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Abstract: In order to monitor the prevalence of wheat powdery mildew, current methods require
sufficient sample data to obtain results with higher accuracy and stable validation. However, it is
difficult to collect data on wheat powdery mildew in some regions, and this limitation in sampling
restricts the accuracy of monitoring regional prevalence of the disease. In this study, an instance-based
transfer learning method, i.e., TrAdaBoost, was applied to improve the monitoring accuracy with
limited field samples by using auxiliary samples from another region. By taking into account the
representativeness of contributions of auxiliary samples to adjust the weight placed on auxiliary
samples, an optimized TrAdaBoost algorithm, named OpTrAdaBoost, was generated to map regional
wheat powdery mildew. The algorithm conducts this by: (1) producing uncertainty associated with
each prediction based on the similarities, and calculating the representativeness contribution of all
auxiliary samples by taking into account the overall uncertainty of the wheat powdery mildew map;
(2) calculating the errors of the weak learners during the training process and using boosting to filter
out the unreliable auxiliary samples by adjusting the weights of auxiliary samples; (3) combining all
weak learners according to the weights of training instances to build a strong learner to classify disease
severity. OpTrAdaBoost was tested using a dataset with 39 study area samples and 106 auxiliary
samples. The overall monitoring accuracy was 82%, and the kappa coefficient was 0.72. Moreover,
OpTrAdaBoost performed better than other algorithms that are commonly used to monitor wheat
powdery mildew at the regional level. Experimental results demonstrated that OpTrAdaBoost was
effective in improving the accuracy of monitoring wheat powdery mildew using limited field samples.

Keywords: remote sensing; wheat powdery mildew; monitoring; transfer learning; TrAdaBoost

1. Introduction

Wheat powdery mildew is caused by the fungus Blumeria graminis and is one of the most common
diseases that result in significant loss of crop yield and quality in China [1–3]. Recently, wheat powdery
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mildew has spread from Southwestern China to Eastern and Northern China. In addition to its
wider geographic range, the disease has also become more frequent and severe over the years [1,4].
According to the statistics of the China’s National Agricultural Technology Extension and Service
Center (NATESC), the annual average outbreak area for powdery mildew was 10 million ha over the
last 17 years [5]. Accurate monitoring of wheat powdery mildew at the regional level is important for
food security and environmental protection [6]. Traditionally, wheat powdery mildew is monitored by
visual inspection of individual plants, which is time-consuming and inefficient [7]. In recent years,
a new satellite-based remote sensing technology has become a more viable option for managing and
controlling agricultural practices [3,6,8–10].

Wheat powdery mildew is monitored by remote sensing technologies based on changes in
transpiration rate, chlorosis, leaf color, and morphology in infected plants, which in turn affects
the spectral reflectance properties of wheat [8]. Wheat powdery mildew occurrence and severity at
the regional level are currently modeled using statistical analysis and machine learning methods.
Statistical analysis methods, such as regression analysis, discriminant analysis, and distance analysis
could be used to fit the relationship between the occurrence and severity of wheat powdery mildew
and spectral features. In these methods, the spectral features that are sensitive to the wheat powdery
mildew are selected and the mathematical model is directly built to provide accurate identification
of the disease [11–15]. Machine learning methods, such as decision tree, support vector machine
(SVM), and Bayes classification, can learn from samples and devise complex models to detect the
relationship between wheat powdery mildew and spectral features. The machine learning algorithms
can achieve data-driven modeling, and therefore, models can overcome following strictly static
program instructions [16–18].

The existing methods for monitoring wheat powdery mildew at the regional level do not always
meet the needs of agricultural management due to the difficulty of collecting field samples [19].
In general, data from intensive ground surveys is required to model wheat powdery mildew and to
validate the model, but there are several factors that make the collection of wheat powdery mildew data
difficult. Wheat powdery mildew symptoms are visible at the end of booting stage (Zadoks stage 4)
through to the milk-ripening stage (Zadoks stage 7); therefore, the disease can be detected visually for
only a short period of time [3]. In addition to this, field sampling is often expensive, since an expert’s
interpretation is required to detect the disease, and once field data is collected, the post-processing
of data is often time-consuming. Although the development of drones provides an alternative to
traditional methods in obtaining field samples spatially, operating with drones requires lots of effort in
the preflight phase, flying, and the post-processing of images, and it is often expensive to use drones
when a large area of field needs to be monitored. Taken together, it is difficult to collect sufficient field
data for wheat powdery mildew, making it difficult to accurately monitor the disease.

