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Abstract: Recently, methods based on Faster region-based convolutional neural network (R-CNN)
have been popular in multi-class object detection in remote sensing images due to their outstanding
detection performance. The methods generally propose candidate region of interests (ROIs) through
a region propose network (RPN), and the regions with high enough intersection-over-union (IoU)
values against ground truth are treated as positive samples for training. In this paper, we find that
the detection result of such methods is sensitive to the adaption of different IoU thresholds. Specially,
detection performance of small objects is poor when choosing a normal higher threshold, while a lower
threshold will result in poor location accuracy caused by a large quantity of false positives. To address
the above issues, we propose a novel IoU-Adaptive Deformable R-CNN framework for multi-class object
detection. Specially, by analyzing the different roles that IoU can play in different parts of the network,
we propose an IoU-guided detection framework to reduce the loss of small object information during
training. Besides, the IoU-based weighted loss is designed, which can learn the IoU information of
positive ROIs to improve the detection accuracy effectively. Finally, the class aspect ratio constrained
non-maximum suppression (CARC-NMS) is proposed, which further improves the precision of the
results. Extensive experiments validate the effectiveness of our approach and we achieve state-of-the-art
detection performance on the DOTA dataset.

Keywords: remote sensing imagery; anchor matching; Cascade R-CNN; IoU-based weighted loss;
non-maximum suppression

1. Introduction

Multi-class object detection is one of the main tasks in automatic analysis of remote sensing (RS)
images, it is indispensable in many applications such as urban management, traffic monitoring, search and
rescue missions, military uses [1,2] and so on. With the rapid development of RS technology, a large
number of high quality satellite and aerial images can be obtained more easily. In this case, more complex
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diversity changes in scale, direction and shape make automatic multi-class object detection in remote
sensing images more challenging, which has attracted more and more attention at the same time.

In the RS domain, newly introduced large-scale multi-class image datasets such as DOTA [3], NWPU
VHR-10 datasets [4], have provided the opportunity to leverage the applications of deep learning methods.
In order to obtain more accurate detection results, the region-based detection algorithm has become the
mainstream method for solving multi-class object detection problems [5–8]. All these algorithms are
modified for different problems based on the Faster R-CNN [9] detection framework, in which proposals
generated by the RPN are sent to the R-CNN network for classification and regression. However, we can
not achieve a satisfactory detection performance when we use the Faster R-CNN directly for multi-class
detection in remote sensing images.

Multi-scale object detection, especially small object detection, is the main problem in multi-class
object detection tasks in remote sensing images. Because small objects account for a larger proportion in
remote sensing images when compared to natural images. Using the Faster RCNN directly can lose a
lot of information about small objects during training. On one hand, the deeper layers of modern CNNs
have large strides (32 pixels) that lead to a very coarse representation of the input image, which makes
small object detection very challenging. On the other hand, the anchors of small objects tend to have
smaller IoU in the Faster R-CNN network. As shown in Figure 1, we have drawn all the positive anchor
boxes corresponding to the small objects. The image on the left shows the anchor boxes generated by the
common Faster RCNN framework. As there are only Res5 stage using the dilated convolutions, the stride
of the anchor is 16 pixels. We can find that many anchors corresponding to small objects can only get a
small IoU value, especially when the object is between two anchor boxes. In contrast, larger objects can
always get an anchor box with a large IoU. When the stride of anchors is reduced from 16 to 8 pixels, we
can get more reasonable anchor boxes as shown in the right image of Figure 1. In Figure 2, we present all
anchor boxes corresponding to small objects generated by the Faster R-CNN network. It can be seen that
the anchor box contains a large amount of image content that is not related to the object, and further lead to
a large number of small objects can not participate in the training of the detector which we will show in our
paper. Loss of small objects information during training leads to a poor small object detection performance.
In order to solve the problem of small object detection, some methods have been proposed. Guo et al. [8]
proposed a unified multi-scale convolutional neural network (CNN) for geospatial object detection in
high resolution satellite images and make sure that objects with extremely different scales could be more
efficiently detected. Another alternative employ dilated convolution to increase the resolution of the
feature map, such as modern object detectors [9–11]. All these methods are proposed based on increasing
the size of small objects on the feature map and improving the discriminability of small object features.
However, these methods do not take into account the correspondence of anchors and positive ROIs that
participating in network training with objects of different sizes.

