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Abstract: Studies of land surface dynamics in heterogeneous landscapes often require satellite images
with a high resolution, both in time and space. However, the design of satellite sensors often inherently
limits the availability of such images. Images with high spatial resolution tend to have relatively low
temporal resolution, and vice versa. Therefore, fusion of the two types of images provides a useful
way to generate data high in both spatial and temporal resolutions. A Bayesian data fusion framework
can produce the target high-resolution image based on a rigorous statistical foundation. However,
existing Bayesian data fusion algorithms, such as STBDF (spatio-temporal Bayesian data fusion) -I and
-II, do not fully incorporate the mixed information contained in low-spatial-resolution pixels, which in
turn might limit their fusion ability in heterogeneous landscapes. To enhance the capability of existing
STBDF models in handling heterogeneous areas, this study proposes two improved Bayesian data
fusion approaches, coined ISTBDF-I and ISTBDF-II, which incorporate an unmixing-based algorithm
into the existing STBDF framework. The performance of the proposed algorithms is visually and
quantitatively compared with STBDF-II using simulated data and real satellite images. Experimental
results show that the proposed algorithms generate improved spatio-temporal-resolution images
over STBDF-II, especially in heterogeneous areas. They shed light on the way to further enhance our
fusion capability.

Keywords: bayesian estimation framework; remote sensing; high spatiotemporal resolution; image
fusion; spatial unmixing; heterogeneous landscape

1. Introduction

Satellites provide spatially continuous observations that are crucial to the monitoring of the earth’s
surface in various fields, including ecology, hydrology, environmental sciences, etc. The high-resolution
information of land surfaces in space and time is of vital importance in many applications. In particular,
satellite observations with high spatial resolution and high frequency of coverage are useful in
characterizing heterogeneous landscapes. However, currently available satellite sensors, limited
by their designs, often need to make tradeoffs between spatial details and revisit frequency. Taking
the widely used Landsat and Moderate Resolution Image Spectroradiometer (MODIS) as a example,
Landsat provides remote sensing images at comparatively high spatial resolution (i.e., 30 m), useful for
characterizing heterogeneous landscapes. However, the use of Landsat may be limited by the relatively
low temporal resolution (i.e., 16 days), especially in frequently cloudy areas. MODIS, on the other hand,
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has a 1- to 2-day revisit period, suitable for more frequent monitoring. Nevertheless, its relatively low
spatial resolution ranging from 250m to 1 km limits its use for detailed characterization of land covers,
especially in heterogeneous landscapes. For simplicity, high spatial and low temporal resolution is
henceforth referred to as “HSLTR”, low spatial and high temporal resolution is henceforth referred to
as “LSHTR”.

Spatio-temporal data fusion techniques facilitate the temporal characterization of heterogeneous
landscapes by offering an efficient integration of images from multiple sources [1]. Recently,
many algorithms have been proposed to produce spatially and temporally high-resolution images.
These fusion approaches can be grouped into four categories: STARFM-based, unmixing-based,
learning-based, and Bayesian-based methods.

One of the pioneering fusion approaches is the spatial and temporal adaptive reflectance fusion
model (STARFM) [2]. This algorithm is suitable for homogeneous surfaces and has been used for
the classification of land surfaces with gradual changes (e.g., phenology changes). Spatial temporal
adaptive algorithm for mapping reflectance changes (STAARCH), developed on the basis of STARFM,
shows improved ability in detecting land cover changes, especially for forest disturbance events [3,4].
Another enhanced version of STARFM (ESTARFM) was proposed to improve the fusion accuracy in
heterogeneous regions [5]. A disadvantage of STAARCH and ESTARFM is that the two methods both
require two pairs of images as input [6], which may limit their use in days that are frequently cloudy
(e.g., rainy season) [7]. Several algorithms using only one image pair as input have been developed [8]
and shown to outperform STARFM in detecting land-cover changes [9,10]. In addition, ESTARFM
assumes that the change of surface reflectance follows a constant rate. This problem is also found in
the spatial and temporal non-local, filter-based fusion model (STNLFFM) [11], which was especially
developed for heterogeneous landscapes and is shown to have improved performance over STARFM
and ESTARFM.

The second class of fusion approaches are unmixing-based methods. Spectral unmixing is the
process of decomposing the spectrum of a mixed pixel to a combination of the spectra of different pure
endmembers. The percentage of each endmember in the mixed pixel is indicated by the corresponding
abundance [12,13]. In the case of unmixing-based spatio-temporal fusion, the number of endmembers
and their corresponding abundances are derived from the classification map of HSLTR images and
the spectral signatures of the endmembers are unmixed from the LSHTR images. Zhukov et al. [14]
were perhaps one of the first to develop the unmixing-based algorithm for satellite image fusion.
The linear unmixing method with constraints has then been applied to constrain the reflectance
values in spatio-temporal fusion [15–18]. The main advantage of the unmixing-based methods is their
flexibility in dealing with the spectral difference between HSLTR and LSHTR images [19]. However,
they may not capture the intra-class spatial variability in a local or entire region and may also lead
to unrealistic endmember spectra. To overcome the limitations and to increase the intra-class spatial
variability, several improved algorithms with respect to the traditional unmixing method have recently
been developed to get better endmember spectra by employing different clustering methods or by
unmixing the LSHTR images on both the input and target dates [20–26].

Another class of methods are learning-based algorithms. Based on the training of the dictionary
pair to characterize the similarity between the HSLTR and LSHTR images, a sparse-representation-
based spatio-temporal reflectance fusion model (SPSTFM) was developed to introduce a general image
super-resolution method into the spatio-temporal fusion of remotely sensed images [27]. This algorithm
attempts to capture land cover and phenology changes. Although it can improve the prediction of
pixels with land-cover changes, they do not accurately maintain the shapes of objects, especially when
the scale difference between HSLTR and LSHTR images is large [21]. Recently, several methods have
been developed to address the limitation of assumptions made in dictionary learning and sparse
coding [28–30].

Bayesian estimation methods have aroused great interest in various fields, especially in
image processing. For example, Bayesian methods have been widely applied to perform
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image super-resolution to obtain a single high-spatial-resolution image by combining a set of
low-spatial-resolution images of the same scene [31–34]. They have also been employed in multispectral
or hyperspectral image fusion to optimally weigh the spatial and spectral information [35–38].
However, there are only a few studies on the use of the Bayesian theory for the spatio-temporal
fusion of satellite data [39–41]. In those studies, linear regression is usually assumed to be able to
reflect temporal dynamics. Nevertheless, in reality, there may even be no regression-like trends in
some situations. Instead of the regression method, Xue et al. [42] proposed a Bayesian data fusion
approach in a more flexible way that capitalizes on the advantage of multivariate arguments, including
the joint distribution that embodies the covariate information, in expressing implicitly the change
of reflectance.

