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Abstract: Wildfires are one of the important disturbance factors in natural ecosystems and occur
frequently around the world. Detailed research on the impact of wildfires is crucial not only for the
development of livestock husbandry but also for the sustainable use of natural resources. In this
study, based on the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product
MC464A1 and site snow depth measurements, the kernel density estimation method (KDE), unary
linear regression analysis, Sen + Mann-Kendall trend analysis, correlation analysis, and R/S analysis
were used to evaluate the relationship between snow and spring wildfires (SWFs) in Hulunbuir.
Our results indicated that SWFs decreased during the period of 2001–2018, were mainly distributed in
the eastern portion of the study area, and that the highest SWF density was 7 events/km2. In contrast,
the maximum snow depth increased during the period of 2001–2018 and the snow depth was deeper
in the middle but shallower in the east and west. The SWFs and snow depth have significant
negative correlations over space and time. The snow depth mainly affects the occurrence of SWFs
indirectly by affecting the land surface temperature (LST) and Land Surface Water Index (LSWI) in
spring. The snow depth was positively correlated with the LSWI in most of Hulunbuir and strongly
negatively correlated with the LST, and this correlation was stronger in the eastern and western
regions of Hulunbuir. The results of the Hurst exponent indicated that in the future, the snow
depth trend will be opposite that of the current state, meaning that the trend of decreasing snow
depth will increase dramatically in most of the study area, and SWFs may become more prominent.
According to the validation results, the Hurst exponent is a reliable method for predicting the snow
depth tendency. This research can be based on the snow conditions of the previous year to identify
areas where fires are most likely to occur, enabling an improved and more targeted preparation for
spring fire prevention. Additionally, the present study expands the theory and methods of wildfire
occurrence research and promotes research on disasters and disaster chains.
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1. Introduction

Wildfires represent all fires that occur in natural ecosystems [1] and have important effects
on vegetation dynamics, the biogeochemical cycles of carbon, nitrogen, and other elements,
atmospheric chemistry, and the climate [2]. They contribute to atmospheric pollution as well.
Wildfires have considerable negative impacts on livestock husbandry production and grassland
ecological environments [3–5]. They are one of the most important disturbance factors in natural
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ecosystems and occur frequently around the world. The occurrence of wildfires not only seriously
restricts the development of animal husbandry but also poses a serious threat to the living environment
and homeland security of humans. An average of 348 Mha were burned annually from 1997 to 2011
around the world, although the global burned area showed a decreasing trend at a reduction rate of
4.3 Mha yr–1 during the period from 2000–2012 [6].

The Inner Mongolia Autonomous Region of China (IMC) is the main wildfire area among the arid
and semi-arid regions of China, and grassland fires, forest fires, and cropland fires [7] occur frequently
in the region every year; the main fire sources are human activities [8]. These wildfires mainly
occur in spring and autumn each year and account for more than 90% of the fires annually [9,10].
Hulunbuir is the easternmost prefecture-level city in IMC, and it is rich in grassland and forest
resources. Statistical analyses show that from 1981 to 1999, a total of 892 grassland fires occurred in
the eastern part of the IMC for an average of 46.95 fires per year, and the most frequent occurrence
was in Hulunbuir [11,12]. Hulunbuir has less precipitation in spring and autumn, dry weather, and a
high number of strong wind days, and most of the grassland and forest areas are relatively sparsely
populated and have low traffic. These factors make it very difficult to manage fires in this region [12].
Therefore, detailed research on the impact of wildfires is crucial, not only for the development of
livestock husbandry but also for the sustainable use of natural resources.