The dense spatial transformations model problem in RS image object detection task has also received
more and more attention. As said by Xu et al. [6], CNN has inherent limitations in modeling geometric
variations shown in visual appearance and they introduce deformable Conv-Net to object detection in VHR
remote sensing imagery to solve the problem. Furthermore, they developed aspect ratio constrained non
maximum suppression (arcNMS) to remedy the increase in lines like false region proposals. Ren et al. [12]
adopted top-down and skipped connections to produce a single high-level feature map of a fine resolution,
improving the performance of the deformable Faster R-CNN model, but all these methods are trained
using similar losses to the R-CNN network and all positive ROIs with different IoU values are treated
equally during training. To make proposals with higher overlap to the ground truth can be scored more
highly, Zagoruyko et al. [13] propose to modify the classification loss Lcls to explicitly measure integral
loss over different IoU thresholds. The same method is applied to airport detection task in remote sensing
images [14] and has obtained more accurate detection results. However, this method needs to train multiple
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classifiers, and increasing the threshold of classifiers will result in a large reduction of positive samples in
training, which may result in classifiers with larger IoU threshold overfitting. Cascade R-CNN [15] can
solve the problem of overfitting caused by the reduction of positive samples. It is proposed to achieve high
quality object detection in which the IoU values before and after regression are analyzed. Cascade R-CNN
architecture is a multi-stage extension of the R-CNN, where detector stages deeper into the cascade are
sequentially more selective against close false positives with a higher IoU threshold. Motivated by the
observation that the output IoU of a regressor is almost invariably better than the input IoU, the cascade of
R-CNN stages is trained sequentially, using the output of one stage to train the next.

Figure 1. Anchor sampling in different SA. SA mean the stride of the anchors in different detection
framework. The green bounding box represents the anchor, the red represents ground-truth.

Figure 2. Small objects in the dataset and their corresponding positive anchors under the Faster R-CNN
framework. The GT box is represented by a red rectangle, and the positive anchors corresponding to the
GT box are represented by green rectangles. Numbers in the images are the average IoUs of the positive
anchors corresponding to the small objects.

In this paper, we propose a novel IoU-Adaptive Deformable R-CNN based on Deformable Faster
R-CNN model in order to improve small object detection performance and achieve a higher detection
accuracy. The main contributions of this paper are summarized as follows:

1. We explore to find that ROIs with different IoU values should be treated differently when they
participate in the network head training, and according to this, we propose the IoU-based weighted
loss to learn the network. With the results of the comparative experiments, it shows that using
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simple methods to introduce the influence of IoU values during training can significantly improve
the detection performance.

2. To reduce the loss of small object information during training, we propose a novel IoU-guided
detection framework, which is called IoU-Adaptive Deformable R-CNN (IAD R-CNN). In IAD
R-CNN, the number of dilated convolutions and the IoU threshold of the detectors for training is
determined by the IoU value of the anchor box which corresponding to the small object, and the
cascade R-CNN architecture is introduced to get a better overall detection performance. The IAD
R-CNN is trained with the IoU-based weighted loss, and achieves the state-of-the-art detection
performance on the DOTA dataset without bells and whistles.

3. As Xu et al. said [6], the deformable Conv-Net structure could generate the line like false region
proposals (LFRP), they proposed the arcNMS to remove these LFRP during NMS process. However,
there are large differences in the aspect ratio distribution of different categories of samples in remote
sensing images. Thus we propose a Class Aspect Ratio Constrained NMS (CARC-NMS) to remove
the LFRP in our results. The aspect ratio range of different categories of samples is used to detect
anomaly bounding boxes generated by our network, which can be used to constrain the number of
false positive proposals in detection results and improve the precision.