Some studies have demonstrated that the aforementioned four approaches can improve the
spatial and temporal resolution of remotely sensed images in specific applications (e.g., vegetation
indices) [3,43–45]. Nevertheless, the applicability of each is limited to a certain extent because of the
decrease in their accuracy in heterogeneous regions, their inability to detect rapid land-cover changes,
or the requirement of the number of HSLTR images. For example, a key assumption of STARFM is
the existence of homogeneous LSHTR pixels within the search window, which may not hold over
heterogeneous landscapes [46]. ESTARFM requires at least two HSLTR images as inputs, which
may limit its applicability in areas with frequent cloudy days [46]. The unmixing-based approaches
emphasize the LSHTR image at the target date, which may overlook the temporal changes and
result in LSHTR-like images without the full use of spatial heterogeneity of the HSLTR image in the
input [47]. Recently, a number of synthetic approaches have been developed to combine the strengths
of the unmixing-based algorithms and STARFM, or other techniques, to model non-linear temporal
variability and to extract spatial details and variability [21,47–51]. These ensemble approaches tend to
produce better fusion results than any single algorithm.

In this paper, we propose two approaches that integrate Bayesian methods and unmixing-based
methods to capitalize on the strengths of both. The advantages of the Bayesian methods are in their
flexibility in employing various statistical estimation tools for the fusion process and their ability in
capturing uncertainties in a probabilistic and statistical manner. The Bayesian data fusion approach
in Xue et al. [42] treats the fusion problem as an estimation problem in which the fused image is
estimated by a first-order observational model, and then the correlation and temporal evolution
information from the image time series are combined in the form of a joint distribution. This method
produces comparable or even better results than STARFM and ESTARFM based on their experimental
studies [43]. However, due to the difficulty in deriving the theoretical expression of the real point
spread function (PSF) for images from different sensors, an approximate average-weighted matrix
for the PSF in the first-order observational model is employed. In addition, the mean spectra of the
joint distribution are estimated by direct sampling, which may depart from the real situations. These
methods may limit the effectiveness of the model, especially over heterogeneous areas. To improve
the model, we develop here two improved Bayesian data fusion approaches. They are expected to
fully extract useful information from LSHTR pixels with mixed land covers through the help of the
unmixing-based algorithms rather than through direct averaging or resampling. The main objectives
of this study are: (1) to improve the performance of the current Bayesian data fusion methods in
more complex and heterogeneous regions via the incorporation of an unmixing-based algorithm,
(2) to conceptually and experimentally test and compare the proposed approaches with the previous
Bayesian data fusion method using simulated data and real-life Landsat and MODIS images, and
(3) to show the robustness of the proposed algorithms through sensitivity analysis on the impact of the
parameters. To fulfill the objectives, the proposed approaches predict the HSLTR image at the target
date using the LSHTR image at the target date and two pairs of HSLTR and LSHTR images acquired at
the nearest dates before and after the target date. Experiments with both simulated and real satellite
images will be performed.
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In the remainder of this paper, we first give a detailed description of the theoretical basis of the
two improved Bayesian data fusion approaches in Section 2. The experimental design and analysis
results are discussed in Sections 3 and 4, respectively. We then conclude our discussion in Section 5.

2. Methodology

2.1. Spatio-Temporal Bayesian Data Fusion Method (STBDF)

The Bayesian data fusion method (STBDF -II) proposed in Xue et al. [42] is employed in this
study. In Xue et al. [42], the algorithm is implemented via the following three steps. First, the linear
observational model is employed to establish the relationship between the LSHTR and HSLTR images
at the target date:

y(t0) = Wz(t0) + e(t0) (1)

where y(t0) is the LSHTR image at time t0, z(t0) is the corresponding HSLTR image to be predicted,
and e(t0) is the noise that is assumed to be a zero-mean Gaussian random vector with a covariance
matrix Ce(t0) , and W is approximated as the rectangular detector model in which each LSHTR pixel
is assumed to be the average of all the HSLTR pixels within it [52]. Then, the conditional probability
density function is derived as:

p(y(t0)|z(t0)) =
1√

(2π)MK
∣∣∣Ce(t0)

∣∣∣ exp{−1
2
(y(t0) −Wz(t0))

T
C−1

e(t0)
(y(t0) −Wz(t0))} (2)

Second, a multivariate joint Gaussian distribution is used to model the temporal changes of the
HSLTR images and their correlation information. Then, the conditional probability density function is
also Gaussian, which can be expressed as:

p(z(t0)
∣∣∣x(t1) , . . . , x(ts)) = p(z(t0) |X ) =

1√
(2π)NK

∣∣∣Cz(t0)|X

∣∣∣ exp{−1
2
(z(t0) − µz(t0)|X)

T
C−1

z(t0)|X
(z(t0) − µz(t0)|X)} (3)

where µz(t0)|X is the conditional expectation of z(t0) given the input HSLTR-image time series X =

[(x(t1))
T

, . . . , (x(ts))
T
]
T

, and Cz(t0)|X is the conditional covariance matrix of z(t0) given X. They can be
calculated using the joint statistics:

µz(t0)|X = E{z(t0)}+ Cz(t0),XC−1
X,X(X− E{X}) (4)

Cz(t0)|X = Cz(t0),z(t0) −Cz(t0),XC−1
X,XCT

z(t0),X
(5)

where E{X} is the mean of X and E{z(t0)} is the mean of z(t0), which can be estimated by the bilinear
interpolation of the LSHTR images together with the high-pass frequencies of the HSLTR images
correspondingly. The matrices CX,X, Cz(t0),X, and Cz(t0),z(t0) are the cross-covariance matrices, which
can be predicted from the joint covariance of different classes in the LSHTR images.

The last step is the Maximum A Posterior (MAP) estimation. The HSLTR image z(t0) is derived by
maximizing its posterior probability given X and y(t0). It can be given as:

^
z
(t0)

= argmax
z(t0)

p(z(t0)|y(t0), X) = argmax
z(t0)

p(y(t0)|z(t0)) · p(z(t0)|X) (6)

Substituting (2) and (3) into (6), the optimal estimator of z(t0) is given by:

^
z
(t0)

= µz(t0)|X + Cz(t0)|XWT[WCz(t0)|XWT + Ce(t0) ]
−1

[y(t0) −Wµz(t0)|X] (7)
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For a more detailed description of the STBDF-I and -II, please refer to Xue et al. [42].