Limited training data is a common problem in remote sensing applications. Many approaches
have been used to mitigate small training samples, including data augmentation, unsupervised
training, and transfer learning [19]. Data augmentation generates a large number of training data
using label-preserving transformations [20], such as affine transformations, rotations, and small
patch removal, and data augmentation is often applied when processing remote sensing images.
Unsupervised training, where training labels are not required, is widely used to detect objects and
change [21,22]. Transfer learning is a methodology to accurately classify the data of target domain
by using auxiliary domains [23,24], which has been applied in remote sensing to increase the quality
and quantity of samples. For example, Othman et al. [25] used labeled data on landscapes from an
auxiliary domain to build a land-use classification system. The model performed well on public
datasets from University of California Merced and Banja-Luka LU. Ghazi et al. [26] used transfer
learning to fine-tune pretrained models, including GoogLeNet, AlexNet, and VGGNet. The authors
then developed a classification system for plant identification that achieved an overall accuracy of
80% on the validation set and an overall inverse rank score of 0.752 on the official test set. TrAdaBoost
is an instance-based transfer learning method that is used to address inductive transfer learning
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problems [27]. Lv et al. [28] integrated TrAdaBoost with Bagging (Bootstrap aggregating) to build a
concept extraction model. Three datasets named BETH, PARTNERS, and BETHBIO were employed to
show the effectiveness of the concept extraction model. The proposed model outperformed the baseline
model by 2.3% and 4.4% when the baseline model was trained by training data that was combined
from the source domain and the target domain in two experiments of BETH versus PARTNERS
and BETHBIO versus PARTNERS, respectively. Li et al. [29] used feature selection and enhanced
TrAdaBoost to classify microscopic images of interregional sandstones and generated an effective and
valid method to classify images. However, thus far, the use of transfer learning techniques for crop
disease monitoring has received limited attention and there are very few studies that explore whether
these approaches can improve the accuracy of crop disease minoring.

In this study, we applied TrAdaBoost to improve the monitoring accuracy of wheat powdery
mildew with limited study area samples using auxiliary samples from another region. We defined
a quantity named ‘Representativeness’, which indicates the ability of sample data to represent the
disease severity–features relationships throughout a study area for reliable model calibration or
construction. We hypothesized that limited field samples cannot represent the study area, and auxiliary
samples could be used to improve the representativeness of study area samples. Taking this
into account, we proposed an optimized TrAdaBoost algorithm (OpTrAdaBoost), which took the
representativeness contribution of auxiliary data into consideration to adjust the weights of the
auxiliary samples, to monitor wheat powdery mildew. The features that can indicate crop growth
status and environmental characteristics were used as input of OpTrAdaBoost. The performance of
OpTrAdaBoost was evaluated and compared with other commonly used algorithms, including the
Mahalanobis distance, partial least square regression, Fisher’s linear discriminant analysis, logistic
regression, and support vector machine. We found that different algorithms exhibited different
traits in mapping the intensity of powdery mildew, and OpTrAdaBoost performed the best among
these algorithms.

2. Materials and Methods

2.1. Study Area and Data

Two field sites were investigated (Figure 1). The study area (108◦24′7′′E, 34◦25′12′′N) was the
Western Guanzhong Plain, located in Shaanxi province, China, where the major crop type is winter
wheat. The region has a temperate humid continental monsoon climate, where the annual mean
temperature ranges from 9.9 to 15.8 ◦C and the annual mean rainfall ranges from 500 to 700 mm [30].
The main land formation of this area is the Weihe Plain, and its terrain is higher in the southern and
northern areas and lower in the central and eastern areas [31]. The growing season for wheat is from
September to June. Due to the long-term application of organic fertilizers, this region has a fertile
agricultural soil, termed Lou soil (manural loessial soil) and classified as Eum-orthic Anthrosol [32].
According to the local agricultural management department, powdery mildew is a common disease in
this region.

The auxiliary area (114◦57′3′′E, 37◦55′51′′N) was a suburban area of Shijiazhuang, in Hebei
province. This region also has a temperate humid continental monsoon climate with an annual mean
temperature of 12–13 ◦C and annual precipitation of 400–800 mm [6,33]. Abundant sunshine and
suitable temperature make it suitable for crop growth. The region has concentrated areas of farmland
and the growing season for wheat is also from September to June. The major soil type in this region
is Haplic Luvisols [34]. Powdery mildew, which is sensitive to local climate and environmental
conditions, is reported to be a common disease.
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Figure 1. The location and sampling sites of the two areas: Western Guanzhong Plain (left) and
suburban farmlands of Shijiazhuang (right). Yellow dots indicate locations that were sampled for
wheat powdery mildew.

The field survey experiment was arranged in both areas. A total of 145 plots were surveyed for
damage caused by wheat powdery mildew as ground truth data in May 2014 (Figure 1). Thirty-nine
samples were acquired from the study area, and 106 samples were acquired in the auxiliary area.
The sampling design was based on the Rules of Investigation and Forecast of Wheat Powdery Mildew
(NY/T 613-2002). Five 1 × 1-m ranges were uniformly selected at a 30 × 30-m spatial range to match
the spatial resolution of Landsat 8 images. The central latitude and longitude of each plot were
recorded by a submeter precision handheld global positioning system (GPS). The occurrence of wheat
powdery mildew was noted in the survey. The disease severity represents the percentage of each leaf
that was damaged and it was categorized in 10 classes: 0% (class 0), 1–10% (class 1), 11–20% (class 2),
21–30% (class 3), 31–40% (class 4), 41–50% (class 5), 51–60% (class 6), 61–70% (class 7), 71–80% (class 8),
and 81–100% (class 9). After that, the disease index (DI) of each plot was calculated using:

DI = ∑(di × li)
n× L

× 100%, (1)

where di is the class of disease severity, li is the number of leaves in each class, n is the highest level
of disease severity, and L is the quantity of all selected leaves. Regions were categorized following
the guidelines of the National Plant Protection Department [3]: regions with DI = 0% were labeled as
normal, regions with 0% < DI ≤ 30% were labeled as slightly diseased, and regions with DI > 30% was
labeled as seriously diseased.