The rest of this paper is organized as follows. Section 2 introduces the various parts of our
IoU-Adaptive Deformable R-CNN with the IoU-based weighted loss. The last subsection of Section 2
proposes the CARC-NMS, we list the differences in the aspect ratio ranges and describe how to determine
the reasonable range of aspect ratios for each category. Section 3 presents the datasets and experimental
settings. The results of our methodology and other approaches in the DOTA dataset are presented in
Section 4. By comparing with other methods, we analyze the advantages and disadvantages of our network
in Section 5, while Section 6 gives our conclusion and the future work.

2. Proposed Method

Figure 3 presents an overview of our IoU-Adaptive Deformable R-CNN for multi-class object detection.
Given an input image, we get the region proposals with RPN and extract the Region-of-Interest (ROI)
feature from the IoU-guided deformable backbone network, which employ dilated convolutions to ensure
that more samples in the training set can participate in network training effectively. In order to better solve
the problem that small objects lack corresponding positive ROIs to participate in network training, we
reduce the IoU threshold of the detector. Then we use the Cascade R-CNN architecture as a compensation,
which consists of a sequence of detectors (3 stage in our experiment) trained with increasing IoU thresholds
to classify and regress the ROI bounding box. During training, we minimize a multi-task loss both for
RPN and Cascade R-CNN. If positive ROIs with different IoU values are treated equally, the detection
performance of the network will be affected. So we propose a new multi-task loss function, in which
the IoU-based Weighted classification loss and regression loss for Cascade R-CNN are used. Finally,
CARC-NMS is applied as post-processing.

2.1. The IoU-Guided Detection Framework

We proposed an IoU-guided detection framework to reduce the loss of small object information
during training while improving the overall detection performance. As mentioned before, it is difficult to
obtain satisfactory detection performance in all categories for multi-class object detection in remote sensing
images. Because different classes of objects have large scale distribution differences. To detect objects at
multiple scales, many solutions have been proposed. As said in [16], the deeper layers of modern CNNs
have large strides (32 pixels) that lead to a very coarse representation of the input image, which makes
small object detection very challenging. In this part, we show another reason to explain that the current
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CNN network obtains poor performance in small object detection from the perspective of the anchor
matching mechanism. In the field of face detection, Zhu et al. [17] indicate that current anchor design
cannot guarantee high overlaps between small objects and anchor boxes, which increases the difficulty of
training. As shown in Figure 2, there are many small objects in RS images. These small objects do not have
enough corresponding anchors with reasonable IoU value to participate in the training of the RPN network
when we used the common Faster R-CNN framework. It also result in only a few or even no positive
ROIs that corresponding to small objects participating in the training of the detection head. In order to
ensure that more samples in the training set can effectively participate in the network training, we should
reduce the stride of the anchor as shown in Figure 1b. Thus, we introduce more dilated convolutions in
our backbone network.
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Figure 3. (a) An overview of the IoU-Adaptive Deformable R-CNN (b) The deformable Cascade R-CNN
architecture. We set the IoU threshold value of detection head H1, H2, H3 to 0.4, 0.5, 0.6 respectively in our
framework. “H” network head, “B” bounding box offset, and “C” classification. “B0” is offset of proposals
in image (b).

Based on Deformable Faster R-CNN proposed by dai et al. [18], we use the deformable convolution
layer in the fifth network stage to substitute the standard convolution layer. By adding learned 2D offsets
to the regular convolution grid in the standard convolution, deformable convolutions sample features from
flexible locations instead of fixed locations, which is conducive to geometric transformations modeling.
The spatial sampling locations in deformable convolution modules are augmented with additional offsets,
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which are learned from data and driven by the target task. Furthermore, considering a trade-off between
the training cost and the detection performance, we employ dilated convolutions to increase the resolution
of the feature map in the fourth and the fifth network stage to reduce the anchor stride SA and the feature
map stride SF from 16 to 8. Specifically, at the beginning of the Res4 and Res5 block, stride is changed from
2 to 1. The dilation of the convolutional filters in the Res4 is changed from 1 to 2 and in the Res5 is changed
from 2 to 4. On the one hand, increasing the feature map makes the object features, especially the small
object features more expressive. On the other hand, compared with the previous network, increasing the
anchor density enables small objects to obtain more matching anchors with larger IoUs. At the same time,
there are more positive ROIs corresponding to small objects participate in the training of the network, so
that small objects can be learned more effectively.