Advances in the field of remote sensing have greatly increased the potential for fire monitoring [13].
Many researchers have used large-scale observations of remote sensing and short-term characteristics
to obtain substantial data [14–16]. In combination with spatial statistics and geographic information
technologies, spatial point process methods—such as Ripley’s K function, nearest neighbor indication,
kernel density, Poisson models, and correlation analysis—have been used in studies on the spatial
and temporal distribution of large-scale fires. Furthermore, satellite products have become the key
source of global information on fire occurrence because they provide comprehensive spatial and
temporal coverage of fire-affected areas [13]. Various satellite sensors have been used to evaluate
fire occurrence, including the Advanced Very-High-Resolution Radiometer (AVHRR) [17,18] and the
Along-Track Scanning Radiometer (ATSR) [19]. Additionally, observations have been collected based
on imagery from the Visible and Infrared Scanner (VIRS) onboard the Tropical Rainfall Measuring
Mission (TRMM) [20], GOES geostationary satellites [21], Meteosat Second Generation (MSG) [22,23],
Himawari-8 [24–26], and Landsat [27]. The Moderate-Resolution Imaging Spectroradiometer (MODIS)
is a large-scale remote sensing monitoring instrument developed by the National Aeronautics and
Space Administration (NASA) in the late 1990s, and the Terra and Aqua satellites have been equipped
with sensors since 18 December 1999 and 4 May 2002, respectively. For the detection of fire burned
areas, the spatial resolution of the MODIS sensors is 500 m and measurements are recorded twice per
day (10:30 AM and 1:30 PM during the day and 10:30 PM and 1:30 AM at night for Terra and Aqua,
respectively) [13]. MODIS is the most widely used sensor for active fire detection, and MODIS data
have been used in a broad range of fire-related applications, such as the estimation of gas emissions
from fires and the analysis of fire regimes [28], the distribution of fire on different land cover types [29],
and the probability of fire occurrence in future climate scenarios [30,31]. Forest fires have been better
studied than grassland fires, and the point pattern analysis method was applied to forestry statistics in
2000 [32]. In the temperate rain forest of Canada, the probability of a grid cell burning was positively
correlated with the summer temperature and negatively correlated with precipitation and distance
to municipalities, campgrounds, dirt roads, railroads, and paved roads [33]. At the county level
in Florida, population and poverty were positively correlated with the annual wildfire area and
intensity-weighted fire area [34]. The results of the application of spatial statistical analysis in Canada
showed that fire locations were spatially clustered in Ontario [35]. The spatial distribution pattern of
grassland fires in Hulunbuir has also gradually attracted attention [36–38]. Moreover, several studies
have documented a relationship between snow and temperature or spring precipitation [39] and noted
that temperature and precipitation are important climate factors that affect wildfire occurrence [40].
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However, most research on wildfires has concentrated on wildfire hazards, disaster risk
assessments, and early warning, and few studies have analyzed the factors that influence the occurrence
of wildfires [8,10,41,42]. Furthermore, the climate data used in these studies are observation data
on the timing of wildfires, and although these data were provided by the Meteorological Bureau,
they do not consider the changes in surface temperature and surface humidity that are caused by
the periodic or aperiodic changes in climatic elements, such as snow. Therefore, the combination of
rapidly developing technologies such as remote sensing and geographic information system data is
required to extract and analyze various information, such as wildfire occurrence and snow depth, and
the impact of the snow distribution on wildfires must be investigated to provide updated methods and
technical support for wildland disaster management. The main objective of this study was to quantify
the effect of snow on spring wildfires. To achieve this objective, we used the MODIS burned area
data product MCD64A1 and land cover data to extract wildfires from 2001 to 2018, and we integrated
the snow data to reveal the relationship between snow and wildfires in Hulunbuir. In addition, we
analyzed the influence of winter snow on the main climatic factors of wildfires that occurred during
the following year, i.e., the effect of surface temperature and surface humidity on wildfires. We also
predicted the future trend of snow depth. This study aimed to provide a quantitative perspective on
the effect of snow on wildfires and strengthen the ability to predict and provide early warnings of
wildfires. This research also has great practical value for reducing the losses caused by fire disasters.

2. Materials and Methods

2.1. Study Area

The study area is located in Hulunbuir (prefecture-level city) in the IMC (115.22–126.06◦E,
47.08–53.23◦N), covers an area of approximately 252.948 km2, and is comprised of 13 counties: (a)
Erguna, (b) Genhe, (c) Oroqen, (d) Hailar, (e) Arun, (f) Morin Dawa, (g) Oldbarag, (h) Yakeshi, (i)
Zhalantun, (j) Xinbarag left, (k) Xinbarag right, (l) Manjvvr, and (m) Ewenki. Heilongjiang Province
borders the study area to the east, Russia to the north, and Mongolia to the west. Elevations range
from 167–1675 m, and the topography is high in the center but low in both the east and the west
(Figure 1). The study area experiences a typical temperate continental climate with low annual
precipitation, frequent droughts, and windy periods during the winter and spring seasons. The mean
annual temperature is approximately −20 ◦C in winter and approximately 20 ◦C in summer, and
the annual precipitation is 320 mm. More than 55% of the annual precipitation is concentrated in
the summer [12]. The vegetation types in the Hulunbuir grassland area consist of a variety of plant
communities. The main vegetation communities are the Stipa baicalensis community, the Filifolium
sibiricum community, and the Leymus chinensis community.
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2.2. Data

2.2.1. Spring Wildfire Dataset

The spring (March, April, May) wildfire (SWF) dataset covers 18 years (2001–2018) from the
Collection 6 MODIS Burned Area product MCD64A1. The MCD64A1 Burned Area Product is a
monthly Level-3 gridded 500-m product. Data were obtained from NASA’s Level-1 and Atmosphere
Archive & Distribution System Distributed Active Archive Center (LAADS DAAC, https://ladsweb.
modaps.eosdis.nasa.gov/). The study area is covered by four images, i.e., h25v03, h25v04, h26v03, and
h26v04. The original data from MCD64A1 included 5 types of information comprised of the burn date,
burn date uncertainty, QA, first day, and last day [43]. In this study, we mainly used the burn date
layer data, in which the individual pixels were assigned to one of 25 classes. The meaning of each class
is shown in Table 1.

Table 1. MOD14/MYD14 fire mask pixel classes.