2.2. Two Improved Bayesian Data Fusion Approaches

In heterogeneous areas, pixels in the LSHTR images can contain highly mixed land-covers.
In most cases, the proportions of land-covers within one LSHTR pixel are different. Under this
situation, the STBDF-I and -II only employ the equal-weight matrix in the linear observational model
and resamples the LSHTR image to obtain the mean estimation of the HSLTR image. This may be
inappropriate and may lead to inaccurate results because they may overlook spatial details in the
LSHTR images. To better utilize the mixed spatial information in the LSHTR images, unmixing-based
algorithms can be instrumental. However, using only the unmixing-based algorithm may result in the
homogeneous spot in the fused images because of the average reflectance of one class in the local or
entire region. Therefore, in this study, we propose two improved Bayesian data fusion approaches
to rectify the shortcomings of STBDF-I and -II by introducing an unmixing-based algorithm to the
estimation procedure depicted in Figure 1.

Figure 1. Theoretical workflow of the proposed ISTBDF-I (a) and ISTBDF-II (b).

2.2.1. Spatial and Temporal Reflectance Unmixing Model (STRUM)

Unmixing-based spatio-temporal fusion can be summarized in four steps: (1) perform clustering
on the HSLTR images to generate a classification map at high spatial resolution and define the
endmembers, (2) derive the abundance of each endmember for each LSHTR pixel, (3) unmix the
LSHTR image by using a moving window, and (4) assign the endmember spectra of each class to the
HSLTR image. Two important problems arise from such an unmixing approach: one is the collinearity
problem and the other is the plausible production of unrealistic spectra. A number of strategies
have been proposed to alleviate these two problems [16–22,25,47,50,53,54]. Among them, STRUM is
an effective approach that was recently proposed [50]. In that study, the first problem is solved by
discarding the endmembers with proportions lower than 1% in at least one of the LSHTR pixels of the
moving window. This has been shown to be able to reduce the residual error. The second problem is
solved by introducing the Bayesian estimation theory with the ability to incorporate the prior spectra
information. The prior spectra can be selected from the LSHTR images. Because of these strengths,
STRUM is employed in the current study.

2.2.2. Improved Spatio-Temporal Bayesian Data Fusion Method I (ISTBDF-I)

In STBDF-I and -II [42], the weighted matrix W in the linear observational model is simply taken
as an equal-weight matrix, which means each LSHTR pixel in y(t0) is the average of all HSLTR pixels
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z(t0) within it. Although this may work well in some situations, it is actually a rough estimation that
should comprise at least two parts: one image filtering matrix representing the blur PSF and one image
down-sampling matrix. However, it is difficult to obtain the theoretical expression of W because it may
vary among different sensor images. Thus, the first approach is to employ the unmixing method to
downscale LSHTR pixels and derive the mean spectral signature of endmembers, which will be treated
as prior spectra. To make it more suitable for heterogeneous landscapes, the evolutionary temporal
information expressed in the joint Gaussian distribution is combined with the prior information under
the Bayesian framework to avoid the homogeneous spot in the unmixing-based algorithms.

1. Prior Distribution

To better utilize the spatial information in y(t0), the pixels in y(t0) are unmixed to get the mean
spectra of each class assigned as the prior mean

~
µz(t0) of pixels in the HSLTR image z(t0). The unmixing

is performed by solving the linear mixing model in the n-by-n moving window with size w for the
LSHTR image:

y(t0) = Vs(t0) + e(t0) (8)

where V is the abundance map derived from the classification map with K clusters of HSLTR images,
and s(t0) are the spectral values of the endmembers in z(t0). To avoid having unrealistic values of the
endmembers, s(t0) is assumed to follow a prior Gaussian distribution with mean µs(t0) and covariance
matrix Cs(t0) . Its probability density function is:

p(s(t0)) =
1√

(2π)NK
∣∣∣Cs(t0)

∣∣∣ exp{−1
2
(s(t0) − µs(t0))

T
C−1

s(t0)
(s(t0) − µs(t0))} (9)

The term e(t0) is the observational error introduced during the acquisition of the LSHTR image,
which is assumed to be a Gaussian random vector with zero mean and covariance matrix Ce(t0) , i.e.,

p(e(t0)) =
1√

(2π)MK
∣∣∣Ce(t0)

∣∣∣ exp{−1
2

e(t0)TC−1
e(t0)

e(t0)} (10)

Then, we derive:

p(y(t0)|s(t0)) =
1√

(2π)MK
∣∣∣Ce(t0)

∣∣∣ exp{−1
2
(y(t0) −Vs(t0))

T
C−1

e(t0)
(y(t0) −Vs(t0))} (11)

Based on the Bayes rule, the posterior distribution p(s(t0)
∣∣∣y(t0)) also follows a Gaussian

distribution, where the posterior mean can be derived as the MAP estimator of the endmember
spectra:

^
s
(t0)

= [VTC−1
e(t0)

V + C−1
s(t0)

]
−1

[VTC−1
e(t0)

y(t0) + C−1
s(t0)

µs(t0) ] (12)

In Equation (12), µs(t0) is selected among the LSHTR pixels of the moving window with the
highest abundance levels for each endmember. For simplicity, we define Ce(t0) and Cs(t0) as spherical
covariance matrices with variances σ2

e(t0)
and σ2

s(t0)
, respectively, which are free parameters that can be

used to control the relative importance of the prior endmember spectra and the unmixed endmember
spectra from the LSHTR image. The prior covariance matrix C̃z(t0) of pixels in z(t0) is used to balance
the effectiveness of information from the prior part and the joint distribution part together with
the joint covariance matrix. It is similarly defined as Ce(t0) and Cs(t0) with variance σ̃2

z(t0)
. For each

endmember in the unmixing procedure, if there are more than 80% pixels within a window with
abundance levels smaller than 0.01, we will discard it for the unmixing only in this window, while in
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Gevaert and García-Haro [50] they discarded endmembers with abundance levels not exceeding 0.1
(0.05 in Amorós-López et al. [22]) in at least one neighboring LSHTR pixel. As a result, the value of
the LSHTR pixel with the largest abundance level for the discarded endmember is used to replace the
spectra of the discarded class endmember in the central LSHTR pixel of each moving window when

the posterior mean
^
s
(t0)

of the endmember spectra is designed. Finally, the prior mean
~
µz(t0) of z(t0) is

generated based on the classification map.