There are still many small objects that cannot participate in the training of the network. As object
scales and locations are continuous whereas anchor scales and locations are discrete, there are still some
objects whose scales or locations are far away from the anchor. Compared with large objects, the anchors
corresponding to these small objects has a lower average IoU, so the corresponding proposal is also more
difficult to have an IoU greater than the IoU threshold of the detector. In order to make more small object
features be learned effectively, we reduce the IoU threshold of the detector during training (from 0.5 to
0.4). According to the specific experimental results, it can be seen that appropriate reduction of the IoU
threshold can effectively improve the detection performance of most categories, especially those that have
many small objects. Further reduction of the IoU threshold (e.g., set to 0.3) will lead to excessive false
positives in the detection results, resulting in a significant decrease in the final detection performance. In
addition, further reduction of the IoU threshold does not further improve the detection performance of
small objects. Since the number of dilated convolutions in the network is determined according to whether
the anchors corresponding to the small objects have reasonable IoU, and the IoU threshold value of the
detectors is also related to the IoU of the positive ROIs, we named our backbone network as IoU-guided
detection framework. Although helpful for small object detection, training a detector with an IoU threshold
lower than the discriminant threshold used in test stage will affect the overall detection performance.
On one hand, an object detector trained with low IoU threshold tend to produce noisy detections. Since the
IoU threshold is low during training, the network will make an erroneous judgment on the negative ROI
with an IoU between 0.4 and 0.5 during inference, which will have a great impact on the final detection
results. On the other hand, as shown by Cai et al. [15], a detector optimized at a single IoU level is not
necessarily optimal at other levels. A higher quality detection requires a closer quality match between
the detector and the hypotheses that it processes, where the quality of a hypothesis as its IoU with the
ground truth, and the quality of the detector as the IoU threshold value used to train it. Thus, we can
only get a higher quality detection when a hypothesis has an IoU overlap around 0.4 and the localization
performance will be worse than the original if we decrease the IoU threshold of the detector to get a better
small object detection performance.

In order to solve the above contradictions, we introduce the Cascaded R-CNN architecture as shown
in Figure 3b. The Cascaded R-CNN architecture consists of a sequence of detectors trained with increasing
IoU thresholds, to be sequentially more selective against close false positives. In the experiment, we set the
IoU threshold of the detection head H1, H2, and H3 to 0.4, 0.5, and 0.6, respectively, which can reduce
the loss of small object information during training. The loss function of each stage detector is consistent
with Fast R-CNN. At inference, the quality of the hypotheses is sequentially improved, by applications of
the same cascade procedure, and higher quality detectors are only required to operate on higher quality
hypotheses. By using the cascaded R-CNN structure, we can make more proposals corresponding to small
objects obtain more accurate detection results through multiple regressions. In addition, as we combine
the confidence scores given by each classifier to classify every detection results, the erroneous judgment on
the negative ROI with an IoU between 0.4 and 0.5 during inference can be solved effectively. By combining
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the dilated convolution, the cascaded R-CNN structure, and the method of reducing the IoU threshold
during training, the IoU-guided detection framework we proposed solved the problem of small object
information loss during training while improving the overall detection performance.

2.2. The IoU-Based Weighted Loss

During the training of current region-based CNN, all positive ROIs are treated equally regardless of
their IoU value. However, it is more reasonable to treat ROIs with different IoU values specifically during
training. The probability that an object is correctly classified based on its entirety should be large, and
the probability should be small if it is classified only based on its part. Thus, if an ROI has a large IoU
overlap with its corresponding Ground-Truth (GT) box, then the ROI should be punished more when
it is misclassified. At the same time, the ROI with a larger IoU overlap with its corresponding GT box
should have less impact on the regression branch. The smaller the IoU value of the positive ROI, the larger
the corresponding regression value. During inference, for the positive ROIs with IoU greater than the
threshold (0.5), objects corresponding to these ROIs can be effectively detected even if the bounding boxes
of these ROIs are not regressed.