Class Meaning

−2 Water
−1 Unmapped due to insufficient data
0 Unburned land

1–366 Ordinal day of burn

The MODIS Reprojection Tool (MRT) was used to reformat the downloaded datasets from the
Earth Observing System (EOS). The MRT is a mosaic, resampling, and reprojection tool commonly
used for multiple images. In this paper, to avoid errors in the area calculation, we only set the mosaic
after extracting the burn date band via the MRT; we did not use the projection transformation and
resampling. In addition, we converted the extracted raster burn data to feature points.

2.2.2. Snow Depth Data

The monthly maximum snow depth data for winter (December, the following January, February)
at 118 meteorological stations distributed throughout the IMC (Hulunbuir includes 16 climate stations,
and the distribution is shown in Figure 1) during the period of 1979–2018 were acquired from the
Meteorological Bureau of the IMC, and they represent observations of the maximum snow depth
in one month per station. We calculated the average snow depth for three months per station and
defined this value as the average snow depth for a year. Based on the average annual snow depth
for each station, we obtained the continuous distribution (spatial resolution is 1 km × 1 km) of the
average snow depth in each year throughout the IMC using ANUSPLIN 4.3, which is a special software
package for surface fitting of climate data. This software is based on spline interpolation theory, and it
allows the introduction of multivariate and covariate linear submodels, and the model coefficients
can be determined automatically according to the data. Thus, ANUSPLIN can process two or more
splines smoothly, which allows the introduction of multiple impact factors as covariates for spatial
interpolation of meteorological elements. More importantly, it can perform spatial interpolation
of multiple surfaces at the same time, which is especially suitable for meteorological time series
data [44–46]. ANUSPLIN has been widely used internationally. In this study, we used a digital
elevation model (DEM) as a covariate to interpolate the snow depth. Finally, the gridded snow depth
for winter with a spatial resolution of 1 km × 1 km over the Hulunbuir region spanning the period of
2001–2018 were extracted using mask analysis.

2.2.3. LSWI Data

MODIS has 3 bands that are sensitive to the moisture water content: NIR1 (1230–1250 nm), SWIR1

(1628–1652 nm), and SWIR2 (2105–2155 nm) [47]. In this paper, the Land Surface Water Index (LSWI) in
spring (3–5 months) was estimated by the ratio of two bands with a lower absorption rate and a higher

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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water absorption rate. The two bands were obtained from MOD09A1 (8-day, 0.5 km), and the MRT
was used to mosaic and reproject the data and screen the shortwave infrared (SWIR) and near-infrared
(NIR) bands. The LSWI was calculated as follows:

LSWI =
NIR− SWIR1

NIR + SWIR1
, (1)

where LSWI is the mean Land Surface Water Index in spring, and NIR1 and SWIR1 are the values of
the near-infrared and the shortwave infrared bands, respectively.

2.2.4. LST Data

This paper applies MOD11A2 (8-day, 1-km, https://lpdaac.usgs.gov/) data to characterize the
land surface temperature (LST) in spring. The first band of MOD11A2 was extracted using the MRT,
and it was reprojected and resampled. We converted the original values to degrees Celsius (original
value × 0.02 − 273.15).

2.2.5. Land Cover Data

To more accurately extract the distribution of wildfires, we used the MODIS Land Cover Type
Product (MCD12Q1) to remove nonwildfire areas. These data were obtained by the Earth Observing
System Data and Information System (EOSDIS, https://earthdata.nasa.gov), which supplies global
maps of land cover at annual time steps and 500-m spatial resolution for 2001–2017. We used the MRT
to extract the first band (International Geosphere-Biosphere Programme) of MCD12Q1 and remove
urban and built-up lands, permanent snow and ice, and water bodies. Wildland includes information
as shown in Table 2. We used the annual wildland data to screen the annual wildfires using the Extract
by Mask tool in ArcGIS (the 2018 wildfire data were applied to 2017 years of wildland for extraction).

Table 2. The land cover type of Hulunbuir extracted from MODIS Land Cover Type Product
(MCD12Q1).

Value Name Value Name

1 Evergreen Needleleaf Forests 9 Savannas
3 Deciduous Needleleaf Forests 10 Grasslands
4 Deciduous Broadleaf Forests 11 Permanent Wetlands
5 Mixed Forests 12 Croplands
7 Open Shrublands 14 Cropland/Natural Vegetation Mosaic
8 Woody Savannas 16 Barren

2.3. Methods

2.3.1. Density of SWF Points

Kernel density estimation (KDE) is a method used to reconstruct the probability density function
from random sampling points. KDE does not have any prior density assumptions, and it provides a
high-quality probability density estimation when given a suitable bandwidth [48]. The KDE method
supports only point and linear features. The SWF in this study is a randomly occurring point event,
and this method was used to address the spatial density distribution of SWF points [10]. The associated
formula is as follows:

f (x) =
n

∑
i=1

1
d2 k
[
(x− xi)

d

]
, (2)

where x represents any point in space, and x . . . xi is the spatial location of n SWF points. Additionally,
k () is a bivariate probability density function called the core, d is the bandwidth used to define the size
of the smoothing, and the radius of a circle is centered on x. In this equation, the spatial distribution

https://lpdaac.usgs.gov/
https://earthdata.nasa.gov
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density of SWFs can be generated for different scales by adjusting the d. After many tests using the
KDE analysis, we found it reasonable to set the d to 22 km [12].