2. Joint Distribution

In addition to the prior information obtained from the LSHTR image at the target date,
the multivariate joint Gaussian distribution is employed to model the time dependency and evolution
of pixels in the HSLTR images, that is, X and z(t0) are jointly Gaussian-distributed. In contrast to the
STBDF-I and -II [42], here we generate the conditional probability density function of X given z(t0)

alternatively in the form of p(X
∣∣∣z(t0) ), which is also a Gaussian distribution:

p(x(t1), . . . , x(ts)
∣∣∣z(t0) ) = p(X

∣∣∣z(t0) ) =
1√

(2π)NK
∣∣∣CX|z(t0)

∣∣∣ exp{− 1
2
(z(t0) − µX|z(t0) )

T
C−1

X|z(t0)
(z(t0) − µX|z(t0) )} (13)

and
µX|z(t0) = E{X}+ CX,z(t0)C

−1
z(t0),z(t0)

(z(t0) − E{z(t0)}) (14)

CX|z(t0) = CX,X −CX,z(t0)C
−1
z(t0),z(t0)

CT
X,z(t0)

(15)

where E{X} and E
{

z(t0)
}

are the means of X and z(t0), respectively, and these matrices CX,X, CX,z(t0) ,
and Cz(t0),z(t0) are the cross-covariance matrices of the HSLTR images, which can be similarly estimated

according to Xue et al. [42]. Denote A = CX,z(t0)C
−1
z(t0),z(t0)

and B= E{X} − CX,z(t0)C
−1
z(t0),z(t0)

E{z(t0)},
then:

µX|z(t0) = Az(t0) + B (16)

CX|z(t0) = CX,X −ACT
X,z(t0)

(17)

3. MAP Estimation

In this study, we need to provide another form of the objective function of the MAP estimation
based on the Bayes rule because the linear mixing model gives the relationship of pixels in y(t0) and
the prior spectral signature for each endmember of z(t0), which are not the pixel values in z(t0). This is
different from the format of a joint distribution, which deals with the relationship of pixels directly.
Therefore, the objective function takes on the following expression:

^
z
(t0)

= argmax
z(t0)

p(z(t0)|y(t0), X) = argmax
z(t0)

p(X|z(t0)) · p(z(t0)|y(t0)) (18)

Finally, the solution is obtained according to the Bayes’ theorem [55]:

^
z
(t0)

= [C̃
−1
z(t0) + ATC−1

X|z(t0)
A]
−1

[C̃
−1
z(t0)

~
µz(t0) + ATC−1

X|z(t0)
(X− B)] (19)

^
z
(t0)

=
~
µz(t0) + C̃z(t0)A

T[AC̃z(t0)A
T + CX|z(t0) ]

−1
[X− B−A

~
µz(t0) ] (20)

where
µX|z(t0) = [µT

X1|z
(t0)
1

,µT
X2|z

(t0)
2

, . . . ,µT
XN |z

(t0)
N

]
T

(21)
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CX|z(t0) =



C
X1|z

(t0)
1

0 · · · 0

0 C
X2|z

(t0)
2

...

...
. . . 0

0 · · · 0 C
XN |z

(t0)
N


(22)

The pixels at different locations in the HSLTR image to be predicted are independently estimated
given the before-and-after images in the time-series. Thus, in ISTBDF-I, the conditional mean vector
µz(t0)|X and covariance matrix Cz(t0)|X can be estimated for each individual pixel as:

µ
Xn |z

(t0)
n

= E{Xn}+ C
Xn ,z

(t0)
n

C−1

z
(t0)
n ,z

(t0)
n

(z(t0)
n − E{z(t0)

n }) = Anz(t0)
n + Bn (23)

C
Xn |z

(t0)
n

= CXn ,Xn −C
Xn ,z

(t0)
n

C−1

z
(t0)
n ,z

(t0)
n

CT
Xn ,z

(t0)
n

= CXn ,Xn −AnCT
Xn ,z

(t0)
n

(24)

where An = C
Xn ,z

(t0)
n

C−1

z
(t0)
n ,z

(t0)
n

,Bn= E{Xn} − C
Xn ,z

(t0)
n

C−1

z
(t0)
n ,z

(t0)
n

E{z(t0)
n } and Xn =

[(x(t1)
n )

T
, (x(t2)

n )
T

, . . . , (x(tS)
n )

T
]
T

, n = 1, . . . , N.

2.2.3. Improved Spatio-Temporal Bayesian Data Fusion Method II (ISTBDF-II)

In STBDF-I and -II [42], the mean vector of the multivariate joint Gaussian distribution, which
is used to measure the correlation and change tendency of the HSLTR images, is estimated by
combining the bilinear interpolation of the corresponding LSHTR images to provide global fluctuations
together with the high-pass frequencies of the nearest high-resolution images to account for the local
spatial details. The global pattern of the HSLTR image on the prediction date is approximated by
interpolating the LSHTR image at the same time, which may lead to a smooth estimation and overlook
the information in the mixed pixels of the LSHTR image when the study region is complex and
heterogeneous. Even though the local details obtained from the HSLTR images before-and-after the
image at the target date are introduced to replace the unknown spatial details of the image to be
predicted, they are not the same as an extension, which depends on temporal changes. Thus, to
improve the performance of the existing Bayesian method in more complex heterogeneous areas, our
second approach is developed by incorporating the pixel unmixing algorithm to estimate the mean
vector of the joint distribution rather than by resampling with high frequencies. This is the second
contribution of our proposed method in this study. Similar to STBDF-I and -II [42], the MAP estimator
of the HSLTR image at the target date can be expressed as:

^
z
(t0)

= µz(t0)|X + Cz(t0)|XWT[WCz(t0)|XWT + Ce(t0) ]
−1

[y(t0) −Wµz(t0)|X] (25)

where
µz(t0)|X = E{z(t0)}+ Cz(t0),XC−1

X,X(X− E{X}) (26)

Cz(t0)|X = Cz(t0), z(t0) −Cz(t0),XC−1
X,XCT

z(t0),X
(27)

The aforementioned µs(t0) obtained by the unmixing algorithm in Equation (12) is used to estimate
the mean vectors E{z(t0)} in Equation (26), and E{X} is estimated in the same way. The covariance
matrix Cz(t0)|X is similarly estimated as that in STBDF-I and -II. In addition to the joint distribution,
the other parts that are the first-order observational model and the objective MAP function remain
unchanged in ISTBDF-II.
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3. Experimental Tests

We first describe the data, simulated and real-life satellite data, in our experiments. Similar to
STBDF-I and -II, ISTBDF-I and -II are able to work on one pair of HSLTR and LSHTR images as inputs.
Here in this study we used two pairs of images. Specifically, the algorithms predict the HSLTR images
on the target date using the LSHTR image of the target date and two pairs of HSLTR and LSHTR
images acquired at the nearest dates before and after the target date.

We then introduce the metrics used to quantitatively evaluate the performance of our methods in
comparison with STBDF-I and -II. We only need to compare with STBDF-II because it has been shown
to perform better than the other methods in Xue et al. [42].

3.1. Data and Experimental Design

The two proposed algorithms ISTBDF-I and -II were tested on both simulated and real-life
satellite images. For illustration, simulated data were used to avoid the interference of radiometric
and geometric inconsistencies between the HSLTR and LSHTR images obtained from satellite sensors.
ISTBDF-I and -II are developed to produce improved fusion results over heterogeneous areas in which
pixels in the LSHTR images often contain mixed land covers. It was expected that the improvement
of ISTBDF-I and -II over STBDF-II becomes substantial as the heterogeneity of the target landscape
increases. Given this hypothesis, three cases with increasing heterogeneity were designed.