Based on the above analysis, we construct a new loss function to treat the ROIs with different IoU
values differently during training. The entire network is learned end-to-end by minimizing the loss L.

L = LRPN + LWeighted−RCNN (1)

where the LRPN is defined similar to the RPN loss in the Faster R-CNN, and the LWeighted−RCNN indicate
the IoU-based Weighted Loss which is used to train the network head, it is defined as follows:

Lweighted−RCNN =
1
N ∑

i
Li(p, u, tu, v) (2)

Li(p, u, tu, v) = cls_score_weighti × Lcls(p, u) + λ× bbox_weighti × [u ≥ 1]Lloc(tu, v) (3)

N is the number of the ROI in a mini-batch. For each ROI in a mini-batch, u is the true class and p is the
discrete probability distribution for the predicted classes, defined over K + 1 categories as p = (p0, . . . , pK).
Class 0 is for the background category. The tu = (tu

x , tu
y , tu

w, tu
h) is the predicted Bounding-Box (BB)

regression offset for class u and the v = (vx, vy, vw, vh) is the true value of the offset. Here,

vxi = (x∗i − xi)/wi, vyi = (y∗i − yi)/hi

vwi = log(w∗i /w), vhi = log(h∗i /h)
(4)

are the four parameterized coordinates of the ground-truth BB with xi,x∗i denoting the predicted and
ground-truth respectively (the same goes for y, w and h). Lloc operates on the distance vector defined
above to encourage a regression invariant to scale and location. To improve the effectiveness of multi-task
learning, v is usually normalized by its mean and variance, i.e., vxi is replaced by v

′
xi = (vxi − µx)/σx

during training. Lcls(p, u) and Lloc(tu, v) are defined same as suggested in Fast R-CNN.

Lcls(p, u) = −u log p (5)

Lloc(tu, v) = ∑
i∈{x,y,w,h}

lsmooth
1 (tu

i − vi) with lsmooth
1 (x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(6)
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[.] is the indication function, when the formula inside is true, the value is 1, otherwise, the value is 0.
In case the object has been classified as background, [u ≥ 1] ignores the offset regression. The balancing
hyper-parameter λ is set to 1.

The weight of the loss in formula (3) is calculated according to the value of the IoU and the type of
the loss. When a positive ROI has a large IoU, the weight of the classification loss corresponding to the
ROI should be greater. The weight of the classification loss is defined as follows:

cls_score_weight =

{
1 if iou < 0.5

1 + iou if iou >= 0.5
(7)

While a positive ROI has a small IoU, the weight of the regression loss corresponding to the ROI
should be greater. The weight of the regression loss is defined as follows, where fg_thresh indicate the IoU
threshold of the detector:

bbox_weight =

{
0 if iou < f g_thresh

2− iou if iou >= f g_thresh
(8)

For negative ROI, the weight of the classification loss is always 1 and the weight of the regression loss
is always 0.

2.3. Class Aspect Ratio Constrained Non-Maximum Suppression (CARC-NMS)

Aspect Ratio Constrained NMS is proposed by Xu et al. [6] to solve the line like false region proposals
(LFRP). As shown in Figure 4, we also found many LFRP in our detection results. Inspired by Aspect
Ratio Constrained NMS, we propose the Class Aspect Ratio Constrained NMS (CARC-NMS) to remove
the false detect results with abnormal aspect ratio effectively. We have statistics on the aspect ratio of
different categories of samples in the training set As shown in Table 1, different classes of objects can
large vary in aspect ratio range in optical remote sensing images. Therefore, it is more reasonable to select
different discriminating ranges corresponding to different classes of detection results in the field of remote
sensing images.

Table 1. The maximum and minimum aspect ratios of different classes of samples in the training set.