2.3.2. Trend Analysis

(1) The interannual variability and trends of snow depth and wildfires
A time series linear regression model based on the least squares method can be used to simulate

the trend in time series data. We used linear regression analysis to more intuitively analyze the
interannual fluctuations and trends of SWF and snow depth. The slope of the trend is obtained by the
least squares method, and the formula is:

slope =
n×∑n

i=1(i× y)−∑n
i=1 i ∑

y
i=1 y

n×∑n
i=1 i2 − (∑n

i=1 i)2 , (3)

where slope is the trend, and y and i represent the values of the time series and years, respectively.
(2) Spatial trend analysis
The Theil-Sen median trend analysis and the Mann-Kendall test method can be combined and

become an important method for determining the trend of long-term sequence data. These methods
have been gradually applied to long-term sequence analysis. Theil-Sen median trend analysis is a
nonparametric statistical trend calculation method that can reduce the impact of data outliers [49].
We chose this method to prevent abnormal values from affecting the spatial variation trend of snow
depth, LSWI, and LST. The Theil-Sen median trend calculates the median of the slope of n(n − 1)/2
data combinations and is calculated as follows:

β = median
( xj − xi

j− i

)
, (4)

where xj and xi represent the sequence value at time j and i, respectively; when β > 0, snow depth or
SWF occurrence increases (and vice versa).

Mann-Kendall is a nonparametric statistical test method used to determine the significance of a
trend. This test does not require a sample to obey a certain distribution and is not affected by a few
outliers. The test process is as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sign
(

xj − xi
)
, and sign =


1 xj − xi > 0
0 xj − xi = 0
−1 xj − xi < 0

, (5)

where xj and xi are the sequential data values, n is the length of the series, and sign is a symbolic
function. The Mann-Kendall’s statistic ZMK is calculated as follows:

ZMK =


S−1

2
√

Var(S)
S > 0

0 S = 0
S+1

2
√

Var(S)
S < 0

(6)

Var(S) =
n(n− 1)(2n + 5)

18
(7)

At a given significance level a, when |Z| > U1−α/2, there is a significant change in the sequence
at the α level.

2.3.3. Correlation Analysis between SWFs and Influencing Factors

When analyzing the relationship between two variables in a given space, we need to know
whether there is a close quantitative relationship between the two variables. The statistical indicator
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used to explain the close relationship between the variables (x, y) of sample size n is called the
correlation coefficient, denoted by R, and the formula for calculating R is as follows:

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

, (8)

where x and y are the average of the variables x and y, respectively, and the correlation coefficient R
has a range [−1,1]. For R > 0, there is a positive correlation between the two variables. For R < 0, there
is a negative linear correlation between the two variables. For R = 0, there is no linear relationship
between the two variables.

2.3.4. Hurst Exponent and R/S Analysis

R/S analysis is a basic method for nonlinear time series analysis. The so-called R/S analysis is
actually a rescaled range analysis. Given a time series, we calculate the range of series representing
the growth rate or the rate of decay; then, we calculate the range (R) and standard deviation (S)
corresponding to different time lags and find the ratio of the two (R/S). If R/S lags at any time and
presents a power law distribution, the power exponent is the so-called Hurst exponent. Based on this,
we can estimate the evolution of the trend of a time series as a function of time [50,51]. Using this
method, we predict the difference (consistent) between the future trend of snow depth and the current
trend. The specific process is as follows. Consider a time series increment {ξ(t)}, where ξ(t) = B(t) −
B(t − 1) and B(t) is the observed value at time t (t = 1, 2, . . . ). For any positive τ, we define the mean
series as follows:

〈ξ〉t =
1
τ

τ

∑
t=1

ξ(t), (9)

where τ = 1, 2, 3, . . . , represents the time lag. Here, X(t) is used to represent the cumulative dispersion:

X(t, τ) =
τ

∑
t=1

(ξ(t)− 〈ξ〉t), (10)

where 1 ≤ t ≤ τ. Then, the range R(τ) is defined as follows:

R(τ) = max
1≤t≤τ [X(t, τ)] − min

1≤t≤τ [X(t, τ)], (11)

The standard deviation S(τ) is defined by:

S(τ) =

{
1
τ

τ

∑
t=1

[(ξ(t)− 〈ξ〉t)]
2

} 1
2

(12)

Based on R(τ) and S(τ), we obtain the following:

R(τ)
S(τ)

=̂
R
S

(13)

After long-term theoretical analysis and simulation experiments, Hurst found the following
empirical relationship:

R(τ)
S(τ)

∝
(τ

2

)H
, (14)
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where H is the Hurst exponent andindicates proportionality. For H = 1/2, the time series exhibit no
changes. For H > 1/2, the changes in the time series are positively correlated with prior changes.
This implies that the time series is persistent; an increase in the past means an increment in the future,
and a reduction in the past means a reduction in the future. For H < 1/2, the changes in the time
series are negatively correlated with prior changes. This condition implies that the time series is
anti-persistent. Thus, an increase in the past means a reduction in the future and a reduction in the
past that means an increase in the future.