In Simulated Experiment I, a water pool (circle) was placed in the middle of a vegetated land,
as shown in Figure 2. This case contains three subcases, all with fixed shapes for water and vegetation
covers. In the three subcases, we assumed that the reflectance of water remained unchanged over
the observation period. Table 1 gives the phenology dynamics, the reflectance of vegetation changed
over time but at different rates in the three subcases. Most of the LSHTR pixels in Experiment I were
homogeneous and the heterogeneous pixels were distributed mainly around the edge of the water pool.
The HSLTR images in the three subcases had 150 × 150 pixels. The reflectance value for each pixel
was filled according to its land cover type and timing, as shown in Table 1. It should be noted that the
reflectance changed over time. For example, the HSLTR images for subcase 1 are shown in Figure 2a–c.
A stochastic perturbation was then added to the images using random values generated by a Gaussian
distribution with mean 0 and standard deviation 0.001. The images were then downscaled to a lower
resolution of 10 × 10 pixels. Figure 2d–f presents LSHTR images in subcase 1 as an example.

Figure 2. (a–c) Simulated HSLTR images for times t0, t1, and t2, respectively; and (d–f) LSHTR images
for times t0, t1, and t2, respectively.

Simulated Experiment II was constructed in a fashion similar to that of Experiment I except that a
soil cover was added to increase the heterogeneity of the landscape. The reflectance of the water body
(small circle) and the soil (surrounding) were assumed to remain unchanged over the observation
period, while the reflectance of vegetation (big circle) varied at different rates. The reflectance value
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for each land cover type at different points in time are shown in Table 2. Their shapes were kept
unchanged. Figure 3 shows subcase 1 as an example.

Table 1. Temporal Changes of the Reflectance for Three Simulated Subcases in Experiment I.

Subcase 1 Subcase 2 Subcase 3

Water Vegetation Water Vegetation Water Vegetation

t0 0.01 0.4 0.03 0.02 0.06 0.2

t1 0.01 0.25 0.03 0.15 0.06 0.15

t2 0.01 0.4 0.03 0.35 0.06 0.1

Table 2. Temporal Changes of Reflectance for Three Simulated Subcases in Experiment II.

Subcase 1 Subcase 2 Subcase 3

Soil Water Vegetation Soil Water Vegetation Soil Water Vegetation

t0 0.3 0.01 0.4 0.2 0.03 0.02 0.15 0.06 0.2

t1 0.3 0.01 0.25 0.2 0.03 0.15 0.15 0.06 0.15

t2 0.3 0.01 0.4 0.2 0.03 0.35 0.15 0.06 0.1

Figure 3. (a–c) Simulated HSLTR images for times t0, t1, and t2, respectively; (d–f) LSHTR images for
times t0, t1, and t2, respectively.

To increase the heterogeneity and to be close to real cases, Simulated Experiment III employed
images generated from satellite images. Specifically, we used real Landsat data as the HSLTR
images. The LSHTR images were simulated by aggregating pixels in the Landsat images, termed
simulated-LSHTR images. This way of constructing experiments was similar to most studies on
the spatio-temporal fusion of satellite images [2,5]. To match our motivation, a heterogeneous
landscape that covered an area of 10 km × 10 km in southern New South Wales, Australia (145.0674◦E,
34.0034◦S) was used in this study [46]. For the study area, we acquired Landsat images on three
dates: 3 December 2001, 4 January 2002, and 11 January 2002. Each Landsat image contains 200 ×
200 pixels with a 25-m resolution that were extracted from the original image. We focus on NIR, red,
and green bands. The dominant land covers of the study area are green crops, including irrigated rice
croplands, agricultural drylands, and woodlands. The parcels are generally small with irregular shapes,
highlighting the heterogeneity of the landscape. Compared to December 3, 2001, it can be observed that
the phenology on 4 and 11 January 2002, are closer to each other. Examining the temporal dynamics,
we can see that the phenology of irrigated croplands changed over a single summer growing season,
while the surrounding drylands and woodlands were less variable throughout [46]. The NIR–red–green
composites of the subset of Landsat images and the corresponding simulated-LSHTR images are shown
in Figure 4.
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Figure 4. NIR–red–green composites of the Landsat imagery (top row) and the simulated-LSHTR
imagery (bottom row) taken on (a), (d) 3 December 2001; (b), (e) 4 January 2002; and (c), (f) 11
January 2002.

In addition to the three simulated experiments, we conducted a real-case experiment using
satellite images. We used the same set of Landsat images as Simulated Experiment III. However,
we employed a larger subset of 400 × 400 pixels extracted from the full images. Furthermore, for
LSHTR images, we used real MODIS images containing 20 × 20 pixels with a 500-m resolution instead
of the simulated ones from Landsat images. The NIR–red–green composites of Landsat and MODIS
images for real-case experiments are shown in Figure 5.

Figure 5. NIR–red–green composites of the Landsat imagery (top row) and MODIS imagery (bottom
row) taken on (a), (d) December 3, 2001; (b), (e) 4 January 2002; and (c), (f) 11 January 2002 [46].
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3.2. Metrics for Model Assessment

In addition to the direct interpretation of the fusion quality through visual comparison,
five quantitative metrics were employed to evaluate the performance of the proposed ISTBDF-I
and -II together with the original STBDF-II. The absolute average difference (AAD) was used to
measure the overall bias of the fused image. The root mean square error (RMSE) was employed
to measure the difference between the fused and reference image. The peak signal-to-noise ratio
(PSNR) was adopted to evaluate the spatial reconstruction quality of the fused image. The correlation
coefficient (CC) was used to measure the linear relationship between the fused and reference images.
The universal image quality index (UIQI) was employed to model the image distortion in three aspects:
loss of correlation, luminance distortion, and contrast distortion [56]. Furthermore, the Erreur Relative
Global Adimensionnelle de Synthèse (ERGAS) was employed to measure the similarity between the
fused and the reference image by combining all three bands together [47,50].

4. Experimental Results and Interpretations

In this section, our proposed fusion algorithms ISTBDF-I and -II are compared with STBDF-II
using the aforementioned simulated images and real-life satellite images as inputs. The fused HSLTR
images from the three fusion methods are visually compared to the reference image. The quantitative
assessment is also made using the metrics introduced in Section 3.2.

4.1. Experiments with Simulated Images

For subcase 1 in Simulated Experiment I, the high-resolution images at t0 (Figure 2a) and t2

(Figure 2c), and LSHTR images at t0, t1, and t2 (Figure 2d–f) were fused to generate the HSLTR image
at t1. Fused images (Figure 6b–d) obtained by all three algorithms are similar to the reference image
(Figure 6a), which is the same for the other two subcases of the experiment. As shown in Table 3,
they also exhibit relatively good performance from the quantitative perspective. In terms of all metrics
used, ISTBDF-I and -II outperform STBDF-II in all three subcases while ISTBDF-I exhibits a slightly
better skill than ISTBDF-II. It should be pointed out that the improvement of the two proposed methods
over STBDF-II is not substantial, which may be due to the homogeneity over most areas.