Class Plane Baseball-Diamond Bridge Ground-Track-Field Small-Vehicle

Max 3.36 2.3 21.53 4.425 5.25
Min 0.31 0.446 0.065 0.292 0.222

Class Large-Vehicle Ship Tennis-Court Basketball-Court Storage-Tank

Max 16.8 9.333 3.231 3.389 5.833
Min 0.119 0.103 0.209 0.266 0.333

Class Soccer-Ball-Field Roundabout Harbor Swimming-Pool Helicopter

Max 3.298 2.12 16.12 3.824 5.25
Min 0.343 0.481 0.039 0.339 0.165

To construct the appropriate aspect ratio constraints, we calculate the logarithm of the aspect ratios in
both training and test boxes as

L_AR = log(
width

height + δt
) (9)
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where width and height represent the distance in the x and y dimensions between lower left and upper
right vertexes of the bounding boxes and δt is the fractional coefficient in case the denominator becomes
zero. In our experiment, we set δt as 10−40. As shown by Xu et al. [6], the distribution of L_AR in training
set appear to approximates a normal distribution. We calculate the mean and standard deviation of the
normal distribution corresponding to each category L_AR. Then get the aspect ratio constraint of different
categories of samples.

For all proposed regions corresponding to GT boxes with label i (i ∈ (1, . . . K)), the aspect ratio
constraint is developed as

Cit =

{
1, if |L_ARt − µi| ≤ miσi

0, if |L_ARt − µi| > miσi
(10)

where µi and σi are mean and standard deviation of L_ARs, which are calculated by samples with label i
in training annotations. The constraint factor mi is calculated according to the maximum range of L_ARs.

mi = max(
µi − L_ARi min

σi
,

L_ARi max − µi
σi

) (11)

It should be noted that during the calculation of mi, we removed the single abnormal extreme value in all
L_ARs as these single abnormal extremes may be false annotations due to image cropping. For each of the
bounding boxes with label i proposed by network, if the difference between its L_AR and µi exceeds miσi,
the region proposal is recognized as an LFRP. If Cit of region proposal t is 0, we remove it from the NMS input
list. Based on the CARC-NMS post-processing, the precision of our network has been improved.

Figure 4. Illustration of lines like false region proposals (LFRP, the first row) generated by classic deformable
ConvNets.
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3. Dataset and Experimental Settings

To validate the effectiveness of the IoU-Adaptive Deformable R-CNN on the optical remote sensing
images, the datasets, experimental settings, and the corresponding evaluation metrics of the experimental
results are described in this section.

3.1. Datasets

To compare the performance of various approaches developed for object detection in remote sensing
images, many datasets are available for researchers to conduct further investigations [4,19–22]. These
datasets promote the development of object detection methods in remote sensing imagery but have
obvious drawbacks. Some of these datasets [20–22] are short in the number of classes, which restricts
their application in complicated scenes. Others [4,19] tend to use images in ideal conditions (clear
backgrounds and without densely distributed instances), which is inconsistent with the situation in the
actual application scenario.

In order to better evaluate different multi-class detection methods on remote sensing images, we select
the DOTA dataset, the largest annotated object dataset with a wide variety of categories in Earth Vision. It
collects 2806 aerial images from different sensors and platforms. Each image is about 4000 × 4000 pixels
in size, and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA
images are annotated by experts in aerial image interpretation using 15 common object categories: plane,
baseball diamond (BD), bridge, ground field track (GTF), small vehicle (SV), large vehicle (LV), Ship, tennis
court (TC), basketball court (BC), storage tank (SC), soccer ball field (SBF), roundabout (RA), swimming
pool (SP), helicopter (HC), and harbor. The fully annotated DOTA images contain 188,282 instances, each
of which is labeled by an oriented bounding box, instead of an axis-aligned one, as is typically used for
object annotation in natural scenes. Finally, the dataset is split into 1/2 for training, 1/6 for validation
and 1/3 for testing. It is worth noting that only annotations of the training set and the validation set
are public, and the test set annotations are unpublished. We can only upload the detection results to the
official DOTA evaluation server to get the evaluation results of the network on the test set. There are two
detection tasks on the DOTA dataset Task1 uses the initial annotation as ground truth. Task2 uses the
generated axis-aligned bounding boxes as ground truth. The aim of the oriented bounding boxes (OBB)
prediction task is to locate the ground object instances with an oriented bounding box, and the aim of the
horizontal bounding boxes (HBB) prediction task is to accurately localize the instance in terms of horizontal
bounding box with (xmin, ymin, xmax, ymax) format, in which the ground truths for training and testing
are generated by calculating the axis-aligned bounding boxes over original annotated bounding boxes. We
only study the HBB detection task in this paper.