The other data used in this study consists of remote sensing data and environmental data, which
are summarized in Table 1.
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Table 1. Data used in the study.

Region Type of Data Source of Data Acquired Time Spatial
Resolution

Time
Resolution

Western
Guanzhong Plain

Remote
sensing data Landsat 8/OLI 2014.5.11 30 m 16 days

Environmental
data

Climate Hazards Group Infrared
Precipitation with Station data

(CHIRPS) [35]
2014.3.1–2014.5.11 0.05◦ 1 day

The MODIS/Terra Land Surface
Temperature and Emissivity

(LST/E) product (MOD11A1)
2014.3.1–2014.5.11 1 km 1 day

Field
survey data Fieldwork 2014.5.8—2014.5.10

Suburban area
of Shijiazhuang

Remote
sensing data Landsat 8/OLI 2014.5.22 30 m 16 days

Environmental
data

Climate Hazards Group Infrared
Precipitation with Station

data (CHIRPS)
2014.3.1–2014.5.22 0.05◦ 1 day

The MODIS/Terra Land Surface
Temperature and Emissivity

(LST/E) product (MOD11A1)
2014.3.1–2014.5.22 1 km 1 day

Field
survey data Fieldwork 2014.5.23—2014.5.28

2.2. Remote Sensing Data

A radiometric calibration and an atmospheric correction for Landsat-8 images were conducted
using ENVI 5.3 [30]. A radiometric calibration was carried out to convert calibrated digital numbers
(DNs) to at-sensor radiance [36]. Atmospheric correction was used to remove the effects of the
atmosphere on the reflectance values of images taken by satellite sensors [37]. MOD11A1 generates
per-pixel temperature and emissivity values, which are recorded on a daily basis using the generalized
split-window LST algorithm [38]. The daily LST of each region was acquired by averaging the daytime
LST and nighttime LST.

The temporal dynamics of powdery mildew are primarily influenced by temperature and
humidity [39,40], and therefore the average LST and precipitation during March to May was calculated
using CHIRPS and daily LST data. The spectral vegetation indices, which are sensitive to wheat
powdery mildew, were also utilized to monitor disease. The normalized difference vegetation index
(NDVI) and enhanced vegetation index (EVI) were inversed to measure crop growth [41–43]. Wetness
and greenness, which are generated using tasseled cap transformation, were also inversed to indicate
the field habitat characteristics [6]. These indices had been used to monitor wheat powdery mildew in
previous studies [6,44] and were calculated using the following equations:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

, (2)

EVI = G
ρNIR − ρRed

ρNIR + C1 × ρRed − C2 × ρBlue + L
, (3)

Wetness = w1 × b1 + w2 × b2 + w3 × b3 + w4 × b4 + w5 × b5 + w6 × b6, (4)

Greenness = g1 × b1 + g2 × b2 + g3 × b3 + g4 × b4 + g5 × b5 + g6 × b6 (5)

where ρNIR, ρRed, and ρBlue in Equations (2) and (3) represent the reflectance of near infrared (NIR), red,
and blue, respectively. The values of L, C1, C2, and G in Equation (3) were determined using a previous
publication [45]. L is the canopy background adjustment that addresses nonlinear, differential NIR,
and red radiant transfer through a canopy; G is the gain factor; and C1 and C2 are the coefficients of the
aerosol resistance term, which uses the blue band to correct for aerosol influences in the red band [46].
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The wi and gi (i = 1, 2, . . . , 6) indicate the corresponding coefficient for each band in the Landsat-8 OLI
image, and bi (i = 1, 2, . . . , 6) indicates the reflectance. The values of wi and gi are included in Table 2.

Table 2. Tasseled cap transformation coefficients for Landsat 8 OLI images.

Index

Band

1 2 3 4 5 6
Blue Green Red NIR SWIR-1 SWIR-2

0.45–0.51 µm 0.53–0.59 µm 0.64–0.67 µm 0.85–0.88 µm 1.57–1.65 µm 2.11–2.29 µm

Wetness 0.1511 0.1973 0.3283 0.3407 −0.7117 −0.4559
Greenness −0.2941 −0.243 −0.5424 0.7276 0.0713 −0.1608

2.3. Optimized TrAdaBoost Algorithm (OpTrAdaBoost) for Disease Monitoring

TrAdaBoost is a boosting method for transfer learning, which iteratively selects suitable instances
from an auxiliary domain to assist in training the accuracy classifier for the target domain by adjusting
the weights of labeled instances in both the auxiliary and target domain iteratively [29]. In TrAdaBoost,
the training data in the target domain is called same-distribution training data, and the training data
in the auxiliary domain is called the diff-distribution training data. In each iteration, all training data
is used to train a weak learner and the labels of all training instances are predicted using this weak
learner, and then the weights of training instances are adjusted according to the error of the weak
learner on these instances. After several iterations, the instances that help the learning algorithm to
train better classifiers are selected [47].