3. Results

3.1. Relationships between SWFs and Snow Depth

3.1.1. Change and Distribution of SWFs

According to the statistical analysis of MCD64A1, there was a different SWF area in the study
region each year. To clarify the trend in SWF area, we conducted a trend analysis.

From the interannual variations and results of the trend analysis of the SWF area during the
period of 2001–2018 (Figure 2), the SWF area in Hulunbuir over the last 18 years was the largest
(7384.01 km2) in 2008, followed by 2003. The SWF area was 6894.89 km2, and the fluctuation in the
SWF area was small in the other years and had an overall decreasing trend, although this was not
significant. Furthermore, snow depth fluctuated between 180.95 km2 and 2546.57 km2.
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Figure 2. Interannual variation in spring wildfires (SWFs) area during the period of 2001–2018.

During the period of 2001–2018 in the study area, the total SWF area reached 30,032.75 km2

according to the MCD64A1 data. The distribution and density of SWF events are shown in Figure 3.
SWFs were mostly distributed in the eastern and northwestern parts of the study area, such as areas c, f,
i, h, and e, and accounted for 36.9%, 23.4%, 10.7%, 8.85%, and 8.74% of the total SWF areas, respectively.
The spatial distribution of SWF density revealed that the highest density was located in areas c and f,
reaching 7 events/km2.
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3.1.2. Temporal and Spatial Variation in Snow Depth during the Period of 2001–2018

According to the results of the interannual changes and trends in the mean snow depth, the mean
snow depth increased between 2001 and 2018 (Figure 4). The snow depth data from the 16 stations in
the study area were interpolated to obtain the spatial distribution of the mean snow depth during the
period of 2001–2018, as shown in Figure 5a. The snow depth was high in the center of the study area
and low in both the east and the west; the deepest snow was 28 cm, and the lowest snow depth was
6 cm.
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Figure 4. Interannual variation in mean of snow depth during the period of 2001–2018.

Figure 5b shows the spatial variation in snow depth for Hulunbuir during the period of 2001–2018.
The figure shows that the increasing and decreasing trends in snow depth accounted for 54.2% and
45.8% of the study area, respectively. The areas showing a decreasing trend were mainly distributed in
the north, central, and northwest regions of the study area, while the increasing trend area was mainly
confined to the eastern and western parts of the study area.
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3.1.3. Correlation between SWFs and Snow Depth

The correlation coefficient was used to evaluate the correlation between SWFs and snow depth in
the study area for the past 18 years. The results are shown in Table 3.

Table 3. Correlation between SWFs and snow depth during the period of 2001–2018.

Variable Pearson Correlation Significance Test N

Spatial density of SWFs and
spatial mean snow depth −0.17 0.01 252,287

Annual total SWF area and
annual mean snow depth −0.516 0.05 18

According to the correlation analysis results of the spatial density of SWFs and the mean snow
depth distribution data after interpolation in the study area over the past 18 years, the correlation
between the two was negative and the correlation coefficient was −0.17, which passed the significance
test at the 0.01 level. The negative correlation coefficients of total SWFs and snow depth for each year
at the 16 meteorological stations were as low as −0.516 and passed the significance test at the 0.05 level.

3.2. The Mechanistic Effect of Snow on Wildfires

SWFs are affected by many external factors, such as climate conditions, environmental aspects,
and fuel. Climate factors have an important influence on the temporal and spatial distribution patterns
of SWFs because these factors change the tendency, regularity, and distribution of fires. In the study
area, the maximum snow depth generally appears in January. As the temperature increases gradually
beginning in February each year, the snow enters the thawing period, and the coverage of snow depth
decreases gradually. Snow melting affects the temperature of the surface, and the combustibles and soil
moisture also change. Temperature and humidity are the main climatic factors affecting the occurrence
of SWFs. Therefore, snow depth indirectly affects the occurrence of SWFs. In this paper, we selected
the LSWI, which characterizes the surface moisture condition, and the LST, which characterizes the
surface temperature condition, to analyze the indirect effect of snow depth on SWF.