3.2. Evaluation Indicators

To quantitatively evaluate the performance of different methods in multi-class object detection,
we use the average precision (AP), a well-known and widely applied standard measures approach for
comparisons. The AP is equivalent to the area under the PRC, which is based on the overlapping area
between detections and ground truth. The AP computes the average value of Precision over the interval
from Recall = 0 to Recall = 1. Let TP, FP, and FN denote the number of true positives, the number of false
positives, and the number of false negatives, respectively. The Precision measures the fraction of detections
that are true positives and the Recall measures the fraction of positives that are correctly identified. Thus,
the Precision and Recall can be formulated as:
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Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

In an object-level evaluation, detections are recognized as TP please keep consistent. if the arean
IoU overlap between detections and ground truth object exceeds a predefined threshold (usually 0.5);
otherwise, they are recognized as FP. Typically, precision and recall are inversely related, as precision
increases, recall falls and vice-versa. In addition, if several detections overlap with the same ground
truth object, only one is considered as the true positive and the others are considered as false positives.
Mean AP (mAP) computes the average value of AP over all object categories. AP and mAP are used as
the quantitative indicators in object detection. Typically, the higher the AP is, the better the detection
performance, and vice versa.

3.3. Baseline Method and Implementation Details

As we can only upload the detection results to the official DOTA evaluation server once a day, and we
are unable to obtain any other information except the average precision of the test results on each category
of samples. It is not advisable to perform our ablation experiment on the test set. To evaluate the proposed
IoU-Adaptive Deformable R-CNN quantitatively, we provide ablation experiments on the validation set of
the DOTA dataset Furthermore, we compare our method to the ones mentioned in Xia et al. [3] work for
horizontal bounding boxes (HBB) prediction task as well as Seyed Majid Azimi et al. [23] based on the test
set whose ground-truth labels are undisclosed. The results reported here are obtained by submitting our
predictions to the official DOTA evaluation server.

All experiments are conducted using a NVIDIA Tesla P100 GPU. The backbone network’s weights
are initialized using the ResNet-101 model pretrained on ImageNet [24]. For other newly added layers,
we initialize the parameters by drawing weights from a zero-mean Gaussian distribution with standard
deviation of 0.01 and setting all bias as 0, which is consistent with the method of parameter initialization
used by Dai et al. [18]. Images in DOTA are so large that they cannot be directly sent to CNN-based
detectors. Therefore, we crop a series of 800× 800 patches from the original images with a stride set to
600, in both training and inference. Note that some complete objects may be cut into two parts during the
cropping process. For convenience, we denote the area of the original object as A0, and the area of divided
parts Pi, (i = 1, 2) as ai, (i = 1; 2). Then, we compute the parts’ areas over the original object area.

Ui =
ai
A0

(14)

Finally, we label the part Pi with Ui < 0.5 as difficult and for the other one, we keep it the same as the
original annotation. As the stride of the output feature map is 16 pixels when we use the baseline network,
and the width and height of the smallest anchor box generated at each location is also 16 pixels, we define
the samples whose width or height of the bounding box less than 16 as a small object. Then we have a
statistics on the number of small objects in all classes of samples. The proportion of small samples in each
classes is shown in Table 2. As we use the crop of the large images to train the network, we have statistics
on the number of samples in the cropped images of training set in Table 2. It can be seen that there are
more small samples in the ships, small vehicles, large vehicles etc. It is worth noting that the same objects
can be counted many times due to the overlap between the cropped images. Thus, there are two different
definitions of validation sets in our experiments, called val set and val_clip set In val set, each object can
only be counted one time. In contrast, each object on different images can be counted repeatedly in val_clip
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set So there are more small objects in the val_clip. Ablation experiments are evaluated on val set unless
otherwise stated. When we need to verify the impact of the modified network structure on the detection
performance of small objects, we evaluate the corresponding ablation experiments on val_clip set.