Figure 6. The (a) reference image at t1 and its predictions using (b) STBDF-II, (c) ISTBDF-I, and
(d) ISTBDF-II for subcase 1 in Simulated Experiment I.

Table 3. Quantitative Metrics of the Fusion Results of Simulated Experiment I.

AAD RMSE PSNR

Subcase STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I
(10-4) ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II

1 0.0019 0.0008 0.0009 0.0067 9.9288 0.0011 31.5955 48.1588 47.1330

2 0.0011 0.0008 0.0009 0.0019 9.9287 0.0011 37.9822 43.8126 43.0206

3 0.0010 0.0008 0.0010 0.0012 9.9290 0.0012 42.0637 43.8123 42.0265

CC UIQI ERGAS

Subcase STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II

1 0.9979 1.0000 0.9999 0.9978 1.0000 0.9999 0.2269 0.0337 0.0379

2 0.9993 0.9998 0.9998 0.9992 0.9998 0.9998 0.1051 0.0537 0.0589

3 0.9995 0.9996 0.9995 0.9995 0.9996 0.9995 0.0623 0.0510 0.0626
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Similar to Simulated Experiment I, the HSLTR image at time t1 for the three subcases of Simulated
Experiment II were predicted. Furthermore, subcase 1 was taken as an illustration, as shown in
Figure 7b–d. Through visual comparison of the fused images obtained using the three algorithms
with the reference image, it is clear that they all capture the spatial details of vegetation phenology
changes, implying that all three algorithms can generally take advantage of the temporal information
in the LSHTR images to generate the target HSLTR image. ISTBDF-I and -II produce images with
clearer boundaries and sharper features between water, soil, and vegetation (Figure 7c,d). Meanwhile
the image predicted by STBDF-II have the “LSHTR-image boundary” effect and a few gray patches
around them (Figure 7b), which is not observed in the reference image (Figure 7a). This may be caused
by the large difference in values of the vegetation reflectances between the image at the target date
(0.25) and the input images before and after (0.4). Another reason is that the reflectance of the LSHTR
pixels varies widely from their surrounding LSHTR pixels and the resampled data or the equal-weight
matrix used in STBDF-II method leads to the uniform spectral reflectance within the LSHTR pixels.
This example highlights the importance of extracting adequate information from mixed LSHTR pixels.

Quantitative comparisons, shown in Table 4, are consistent with the visual comparisons. These
metrics indicate that ISTBDF-I and -II provide more accurate predictions than STBDF-II, while
ISTBDF-II exhibits the highest prediction capability with the smallest AAD, RMSE, and ERGAS,
and the highest PSNR, CC, and UIQI. The improvement of ISTBDF-I and -II over STBDF-II generally
becomes larger as the heterogeneity of the landscape increases from Experiment I to II. For instance,
in terms of ERGAS, the accuracy of ISTBDF-II over STBDF-II increases by 83%, 44%, and 0% for the
three subcases in Experiment I. Meanwhile this increase grows to 89%, 59%, and 52% as it comes
to Experiment II. These results from Experiments I and II are consistent with our hypothesis that
ISTBDF-I and -II have the advantage over STBDF-II in dealing with heterogeneous landscapes.

Figure 7. The (a) reference image at t1 and its predictions using (b) STBDF-II, (c) ISTBDF-I, and
(d) ISTBDF-II for subcase 1 in Simulated Experiment II.

Table 4. Quantitative Metrics of the Fusion Results in Simulated Experiment II.

AAD RMSE PSNR

Subcase STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II

1 0.0052 0.0023 0.0012 0.0134 0.0031 0.0015 27.1189 39.9119 46.1953

2 0.0014 0.0017 0.0011 0.0032 0.0022 0.0013 35.9727 39.5011 43.6164

3 0.0075 0.0079 0.0057 0.0178 0.0149 0.0086 18.7488 20.3180 25.0782

CC UIQI ERGAS

Subcase STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II

1 0.9827 0.9994 0.9998 0.9813 0.9994 0.9998 0.3222 0.0739 0.0358

2 0.9969 0.9992 0.9995 0.9968 0.9991 0.9995 0.1176 0.0783 0.0488

3 0.9228 0.9502 0.9502 0.7856 0.8498 0.9146 0.9860 0.8231 0.4758

For Simulated Experiment III, the Landsat image for 4 January 2002 (Figure 4b) was predicted
by fusing two image-pairs from December 3, 2001 (Figure 4a,d), and 11 January 2002 (Figure 4c,f),
together with the simulated-LSHTR image on January 04, 2002 (Figure 4e). The visual comparison
between the predicted and reference images is shown in Figure 8. We clearly see that all three
algorithms could capture many key features of the spatial pattern well in the reference image. A closer
examination shows that the images predicted by ISTBDF-I (Figure 8c) and ISTBDF-II (Figure 8d) seem
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to be more similar to the reference image (Figure 8a) than that obtained using STBDF-II (Figure 8b).
This can be found by the color and spatial textures of the red polygons in the predicted images.
The quantitative comparison in terms of the selected metrics is shown in Table 5. Both ISTBDF-I
and ISTBDF-II show improved predictions than STBDF-II in terms of all six metrics, and ISTBDF-I
performs better than ISTBDF-II. The relatively substantial improvement highlights the effectiveness of
introducing an unmixing procedure into the Bayesian fusion algorithms in enhancing fusion results in
heterogeneous landscapes.

Figure 8. The (a) reference image at t1 and its predictions using (b) STBDF-II, (c) ISTBDF-I, and
(d) ISTBDF-II for Simulated Experiment III.

Table 5. Quantitative Metrics of the Fusion Results in Simulated Experiment III.

AAD RMSE PSNR

STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II

NIR 0.0113 0.0098 0.0106 0.0182 0.0151 0.0163 31.2201 32.8820 32.2143

Red 0.0090 0.0073 0.0083 0.0136 0.0109 0.0121 29.2283 31.1726 30.2273

Green 0.0064 0.0051 0.0058 0.0095 0.0073 0.0082 29.9955 32.2588 31.2124

CC UIQI ERGAS

Subcase STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II

NIR 0.9540 0.9686 0.9633 0.9513 0.9682 0.9629
0.4635 0.3689 0.4095Red 0.9792 0.9856 0.9821 0.9758 0.9856 0.9820

Green 0.9715 0.9823 0.9775 0.9680 0.9823 0.9774

4.2. Experiments with Satellite Images

Two image pairs from 3 December 2001 (Figure 5a,d) and 11 January 2002 (Figure 5c,f), together
with the MODIS image on 4 January 2002 (Figure 5e) were used to estimate the Landsat image on
January 4, 2002 (Figure 5c), which will be compared with the reference image (Figure 5c). The optimal
parameter sets were first chosen for our fusion algorithms for prediction.