The support vector machine with radial basis function kernel (RBFSVM) [48,49] was applied as
the weak learner in TrAdaBoost. At the initialization of the algorithm, an initial weight vector w was
given, and the initial weight values of all samples were equal. The maximum number of iterations
N was also determined. Per iteration, some samples were taken out from the auxiliary samples and
study area samples, respectively. The removed samples were used to train a RBFSVM, and the weight
of a sample indicated the probability of this sample to be selected to train the RBFSVM. At the end of
each iteration, the error of RBFSVM on each training sample was calculated using:

errort
i = |ht(xi)− c(xi)|, (6)

in which ht(xi) is the label of sample i predicted by RBFSVM in the tth iteration and c(xi) is the real
label of sample i. If an auxiliary training sample was wrongly predicted, the sample likely conflicted
with the study area sample. Then, we decreased its weight to reduce its effect, where in the next round,
the misclassified auxiliary training sample would affect the learning process less than the previous
round. In contrast, if a study area training sample is wrongly predicted, we increased its weight to
improve its effect in the next round. Through this mechanism, the auxiliary samples that were useful
for improving the representativeness of study area samples and similar to the study area samples were
selected (Figure 2, black cross and blue circles).

However, the learning effect of TrAdaBoost was not satisfied if the mechanism for auxiliary
weights adjustment relied only on the error of RBFSVM on auxiliary data. This is because RBFSVM
discarded auxiliary samples that enriched the representativeness of study area samples but did not
fit the study area samples (Figure 2, black cross and red circles). In order to enhance the accuracy of
monitoring wheat powdery mildew, we took the representativeness contribution of auxiliary data into
consideration when adjusting the auxiliary weights, and created OpTrAdaBoost. The calculation of
representativeness contribution is described as follows:

The severity of wheat powdery mildew at the unvisited location of study area was predicted
based on similarities to visited locations and disease severity at the visited locations. We produced
uncertainty associated with each predication based on the similarities of the locations. In the
experiment, the uncertainties of the unvisited locations in the study area were calculated based
on samples from the study area. Then, each sample from the auxiliary dataset was added to the
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study area dataset to reduce the overall uncertainty, and the amount of reduction was used as the
representativeness contribution of the auxiliary sample. Specifically, the following steps were taken:

i. Calculate similarity at the feature level. Similarity was calculated using NDVI, EVI, wetness,
greenness, average LST, and average precipitation. Equation (3) in [50] was used to estimate
similarities of unvisited locations to the study area samples at the feature level, because a
Gaussian-shaped function is superior in determining their similarities:

Sv,j,i = exp

 (
evj − evi

)2

2
(

SDev ×
SDev
SDevi

)2

, (7)

in which evj and evi are values of the vth feature at the two locations, SDev is the standard
deviation of the vth feature in the study area, and SDevi is the square root of the mean deviation
of the values of the vth feature at all unvisited locations (j = 1, 2, 3, . . . , p) from that at sample
location i; SDevi is quantified as:

SDevi =

√√√√∑
p
j=1

(
evj − evi

)2

p
(8)

ii. Integrate feature-level similarities at the sample level and evaluate prediction uncertainty
at each unvisited location. The weighted average method was used to integrate feature level
similarities [51] because features have different weights in the process of disease monitoring.
The relative weight for every feature was calculated using a factor analysis [52]. The similarities
between an unvisited location j and a study area sample i at the sample level were determined
as follows:

Sj,i = w1 × S1,j,i + w2 × S2,j,i + . . . + wk × Sk,j,i, (9)

where Sj,i represents the similarity between unvisited location j and sample location i at
the sample level,wk (k is the number of features) is the weight of feature k calculated using
factor analysis, and Sk,j,i is the similarity between unvisited location j and sample location i at
feature k, which is calculated in step (i). The prediction uncertainty at each unvisited location
was calculated using Equation (6) in [50] because the uncertainty measurement is basically a
measurement of how reliable it is to use existing samples to represent a given unvisited location:

Uncertaintyj = 1−max
(
Sj,1, Sj,2, . . . , Sj,m

)
(10)

where m is the size of study area samples, and a larger prediction uncertainty was assigned
to unvisited locations that had divergent crop growth status and environmental conditions
compared to the study area samples.

iii. Calculate prediction uncertainty with additional auxiliary samples. An auxiliary sample was
added to the study area samples and the prediction uncertainty at each unvisited location
was calculated by repeating steps (i) and (ii). After this step, another auxiliary sample was
added to the study area samples and the prediction uncertainty at each unvisited location
was calculated again. Note that when a new auxiliary sample was added into the study area
samples, the previous auxiliary sample was removed, and there was only one auxiliary sample
per iteration.