3.2.1. Spatial Distribution and Trends of the LSWI and LST in Spring

The distribution of the mean LSWI exhibited great spatial heterogeneity in the study area during
the period of 2001–2018, with a mean LSWI of 0–0.99 in spring (Figure 6a). The LSWI was larger
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in the west of the study area and smaller in the east and north, with areas d, g, and m having the
largest values and area i the smallest. Figure 6b shows the spatial variation trend in the LSWI during
the period of 2001–2018; 43.7% of the LSWI values showed an increasing trend (2.62% of the pixels
showed significant increases), and these were mainly distributed in the eastern and western parts of the
study area, while 56.3% of the areas showed a decreasing trend (9.2% of the pixels showed significant
increases, which were mainly distributed in north and certain areas in the center of Hulunbuir).Remote Sens. 2019, 11, 321 11 of 19 
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Figure 6. Distribution of (a) mean of Land Surface Water Index (LSWI) and (b) trend of LSWI
in 2001–2018.

The mean LSTs in Hulunbuir exhibited a range of −1.89–23.55 ◦C. The values were low at
high altitudes, i.e., the LSTs in the central region were lower than in the eastern and western parts.
LSTs gradually increased from the middle to the boundaries of the study area, e.g., a low LST appeared
in area b, while high LSTs occurred in areas e and j (Figure 7a). Over the past 18 years, the central
and western regions of the study area mainly showed LSTs increasing, while a decrease was mainly
distributed in the eastern part of the study area and area e, the west of area g, and the north of area j
and areas f and i exhibited a stronger LST decrease (Figure 7b).
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3.2.2. Correlation between Snow Depth and LSWI

The melting of snow changes the surface humidity, and the land surface humidity affects the fuel
humidity. Moreover, the fuel humidity is one of the important factors affecting wildfire occurrence.
To further analyze the effects of snow depth on the SWF area in Hulunbuir, we calculated the spatial
correlation coefficient between snow depth and the spring mean LSWI and LST over the period of
2001–2018. The spatial distribution of correlation coefficients and significance tests and between the
two variables is shown in Figure 8.Remote Sens. 2019, 11, 321 12 of 19 
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Figure 8 shows that snow depth was positively correlated with the spring mean LSWI in most of
Hulunbuir over the past 18 years, and the positive correlation was significant for 49.1% of total pixels.
In areas c and f, the correlation was particularly obvious, and the highest correlation coefficient reached
0.85. Thus, increasing snow depth contributed to increased LSWI. However, the snow depth in the
southern region of the study area was significantly negatively correlated with the LSWI, although less
than 0.1% of the pixels were contained in this area. The grey area indicates no significant correlation in
Figure 8.

3.2.3. Correlation between Snow Depth and LST

The melting of snow not only changes the surface humidity but also changes the LST. In this
study, we calculated the spatial correlation coefficients between snow depth and the LST in the study
area over the period of 2001–2018. The spatial distribution of the correlation coefficients between
snow depth and the LST shows that the snow depth in the eastern and western of Hulunbuir was
significantly negatively correlated with the LST, and the highest correlation coefficient reached −0.86
in area f (Figure 9). These results indicate that the increased snow depth contributed to a decrease in
the LST. However, less than 1% of the study area showed significant negative correlations, and these
points were scattered across area e. The grey area in Figure 9 indicates no significant correlation.
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3.3. Future Prediction of Snow Depth in the Hulunbuir Region

3.3.1. Future Snow Depth Based on the Hurst Exponent

The R/S analysis method was used to calculate the H (Hurst) exponent of snow depth for
Hulunbuir during the period of 1979–2018 to predict future changes. The snow depth trend was
determined from the 16 climate stations during the period of 1979–2018. The annual mean snow depth
showed an increasing trend at the 16 climate stations in the study area during this period, and the H
exponent of the annual mean snow depth was found to be 0.29 (Figure 10). Thus, in general, the trend
in snow depth in the future is opposite the current state.
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Figure 10. Interannual variation in mean snow depth during the period of 1979–2018.

In the past 40 years, snow depth increased in 54.9% of the area, with the highest trend being
0.79 cm/year; 45.1% of the area exhibited a decreasing trend, and these areas were mainly distributed
in the northeastern part of the study area, with a few areas in the south and west (Figure 11). However,
based on the R/S analysis of the 16 climate stations, the Hurst exponent of each station was less than
0.5 (Annex Table S1). Thus, the future trend in snow depth at each station is opposite the current state.
This finding indicates that the trend of decreasing snow depth will switch in the future to an increasing
trend. The area where snow depth will decrease in the future accounts for 54.9% of the total area.
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3.3.2. Validation of Future Predictions Based on the Hurst Exponent

To validate the accuracy of using the Hurst exponent to predict the snow depth trend in the future,
we validated the reliability of the H-based forecasting for the 16 climate stations. We divided the snow
depth over the past 40 years into two periods, 1979–2012 and 2013–2018, and calculated their trends
and Hurst exponents from 1979 to 2012 to predict the future annual snow depth change trend for the
period of 2013–2018. The results are shown in Table 4 and Annex Figure S1.

Table 4. Trends and Hurst exponents of snow depth over the period of 1979–2012 and the forecasts and
trends in snow depth over the period of 2013–2018.