4.2.1. Optimization of Parameters

A sensitivity analysis of ISTBDF-I and -II to two important parameters, i.e., the number of
clusters (K) and the window size (w), were first conducted. In this study, K was set as 4, 8, 12,
and 16 by the k-means method, while w changed from 11 to 21 with step size 2. Regarding the
unmixing algorithm used in this study, another important parameter is the standard error ratio
σratio = σ

e(t0)
/σ

s(t0)
, where σ

e(t0)
is the variance of the prior endmember spectra, and σ

s(t0)
is the

variance of the unmixed endmember spectra. This is used to weigh the unmixing endmember relative
to the prior endmember, which was set to vary from 2 to 30 with step size 4. The optimal parameter
set was determined based on ERGAS. This was done for ISTBDF-I and -II, separately.

The relationship between the parameters and ERGAS is illustrated in Figure 9. The results
(Figure 9a,b) indicate that a small number of clusters (i.e., K = 4 or 8) generates better fusion results
indicated by smaller ERGAS values, and reduces the sensitivity of the models to the variations of
neighborhood size w for both ISTBDF-I and -II. Eight clusters for ISTBDF-I and four for ISTBDF-II were
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preferred in this study. Employing a moving window can improve the fusion quality by introducing
more spatial details. However, a higher window size may reduce the spectral variability of the fused
image and lead to a smoother fused image. To keep spectral variability while at the same time
preserving fusion quality, the optimal window sizes were set to 19 and 17, respectively. Furthermore,
it is observed that the inclusion of a prior spectral information improves the fusion results. For instance,
a lower ERGAS is observed when a higher error ratio is set, which means assigning a higher variance
to prior information than that of measurements (Figure 9c,d). Based on the parameter sensitivity
analyses, the optimal error ratio was set as 26 for both methods in this study (Figure 9c,d).

Besides optimal parameters, our algorithms need the classification map of the target Landsat
image. It is found that the MODIS image on 4 January 2002, has a higher correlation with the image
on 11 January 2002, than that on December 03, 2002. Based on the assumption that MODIS and
Landsat data share a similar temporal evolution, the classification map on 11 January 2002, was used
to represent the map on 4 January 2002. This assumption was further validated through the similarity
between the two classification maps, which was tested using three indices [57]: the overall accuracy
(oa), kappa statistic, and the average of the user’s and producer’s accuracy (aup). The classification is
more accurate as the three indices are closer to 1. As shown in Table 6, regardless of the eight clusters
for ISTBDF-I or four clusters for ISTBDF-II, the relatively high values of these indices give us the
confidence in using the simulated classification map based on the Landsat image from 11 January 2002.

Furthermore, the computational complexity based on the running time were also compared
among them. The three algorithms were written in MATLAB software (version R2018b by MathWorks,
Inc, USA) and run on a computer with Intel(R) Core(TM) i7-7500 processor and the 8GB random
access memory (RAM). The running time for STBDF-II, ISTBDF-I, and ISTBDF-II with their optimal
parameters are around 10 seconds, 120 seconds, and 200 seconds for this experiment with data of size
of 400 × 400 per band. All of them are quite computationally efficient, though ISTBDF-I and -II need
more running time than STBDF-II.

Figure 9. Changes of the ERGAS index with respect to moving window size (w) and number of clusters
(K) for (a) ISTBDF-I and (b) ISTBDF-II, both with a fixed error ratio 26, and the changes of the ERGAS
index with respect to the variation of the error ratio for (c) ISTBDF-I with a fixed w = 19, K = 8 and (d)
ISTBDF-II with a fixed w = 17, K = 4.
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Table 6. Classification Accuracy for ISTBDF-I with Eight Clusters and ISTBDF-II with Four Clusters in
Terms of Overall Accuracy, Kappa Statistic, and Average of User’s and Producer’s Accuracy.

oa kappa aup

ISTBDF-I 0.6932 0.6349 0.5851 0.8568 0.7417 0.7979 0.7397 0.6478 0.7480 0.6600

ISTBDF-II 0.8328 0.7648 0.8149 0.8645 0.9052 0.8207

4.2.2. Comparison of Fusion Results and Discussion

Figure 10 shows the reference Landsat image on 4 January 2002, and three corresponding fused
images predicted by STBDF-II, ISTBDF-I, and ISTBDF-II with their optimal parameters, respectively.
By visual comparison, the three predicted images are in general similar to the reference Landsat image.
This indicates that all three methods capture the main features of the reference image in terms of visual
comparison and it implies that all three methods could successfully predict the temporal change of
croplands from 3 December to 11 January 2002. However, the fused image of STBDF-II [Figure 10b]
appears to be hazy and blurry, and it seems to be covered by a layer of fog with color distortion.
Compared with STBDF-II, ISTBDF-I and -II show improved skill in predicting the temporal change
of reflectance and capturing the texture of small objects with clearer boundaries. Figure 11 further
highlights the contrast of the three algorithms using zoomed-in images. The red “stain” in the middle
of the STBDF-II-predicted image (Figure 11b) is not observed in the reference image (Figure 11a) and
the other two predicted images (Figure 11c,d). ISTBDF-II seems to provide slightly better prediction
than ISTBDF-I (Figure 11c,d). In addition to visual comparison, we show the scatter plots of the
reference and predicted reflectance for pixels corresponding to the red “stain” in red dots in Figure 12.
For both ISTBDF-I and -II, the red dots are generally closer to the “1:1” line than STBDT-II, suggesting
better predictions. In particular, STBDF-II underestimates the reflectance of the red “stain” in the
red band (Figure 12d), which is not seen in ISTBDF-I and -II (Figure 12e,f). RMSE between STBDF-II
predicted and reference reflectance for the red “stain” in red band is 0.7863, which drops to 0.4385 and
0.3453 for ISTBDF-I and -II, respectively.

Figure 12 depicts the scatter plots between the reflectance of the reference image and the fused
images generated by the three methods, respectively. It can be clearly observed that the stripes of
scattered points generated by ISTBDF-II are narrowest and closest to the diagonal 1:1 line for all three
bands, followed by ISTBDF-I and the STBDF-II. The result suggests that the reflectance of ISTBDF-II
is closest to the reflectance of the reference image, which is consistent with Figure 10. In addition,
the quantitative indices given in Table 7 indicate results similar to the visual comparisons and the
scatter plots. For all three bands, the fused images of ISTBDF-I and -II have smaller AAD and RMSE,
and higher PSNR, CC, and UIQI than STBDF-II, implying a more accurate prediction than STBDF-II.
ISTBDF-II shows the highest prediction skill in terms of these indices. The ERGAS index draws
a conclusion similar to STBDF-II (0.7279), ISTBDF-I (0.6797), and ISTBDF-II (0.6180). To conclude,
even though various patches in Landsat are smaller than one MODIS pixel in the heterogeneous
landscape, ISTBDF-I and -II show convincingly better skill in capturing these fine spatial details through
converting the reflectance changes of the mixed MODIS pixel into the corresponding Landsat pixels.
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Figure 10. The (a) reference image acquired on 4 January 2002, and its predictions using (b) STBDF-II,
(c) ISTBDF-I, and (d) ISTBDF-II.