iv. Evaluate the representativeness contribution of auxiliary samples. Taking auxiliary sample i
as an example, the uncertainty maps before and after adding auxiliary sample i were produced
through steps (i), (ii), and (iii). The representativeness contribution of auxiliary sample i was
quantified as:
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Contribution = Mi ×Vi (11)

where Mi is the number of pixels at which the prediction uncertainty was reduced after adding
auxiliary sample i and Vi is the amount of reduction of overall prediction uncertainty after
adding auxiliary sample i.
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These four steps were iterated until the representativeness contributions of all auxiliary samples
were calculated. Following these steps, a normalization operator was applied to scale the values
of representativeness contributions of all auxiliary samples to make them fit in a range from 0 to 1.
Eventually, the weight vector was adjusted using the following equations in each iteration:

wt+1
i =

{
wt

iβ
errort

i×(1−Contributioni), 1 ≤ i ≤ n
wt

iβt
−errort

i , n + 1 ≤ i ≤ n + m
, (12)

where n is the size of auxiliary data, m is the size of study area data, and wt
i is the weight of sample i in

the tth iteration. β and βt were defined using a previous publication [47]. β is a change rate for the
multiplicative updates of auxiliary weights, which is calculated using n and N, and β ∈ (0, 1). Note that
βerrort

i×(1−Contributioni) decreases with the increase of errort
i and βerrort

i×(1−Contributioni) increases with
the increase of Contributioni. Thus, in the next round, the auxiliary samples, which are misclassified
in the current round but are useful for improving the representativeness of study area samples, also
could have higher weights. βt is a change rate for the multiplicative updates of study area sample
weights and βt ∈ (0, 1], βt, and βt

−errort
i all increase with the increase of errort

i . Thus, the study area
samples, which are misclassified in the current round, will have higher weights in the next round.
In the end, the labels of unvisited locations were predicted as in the following:
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h(x) =

 1, ∏N
t= N

2
β
−ht(x)
t ≥ ∏N

t= N
2
β
− 1

2
t

0, otherwise
(13)

Since samples in this study were divided into three groups: health, slightly infected, and seriously
infected, this algorithm needed to categorize instances precisely into one of the three classes. In our
experiment, the multiclassification was achieved based on a one-versus-one approach [53]. We had
trained three OpTrAdaBoost classifiers in the experiment; each classifier receives the samples of a pair
of classes from the training dataset and learns to distinguish these two classes. When monitoring the
wheat powdery mildew, a voting scheme is applied: all three OpTrAdaBoost classifiers were applied
to an unvisited location and the class that got the highest number of votes got predicted. Figure 3
shows the flowchart of the overall methodology.Remote Sens. 2018, 10, x FOR PEER REVIEW    9  of  19 
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2.4. Existing Algorithms for Disease Monitoring

We selected five commonly used methods, the Mahalanobis distance (MD), partial least square
regression (PLSR), Fisher’s linear discriminant analysis (FLDA), logistic regression (LR), and support
vector machine (SVM), to compare with our algorithm OpTrAdaBoost. The existing methods are
widely utilized to monitor disease outbreaks. The parameter settings used for SVM were exactly the
same as those of OpTrAdaBoost, and Table 3 contains detailed descriptions of these methods.

Table 3. Characteristics of existing methods used in this study for disease monitoring.

Methods Full Name Description Literature

MD Mahalanobis distance
A direction-sensitive distance classifier

that uses statistics for each class and
assumes all class covariances are equal.

Richards, 1999 [54]

PLSR Partial least square
regression

A statistical method that finds a linear
regression model by projecting the

predicted variables and the observable
variables to a new space.

Herman, 1985 [55]

FLDA Fisher’s linear
discriminant analysis

A method used in statistics, pattern
recognition, and machine learning to
find a linear combination of features
that characterizes or separates two or

more classes of objects.

McLachlan, 2004 [56]

LR Logistic regression

A statistical method that is used to
describe the relationship between a

dependent variable and multiple
independent variables. It is less affected

by some non-normality of variables.

David, 2010 [57]

SVM Support vector machine

A supervised learning model that
divides the examples of the separate

categories by a clear gap that is as wide
as possible.

