerance
to outliers.

In this study, the top-performing VI model for the whole growing season provided validation
nRMSE and R2 of 36.86% and 0.58 (Figure 5), respectively, while the RF-D1-EN model provided
validation nRMSE and R2 of 25.9% and 0.73, respectively. These results are consistent with previous
studies in that the machine learning methods appear to be more efficient than the VI methods. However,
when comparisons were made within specific single growth stages, this advantage was found only
at the ripening growth stage. At the vegetative growth stage, the single growth stage VI model
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yielded lower nRMSE and higher R2 than both the single growth stage RF and SVR models. At the
reproductive growth stage, the single growth stage VI model yielded comparable accuracy with the
single growth stage RF model and lower nRMSE and higher R2 than the single growth stage SVR
model. These results suggested that the machine learning methods only show an advantage in the late
growing season when the canopy has a high LAI value, while in the early and middle growing season
when the canopy has a lower LAI value, the VI method is still a reasonable option.

5. Conclusions

The univariate regression method on vegetation indices (VIs), traditional multivariate calibration
method partial least squares regression (PLSR) and modern machine learning methods such as support
vector regression (SVR), random forests (RF), and artificial neural networks (ANN) based on the
original and first-derivative hyperspectral data were evaluated in this study for paddy rice LAI
estimation with a special focus on the effects of growth stage development. All models were built on
the whole growing season and on each separate vegetative, reproductive and ripening growth stage
of paddy rice. The performance comparisons were made on each separate growth stage. Moreover,
the optimal band pairs to calculate narrowband DVI, NDVI and SR were determined separately for
each separate growth stage and the whole growing season.

The results showed that the optimal band pairs for narrowband DVI, NDVI and SR were generally
the same within each growth stage. There was one band in the red-edge region around 750 nm, and the
other band was in the NIR region, which was around 830 nm for the whole growing season and
vegetative growth stage, around 1130 nm for the reproductive growth stage and around 860 nm for the
ripening growth stage. The narrowband DVI, NDVI and SR showed clearly better performance than
the other commonly used VIs. Specifically, DVI766,826, NDVI(752,826), DVI(736,1124) and DVI(754,860)
have the best performance for the whole growing season, vegetative, reproductive and ripening growth
stages, respectively. Among the PLSR and three machine learning methods, the RF and SVR models
yielded more accurate results than the corresponding PLSR and ANN models. For the RF and SVR
methods, the models built on the first-derivative spectra showed advantage over the the corresponding
models built on the original spectra.

Taking both the whole growing season and single growth stage VI, SVR and RF models into
account together, the single growth stage VI model of NDVI(766,826) provided the best paddy rice
LAI estimation accuracy for the vegetative growth stage. The single growth stage RF model on D1
spectra provided the best paddy rice LAI estimation accuracy for the ripening growth stage. For the
reproductive growth stage, the single growth VI model of DVI(736,1124), the single growth stage RF
model on first-derivative spectra and the whole growing season RF model on first-derivative spectra all
provided comparable accuracy. Furthermore, the whole growing season RF model on first-derivative
spectra could proved reasonable accuracy for each single growth stage.
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