Figure 11. Zoomed-in images of the area marked in Figure 5a corresponding to the images in
Figure 8a–d.

Table 7. Quantitative Metrics of the Fusion Results Applied to Satellite Data.

AAD RMSE PSNR

STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II

NIR 0.0200 0.0178 0.0151 0.0289 0.0266 0.0244 27.2340 27.9362 28.6903

Red 0.0168 0.0152 0.0119 0.0233 0.0212 0.0191 24.5500 25.3725 26.2780

Green 0.0102 0.0100 0.0079 0.0142 0.0139 0.0127 29.1497 29.3766 30.1477

CC UIQI ERGAS

STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II STBDF-II ISTBDF-I ISTBDF-II

NIR 0.9131 0.9268 0.9431 0.9016 0.9185 0.9304
0.7279 0.6797 0.6180Red 0.9464 0.9567 0.9643 0.9420 0.9504 0.9614

Green 0.9439 0.9478 0.9584 0.9398 0.9476 0.9525
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Figure 12. Scatter plots of the reference reflectance and predicted reflectance using STBDF-II (left
column), ISTBDF-I (middle column), and ISTBDF-II (right column) for (a–c) the NIR band, (d–f) the
red band, and (g–i) the green band. The red dots show pixels corresponding to “red stains” in the
predicted image using STBDF-II in Figure 11.

5. Discussion

In this section, we provide more discussion on the strengths and limitations of our new approach.
Compared to the original STBDF-II, the significant improvement made by ISTBDF-I and ISTBDF-II

over heterogeneous landscapes can be attributed to the strengths of the unmixing-based algorithm
in two different ways. First, in STBDF-II, the linear observational model that is used to build the
relationship between LSHTR and HSLTR images employs an equal-weight matrix. This matrix is a
rough approximation to the true PSF function, which may vary among different sensors. Although this
assumption may be reasonable in some cases, reflectance values of the LSHTR pixel may be beyond the
simple averaging of the HSLTR pixels within it, especially for heterogeneous areas. This is enhanced in
ISTBDF-I by unmixing the LSHTR image in order to maintain the mixed information within the mixed
pixels, which is introduced as the prior estimation of the target HSLTR image to ensure a reasonable
estimation of reflectance for small patches. Second, resampling the LSHTR images with the addition of
spatial details from the high frequencies of neighboring HSLTR images in STBDF-II is also limited,
especially when temporal changes of the study area are relatively large, making the high frequencies
of the target HSLTR image differ from those of the neighboring HSLTR images. To overcome this
problem, an unmixing-based algorithm is integrated into the whole fusion framework to estimate the
mean of the joint distribution by unmixing the LSHTR images instead of resampling. Such a process
can guarantee that proper spatial details are included in the fusion process.

However, there are several limitations of ISTBDF-I and ISTBDF-II that motivate directions for
further study. First, the assumption that the error and the change tendency are Gaussian may
not hold for all situations. Future research can try other distributions, such as a skew normal
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distribution, according to different circumstances, and then formulate the corresponding algorithms
for spatio-temporal image fusion. Second, the end-members in the linear unmixing algorithm are
deterministic, which may be inaccurately generated. Future studies can employ stochastic Gaussian
mixture models in which the endmembers are statistically modeled as Gaussian-distributed random
vectors parameterized by their mean vector and covariance matrix. Third, the selection of the input
image-pairs plays an important role in producing the final fusion result for most algorithms. There are
no requirements on the number of image pairs for the ISTBDF-I and ISTBDF-II algorithms. They are
suitable for one or more pairs of images. However, in some cloudy areas, it is difficult to acquire two
image pairs with high quality simultaneously. The performance of the proposed algorithms with one
image pair will be studied in further research. The extent to which the accuracy of the algorithms is
affected by the number of image pairs and the similarity of the input image pairs to the target image
constitute an interesting problem that will also be investigated in future studies. Fourth, similar to
STARFM [2] and ESTARFM [5], land-cover changes, particularly those with transient shape changes,
may not be accurately predicted by ISTBDF-I and -II. Future studies should improve this aspect by
developing algorithms that can detect land-cover changes such as mapping forest events (e.g., floods
and fires). Lastly, like STARFM-based or unmixing-based methods, ISTBFD-I and ISTBDF-II are
developed to fuse reflectance data, which is then used to calculate vegetation indices for ecological
and hydrological applications. An alternative approach is to first calculate linearly additive vegetation
indices, like leaf area index (LAI), and then fuse the indices [58–60]. Earlier studies reported that this
alternative approach may produce better fusion results and attributed it to the introduction of less
error and its propagation. In addition, this approach has lower computational cost because of the
blended single index rather than multiple bands. This provides a new perspective for future studies.

6. Conclusions

To better monitor land surface dynamics, various methods have been proposed for the
spatio-temporal fusion of remotely sensed images over the years. Though they are relatively effective,
each suffers from certain limitations, particularly in the following three aspects: requirement on the
number of input image pairs, ability in handling heterogeneous areas, and ability in monitoring
land-cover changes. STBDF-I and -II predict better than STARFM and ESTAFM in a relatively
homogeneous landscape, and they have no requirements on the number of input image pairs.
However, they do not adequately make use of the mixture information in LSHTR pixels, which leads
to their inability to detect the temporal changes of fine patches. The unmixing-based algorithms can
extract possible spatial details from the mixed LSHTR pixels but they frequently generate LSHTR-like
reflectance. To overcome these limitations, we have proposed, on the basis of STBDF-I and -II, two
improved Bayesian data fusion methods with unmixing-based algorithms, coined ISTBDF-I and
ISTBDF-II, to generate remote sensing images with high resolution in both space and time. We have
compared and evaluated the performance of STBDF-II, ISTBDF-I, and ISTBDF-II using simulated data,
as well as Landsat and MODIS data. Compared to the original STBDF-II algorithm, the proposed
algorithms generate improved spatio-temporal resolution images, especially over heterogeneous areas.

To conclude, the proposed ISTBDF-I and ISTBDF-II enhance our capability in capturing phenology
changes over heterogeneous landscapes by generating reasonably good satellite images that are high
in both spatial and temporal resolutions. This is an important addition to the family of spatio-temporal
image fusion techniques and can be applied to other remotely sensed images.
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