Hearst, 1998 [58]

3. Results

3.1. Influence of Parameters

The performance of OpTrAdaBoost was affected by the Gaussian width (σ) of the RBFSVM,
regularization parameter (C) of the RBFSVM, number of samples (S) used to train the RBFSVM per
iteration, and maximum number of iterations (N). Classification results of OpTrAdaBoost were used
to find suitable values for C, σ, N, and S. Since we did not have enough samples in the study area to
partition it into training and test datasets, the leave-one-out cross validation was used to evaluate the
generalization performance. The value of σ varied from σmin to σmax, where σmin was the minimal
Euclidean distance of all training samples in the input space and σmax was the scatter radius of all
training samples. The values of C, N, and S varied from 1 to 200, 1 to 50, and 1 to 65, respectively.
For each variable, the experiment was repeated 10 times and the average accuracy was calculated
(Figure 4). In general, the curve of each variable is a little noisy and it may have to do with the fact
that the leave-one-out cross validation produces “noisy” (high-variance) results in general. Also,
we observed that:

(1) When C was small, variation of C led to some variation in the accuracy of disease classification.
In general, the classification accuracy increased as C increased, and then the classification accuracy
fell to 58%. After that, the classification accuracy increased again until it reached 0.75. In the end,
the variation of C had little effect on the final generalization performance. One likely reason was
that when N was fixed and C was increasing, the value of the loss function of the RBFSVM for
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samples that were predicted incorrectly became higher. This can lead to faster weight adjustment
of the training instance, so that new samples had the chance to be chosen to train the weak learner.
When all samples had been chosen to train the weak learners, the accuracy became stable.

(2) The curve of σ was quite different from C, where a small bulge at the left top corner was observed,
suggesting that the classification accuracy rose slightly until σ increased to a certain value. Then,
the classification accuracy decreased gradually as σ increased. This suggests that the variation of
σ has a larger impact on the final performance of OpTrAdaBoost compared to C.

(3) S and N showed similar influence on OpTrAdaBoost. The classification accuracy increased
quickly to the highest value and then became stable. However, the variation of S led to a larger
change of classification accuracy than N before classification accuracy reached a “steady state”,
suggesting that S has a stronger impact on the performance of OpTrAdaBoost than N.Remote Sens. 2018, 10, x FOR PEER REVIEW    11  of  19 
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3.2. Comparison of Different Algorithms

We compared OpTrAdaBoost with five existing algorithms using the leave-one-out cross
validation to evaluate the general performance of these algorithms. First, we evaluated the classification
accuracies of the five commonly used algorithms using two training datasets: a dataset consisting
only of study area samples (T1) and a dataset consisting of both auxiliary and study area samples
(T2) (Table 4), and the accuracy of classification varied significantly for different algorithms. On
T1, the overall accuracy varied from 49% to 74%, and on T2, the overall accuracy varied from 44%
to 62%. FLDA, LR, PLSR, and SVM yielded higher accuracy on T1 than T2; however, MD yielded
higher accuracy on T2 compared to T1. Among the five commonly used algorithms, FLDA and SVM
had the highest classification accuracy on T1 (74%) and MD performed the worst on T1 (49%). SVM
produced the highest classification accuracy on T2 (62%), and FLDA produced the worst performance
on T2 (44%).
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Table 4. The classification accuracy of five commonly used algorithms on two different training datasets.

Training Dataset
Algorithm

FLDA LR MD PLSR SVM

T1 74% 67% 49% 59% 74%
T2 44% 54% 54% 49% 62%

We next compared the performance of OpTrAdaBoost on the T2 dataset to the performances of
the five commonly used algorithms on the T1 dataset (Table 5). We did not compare results of the T2

dataset because the existing algorithms did not produce higher classification accuracy on the T2 dataset.
We found that the accuracy indices of the disease classifications varied significantly by algorithm, with
overall accuracy ranging from 49% to 82% and the kappa coefficient ranging from 0.02 to 0.72 (Table 5).
When comparing the six algorithms, OpTrAdaBoost performed better than the other algorithms.

The user’s accuracy and producer’s accuracy of slightly infected, heavily infected, and healthy
classes reflected the commission error and omission error of each class (Table 5). For the healthy
class, the user’s accuracy varied from 50% to 82% and producer’s accuracy varied from 9% to 91%.
MD had lowest user’s accuracy and producer’s accuracy, which indicated that it performed worst
in identifying healthy samples. OpTrAdaBoost produced the highest producer’s accuracy of 91%,
and the user’s accuracy was 71%, indicating that OpTrAdaBoost was able to accurately identify healthy
samples, but tended to misclassify diseased samples as healthy samples. For the slightly infected
class, MD had the highest producer’s accuracy and lowest user’s accuracy, suggesting that too many
healthy and seriously infected samples were misclassified as slightly infected samples when using
MD. FLDA, LR, PLSR, and SVM yielded moderate accuracy for identifying the slightly infected class,
and OpTrAdaBoost produced the highest user’s accuracy of 93%, and the producer’s accuracy was
74%, which indicated that it was able to accurately identify the slightly infected samples, but tended to
misclassify slightly infected samples as samples of other classes. As for the seriously infected class,
except for FLDA and OpTrAdaBoost, the other algorithms were unable to accurately identify the
seriously infected samples, as was indicated by the less than 70% accuracy of the user and producer’s
categorization of severely infected samples.