Station
1979–2012 Hurst Forecast 2013–2018

a p H R2 a

50425 0.190 0.100 0.354 0.726 ↓ −2.660
50431 0.220 0.060 0.317 0.800 ↓ −0.829
50434 0.440 0.001 0.401 0.902 ↓ −0.890
50445 −0.400 0.050 0.451 0.931 ↑ 0.090
50514 0.240 0.003 0.429 0.892 ↓ −1.460
50524 0.390 0.002 0.318 0.604 ↓ −2.880
50525 0.260 0.009 0.390 0.870 ↓ −0.940
50526 0.760 0.000 0.413 0.888 ↓ −4.690
50527 0.370 0.002 0.320 0.814 ↓ 0.090
50548 −0.040 0.720 0.244 0.434 ↑ −1.400
50603 0.100 0.100 0.301 0.681 ↓ −1.170
50618 0.200 0.030 0.258 0.610 ↓ 0.180
50632 0.250 0.040 0.471 0.944 ↓ −0.400
50639 0.080 0.300 0.339 0.882 ↓ 0.510
50645 0.110 0.200 0.328 0.752 ↓ −1.400
50647 0.200 0.040 0.392 0.830 ↓ −0.130

Note: a, p, H, R2, ↑ and ↓ represent trend, significant level, Hurst index, goodness of fit, decreasing trend, and
increasing trend, respectively.

For the study area, there were 14 climate stations with an increasing trend in snow depth from
1979 to 2012, of which 10 stations exhibited p < 0.05. However, the H exponents of these 14 stations
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were all less than 0.5, and R2 exceeded 0.6. These findings indicate that the snow depth at these
stations will decrease in the future. The trend in snow depth during the period of 2013–2018 shows that
the trend at 11 climate stations was consistent with the predicted results and exhibited a decreasing
trend. For station 50445, the snow depth decreased from 1979 to 2012 and the H exponent was
0.451, indicating that the trend in snow depth in the future should be opposite to the current state.
The validation results show that the trend in snow depth over the period of 2013–2018 was positive.
Overall, 75% of the climate station snow depth predictions in the study area were accurate. Therefore,
this study demonstrates that using the Hurst exponent to predict the future snow depth tendency
is reliable.

4. Discussion

4.1. Variations in SWFs and Snow Depth

In the study area, there was considerable spatial heterogeneity between SWFs and snow depth.
The results of this study indicate that SWFs are mainly distributed in eastern Hulunbuir, which is
consistent with previous studies [8,36,38]. Liu et al. showed that grassland fires occur mainly in eastern
Hulunbuir (with low occurrence in the other areas) based on the MODIS active fire product over the
period of 2000–2014 [11]. This study showed that the land use patterns are quite different in the study
area. The eastern land use type is mainly cropland, the central and northern areas are mainly forest,
and the west is grassland and is sparsely populated. Li et al. reported that human activities are dense
and the land use degree is high in the eastern region. Thus, fire occurrence in the eastern region is
relatively high [52]. In addition, we showed that SWFs exhibited a decreasing trend over the past 18
years, and this was particularly large in 2003 and 2008.

Different from the spatial distribution of SWFs, snow depth in the middle of the study area was
higher, while the east and west exhibited relatively low snow depths. The terrain of the study area is
quite variable, and the central area includes the Greater Khingan Mountains. Because of its relatively
high altitude and low temperature, the snow is not easily melted, which contributes to higher snow
depth in the central part than in the east and west of the study area. In addition, we showed that
snow depth exhibited a strong increasing trend over the period of 2001–2018. These conclusions
are consistent with Wang et al., who, based on data at climate stations, studied the spatiotemporal
variation characteristics of snow depth in the Hulunbuir region and found that snow depth increased
during the period of 1960–2012 [53]. According to Zhong et al., the snow depth in the Hulunbuir area
increased from 1966 to 2012 [54].

4.2. Relationships between SWFs and Snow Depth

The results showed a strong negative correlation between SWFs and snow depth.
Previous research has shown that temperature, precipitation, and relative humidity are the main
meteorological factors that affect wildfire occurrence [8,11,55]. Snow has a different influence on
the surface humidity and the LST after it enters the melting period, and the surface humidity and
temperature are the main climatic factors influencing wildfires. In this paper, we chose the LSWI and
LST to evaluate the indirect impacts of snow depth on SWFs.

The results of this study showed that snow depth had a positive correlation with the spring LSWI
and a negative correlation with the LST. That is, as snow depth increased, the LSWI also increased,
and the LST showed a decreasing trend. This finding is similar to that of Liu et al., who found that
snow in the permafrost regions of northeast China has a positive correlation with annual humidity
and a negative correlation with temperature, which has a strong relationship with temperature [56].
We found that areas with higher snow depth had lower LSTs and higher LSWI values; however, SWFs
were less likely to occur in these areas. In contrast, SWFs were more likely to occur in areas with lower
snow depth. The LSWI in these places was relatively low, while the LST was higher. The LSWI in the
eastern and western regions of the study area showed an increasing trend, while the SWF in the east
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was more likely because the average LSWI in the area was lower. These findings extended those of
Zhang et al. [12] and confirmed that the occurrence of SWFs was not only related to land use patterns
and climatic factors during the fire occurrence but also closely related to winter snow. Our results
provide an updated method and technical support for this type of wildfire disaster management.
Additionally, these results expand the theory and methods of wildfire occurrence research and promote
the research of disasters and disaster chains by enabling decision-makers to determine the possibility
of wildfire in the spring of the next year according to the snow depth in the previous year and to
prepare for disaster prevention.