Additionally, all six methods had different capabilities in discriminating the three classes. MD
performed poorly in classifying both healthy and diseased samples. PLSR yielded moderate accuracy
for healthy samples, and low accuracies for slight and severe diseased samples. LR produced higher
overall accuracy compared to PLSR, and it performed better when classifying both the healthy and
diseased samples. SVM and FLDA had the same overall accuracy, while FLDA performed better in
identifying the seriously infected samples. OpTrAdaBoost produced the highest overall accuracy and
it is the only one algorithm that had over 70% user’s and producer’s accuracy for all three classes.
Taken together, OpTrAdaBoost was superior in discriminating in healthy samples and the two levels
of diseased samples.

3.3. Disease Mapping by OpTrAdaBoost

Using all features (NDVI, EVI, wetness, greenness, average LST, and average precipitation),
the infection map of powdery mildew was produced using OpTrAdaBoost (Figure 5). In general,
the Western region of the Western Guanzhong Plain had more infected areas and higher intensity of
powdery mildew compared to the eastern region, which is in agreement with our field observations.
A slightly infected area was located in the middle of the western region and seriously infected wheat
were distributed along the Northwest and Southwest regions. To visually compare the estimated and
the field infection data, samples were labeled with cross and circle signs in Figure 5. In the resulting
map, a correct estimation of the model was indicated with data points that have the same color of
the cross and circle sign. Overall, we found that most samples were correctly classified. However,
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the slightly infected samples tended to be misclassified as healthy, and seriously infected samples were
often misclassified in the Northern region as slightly infected.

Table 5. Overall verification results of five commonly used algorithms and OpTrAdaBoost.

Reference User’s
Accuracy (%)

Overall
Accuracy (%)

Kappa
Normal Slight Serious Sum

FLDA

Normal 9 5 0 14 64

74 0.61

Slight 2 11 0 13 85
Serious 0 3 9 12 75

Sum 11 19 9 39
Producer’s

accuracy (%) 82 58 100

TP rate (%) 82 58 100
Type I error 18 42 0
TN rate (%) 82 90 90
Type II error 18 10 10

LR

Normal 8 3 0 11 73

67 0.48

Slight 3 12 3 18 67
Serious 0 4 6 10 60

Sum 11 19 9 39
Producer’s

accuracy (%) 73 63 67

TP rate (%) 73 63 67
Type I error 27 37 33
TN rate (%) 89 70 87
Type II error 11 30 13

MD

Normal 1 1 0 2 50

49 0.02

Slight 10 18 9 37 49
Serious 0 0 0 0 0

Sum 11 19 9 39
Producer’s

accuracy (%) 9 95 0

TP rate (%) 9 95 0
Type I error 91 5 100
TN rate (%) 96 5 100
Type II error 4 95 0

PLSR

Normal 7 3 0 10 70

59 0.31

Slight 4 14 7 25 56
Serious 0 2 2 4 50

Sum 11 19 9 39
Producer’s

accuracy (%) 64 74 22

TP rate (%) 64 74 22
Type I error 36 26 78
TN rate (%) 89 45 93
Type II error 11 55 7

SVM

Normal 9 2 0 11 82

74 0.59

Slight 2 14 3 19 74
Serious 0 3 6 9 67

Sum 11 19 9 39
Producer’s

accuracy (%) 82 74 67

TP rate (%) 82 74 67
Type I error 18 26 33
TN rate (%) 93 75 90
Type II error 7 25 10

OpTrAdaBoost

Normal 10 3 1 14 71

82 0.72

Slight 1 14 0 15 93
Serious 0 2 8 10 80

Sum 11 19 9 39
Producer’s

accuracy (%) 91 74 89

TP rate (%) 91 74 89
Type I error 9 26 11
TN rate (%) 86 95 93
Type II error 14 5 7
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Figure 5. The infection map of powdery mildew in Western Guanzhong Plain produced by
OpTrAdaBoost. Green represents estimated healthy wheat, yellow represents estimated slightly
infected wheat, and red represents estimated seriously infected wheat. Green circles are healthy
samples, yellow circles are slightly infected samples, and red circles are seriously infected samples.
Green crosses are estimated healthy wheat at the location of samples, yellow crosses are estimated
slighted infected wheat at the location of samples, and red crosses are estimated seriously infected
wheat at the location of samples.

4. Discussion

Here, we found that the commonly used algorithms for monitoring crop disease were unable to
produce higher classification accuracy on datasets consisting of both auxiliary and study area samples
(see Section 3.2). The highest classification accuracy of the existing algorithms was 62% (Table 4) and
the average accuracy was 50%. This indicates that while auxiliary data can be used to improve a model,
it also introduces noise that can reduce the accuracy of the model. These algorithms do not have the
ability to extract information from the auxiliary data and discard the noise, and this likely resulted in
the low classification accuracy in these models when using auxiliary data.

We also found that the six algorithms (MD, PLSR, FLDA, LR, SVM, and OpTrAdaBoost) exhibited
different traits in mapping the intensity of powdery mildew (Table 5). MD performed worse than the
other methods and was unable to identify samples that were labeled as healthy and seriously infected.
This may have been caused by the smaller sample size of healthy and seriously infected samples in
our dataset, and the complex relationship between features (NDVI, EVI, wetness, greenness, average
LST, and average precipitation) and severity of powdery mildew. LR and PLSR are commonly used
algorithms for classification; however, their performance on our dataset was moderate. LR performed
better than PLSR in identifying the healthy and seriously infected classes. This was likely caused by the
PLSR’s use of principal components instead of original features to establish the relationship between
raw data and disease severity [59,60], thus the model lost some information from the original data,
which reduced its performance for monitoring disease. FLDA and SVM showed distinct characteristics
in disease monitoring. FLDA performed well in discriminating seriously infected samples, with over
70% user’s and producer’s accuracy of the seriously infected class. The producer’s accuracy of FLDA
was better than OpTrAdaBoost, and one likely reason was that OpTrAdaBoost also brought some noise
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when it extracted useful information from the auxiliary data. The noisy part of the seriously infected
samples had more effect on the learner because the appearances of seriously infected samples in the
study area and auxiliary area were different due to the difference in wheat cultivar. Despite this, FLDA
performed poorly in differentiating the slightly infected class, and its high value for user’s accuracy
and low value for producer’s accuracy for the slightly infected class indicated that FLDA overestimated
the healthy and seriously infected areas to a certain degree. FLDA is a classical method for projecting
high-dimensional feature vectors into a lower dimension through a linear transformation process that
best separates the data groups [61]. However, the field samples of different classes were not always
linearly separable, and FLDA does not perform well when the data is not linearly separable, which may
explain its poor performance in differentiating the slightly infected class. In contrast, SVM performed
better at identifying the slightly infected samples compared to FLDA. SVM can efficiently perform a
nonlinear classification using the kernel trick, implicitly mapping the inputs into high-dimensional
feature spaces, which may have resulted in its higher performance.

OpTrAdaBoost performed better than the exiting algorithms, especially in discriminating infected
and noninfected regions. For the healthy class of samples, OpTrAdaBoost had producer’s accuracy over
90%, overall accuracy over 80%, and kappa over 0.7. OpTrAdaBoost was also better at discriminating
slightly infected regions compared to the other algorithms, and its producer’s accuracy and user’s
accuracy for the slightly infected class were 73% and 93%, respectively. The good performance of
OpTrAdaBoost is likely due to two features. OpTrAdaBoost used RBFSVM as the weak learner in this
study, thus it had the advantages of SVM to effectively avoid overfitting the data by selecting proper
values of C and σ. In addition, OpTrAdaBoost also used auxiliary samples to monitor powdery mildew.
By adjusting the weight placed on the auxiliary samples, the algorithm extracted useful information
from the auxiliary data and used the additional information to improve the representativeness of study
area samples, thus improving the quantity and quality of training data. For the seriously infected class,
OpTrAdaBoost performed better than other algorithms except FLDA; future studies could synergize
their traits and combine the two algorithms to improve the accuracy in discriminating serious instances
from the others.

However, it should be noted that some limitations and challenges still remain in monitoring crop
diseases with OpTrAdaBoost at a regional scale. Firstly, more factors, such as crop cultivars, cultivation
procedures, management practices, etc., needed to be taken into consideration when choosing the
auxiliary area to reduce the noise caused by these factors. Secondly, the field samples of the study
area and auxiliary area were acquired at nearly the same time. Therefore, it is not clear whether
OpTrAdaBoost will perform well when field samples are acquired at different times. In addition,
some environmental variations, such as phenological difference, cultivation procedures, and soil types,
may also cause some confusions and uncertainties in disease monitoring given their similar feature
properties with disease. In future research, increased disease fieldwork with the above factors should
be considered when generating models to monitor disease at regional scales in a reliable manner.

5. Conclusions

Monitoring of wheat powdery mildew at a regional level is of practical importance for
agricultural management. In this study, we proposed an algorithm, OpTrAdaBoost, to monitor
wheat powdery mildew in the Western Guanzhong Plain using auxiliary field data acquired from
the suburban area of Shijiazhuang. From the dataset, a set of variables that can indicate crop
growth status and environmental characteristics were extracted, and a monitoring model based on
OpTrAdaBoost was developed. The performance of OpTrAdaBoost was compared to five commonly
used algorithms. All algorithms showed different traits when mapping the intensity of powdery
mildew, and OpTrAdaBoost performed the best among all algorithms. Our results suggest that the
OpTrAdaBoost algorithm proposed in this study is able to produce a reasonable wheat powdery
mildew damage map with an overall accuracy of 82%. Therefore, such a method could provide
an economic and efficient alternative to conventional methods, especially in the regions where the
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collection of data is difficult. Future studies should try to evaluate the performance of OpTrAdaBoost
when field samples are acquired at different times. Along with this, using more variables, such as soil
type, crop cultivars, and so forth, to develop a more comprehensive model to monitor crop disease may
help reduce the uncertainty level in the disease mapping process. Moreover, incorporating information
of inoculum source and physical processing models (e.g., the Susceptible Infected Recovered Model
(SIR Model)), which could describe the disease dispersal behavior and mechanism, will be expected to
facilitate the disease monitoring process.
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