4.3. Future Prediction of Snow Depth in the Hulunbuir Region

The results showed that snow depth in the study area exhibited an increasing trend over the past
40 years, and the results of the R/S analysis indicated that snow depth will decrease in the future.
At the same time, we applied the mean snow depth data from 1979 to 2018. Morlet wavelet analysis
showed that snow depth in the study area had obvious cyclical changes. After 1995, there was a
relatively stable five-year cycle with a downward trend (Annex Figure S2). The results are consistent
with the results of Wang et al. [53]. Furthermore, the prediction of snow depth at 16 climate stations in
the study area was verified, and the prediction results of 12 climate stations were correct, indicating
that it is feasible to use the Hurst exponent to predict the future trend in snow depth in Hulunbuir.
In the future, the snow depth is expected to decrease across the Hulunbuir region. Therefore, wildfire
prevention should be enhanced in the future spring seasons. In spring in Hulunbuir, the opening of
fire prevention roads must be planned and fire prevention stations must be set up according to the
previous year’s snow depth conditions. In addition, to prevent wildfires, more fire prevention roads
should be opened, more fire prevention stations should be set up, and more fire prevention materials
should be stored in locations where SWFs are most likely to occur.

4.4. Uncertainty

Although our results are well correlated, certain influential factors are worth noting. For example,
the topography is quite variable in the study area. The central part belongs to the Greater Khingan
Mountains. Thus, the elevation is high and the temperature is relatively low. Therefore, snow is slower
to melt after spring, which may lead to relatively large LSWI values and fewer wildfire occurrences.
Moreover, it may be possible that human activities decrease as the slope increases. Hulunbuir is a
region with high wildfire occurrence. Additionally, the snow depth data used in the methods of this
paper were derived from discrete point data from climate stations. The advantage of this method is that
it is simple and easy to implement, and the disadvantage is that the accuracy decreases as the distance
from the observation site increases. Moreover, the interpolation method itself may impact the results.
We used the Hurst exponent to predict the future snow depth trend in Hulunbuir. The disadvantage is
that this analysis cannot predict how long the anticipated snow depth trend will continue in the future,
and it is thus suitable for short-term trend prediction analysis. In future work, we should attempt to
use the long-term series data for snow depth and SWFs to evaluate and analyze the influence of snow
on wildfires in Hulunbuir. Additionally, we will consider more influential factors to make the analysis
of the influencing factors of wildfires more comprehensive.

5. Conclusions

In this paper, we used SWFs extracted from the MCD64A1 dataset collected over the period of
2001–2018 and snow depth data to analyze the effect of snow on wildfire occurrence in Hulunbuir.
The main influencing factors of LSWI and LST were selected to evaluate the indirect effect of snow
depth on SWFs. The results provide a good reference for spring wildfire prevention.

Over the past 18 years, the area of SWFs gradually decreased, and there were more SWFs in 2003
and 2008. The frequency distribution and KDE results of SWFs showed that the main area of SWF
occurrence was in the eastern part of the study area, and the SWFs in this area accounted for 88.59%
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of all SWFs. In contrast to the spatial distribution of SWFs, snow depth in the middle of the study
area was higher, while the east and west exhibited relatively low snow depths. Snow depth generally
showed an increasing trend over the period of 2001–2018 and was mainly distributed in the east and
west of the study area, while the snow depth in the Greater Khingan Mountains showed a decreasing
trend. The temporal correlation coefficient between snow depth and SWFs was −0.516, while their
spatial correlation coefficient was −0.17. Therefore, as the snow depth increases, the SWFs decrease,
and the shallow snow depth area may have more SWF and vice versa.

Temperature and humidity are necessary external conditions for SWFs to occur. Our results
also found that snow depth affected spring SWFs through influencing the spring LSWI and LST.
The correlations between snow depth and the LSWI and snow depth and the LST showed that in
regions where the snow depth was lower, the spring LSWI was lower and the LST was relatively high;
these sites were more prone to SWFs and vice versa. In the future, the decreased snow depth will
enhance the potential for SWFs in Hulunbuir. Thus, by using the snow information in the previous year,
local fire officers may judge the possibility of SWFs in the next spring and make as much preparation
as possible for the fire prevention.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/3/321/s1,
Figure S1: Trends of snow depth over the period of 1979–2012, 2013–2018 in the study area, Figure S2: 16 stations
Morlet wavelet of snow depth in Hulnbuir during 1979–2018, Table S1: Trends and Hurst exponents of 16 climate
stations snow depth over the period of 1979–2018 and the forecasts and trends in future.
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