As we are implementing the object detection using the horizontal bounding boxes but each instance
is labeled by an oriented bounding box, instead of an axis-aligned one, we pre-calculate an axis-aligned
rectangle as the final annotation. As described by Azimi et al. [23], the Rotation Region Proposal Network
(R-RPN) can be used to achieve accurate object localization and better detection performance. Whether or
not to use R-RPN is not related to the method described in this paper. In order to get a fair comparison
with other baselines, R-RPN is not used in our experiments. Furthermore, the learning rate is 0.0005 for
the first ten epochs and then decayed to 5e− 5 for other latter epochs with the batch size of 1 using flipped
images as data augmentation. The optimizer, weight decay and batch norm are set in a similar way to
the baseline network, whose source code is available [18]. For anchors, we adopted six scales with box
width and height of 16, 32, 64, 128, 256 and 512 pixels, and nine aspect ratios, which are adjusted for better
coverage according to the sample distribution of DOTA dataset At the RPN stage, we sampled a total of
512 anchors as a mini-batch for training, where the ratio of positive to negative samples is 1:1. Class Aspect
Ratio Constrained Non-Maximum Suppression is adopted to reduce redundancy on the proposal regions
based on their box-classification scores. Without special noted, the IoU threshold is fixed for NMS at 0.3.

Table 2. Sample distribution statistics. We highlight in bold the value of the small ratio when it is bigger
than 0.1, which means there are many small objects in the corresponding classes.

Plane BD Bridge GTF SV LV Ship TC

train_clip 15,725 869 4001 694 52,679 39,964 60,162 5850
train_clip_small_ratio 0.012 0.000 0.279 0.010 0.138 0.109 0.192 0.008

val 2531 214 464 144 5438 4387 8960 760
val_small_ratio 0.023 0.000 0.205 0.000 0.180 0.163 0.115 0.009

val_clip 3611 233 609 194 8219 6023 12,447 1300
val_clip_small_ratio 0.032 0.000 0.199 0.015 0.328 0.271 0.169 0.023

BC ST SBF RA Harbor SP HC −
train_clip 1169 10,215 746 805 12,777 3357 1263 −

train_clip_small_ratio 0.005 0.309 0.084 0.014 0.022 0.025 0.067 −
val 132 2888 153 179 2090 440 73 −

val_small_ratio 0.000 0.400 0.092 0.073 0.011 0.275 0.000 −
val_clip 225 3990 213 260 3518 948 127 −

val_clip_small_ratio 0.000 0.596 0.066 0.177 0.031 0.293 0.000 −

4. Results

In this section, we first show different roles of IoU in the network and the effectiveness of our method
with comprehensive ablation experiments. Then, we show that our approach achieves state-of-the-art
results on DOTA benchmarks with the final optimal model. Our method outperforms all the published
methods evaluated on the HBB prediction task benchmark. Visualization of the objects detected by
IoU-Adaptive Deformable R-CNN in the DOTA dataset is shown in Figure 5. From Figure 5, IoU-Adaptive
Deformable R-CNN shows satisfactory detection results in recognizing adjacent or overlapping objects
such as ships, harbors, storage tanks, and ball courts. In particular, the AP values of small objects like
ships, small vehicles and large vehicles increase more than other objects, which illustrate the favorable
performance of our methods for small object detection.
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4.1. Ablation Experiments

A couple of ablation experiments have been run to analyze the different roles of IoU in the network
and the effectiveness of our method on the DOTA validation set. We use AP to evaluate the detection
performance of different methods. All detectors are reimplemented with MXNet, on the same codebase
released by MSRA [18] for comparison.

The impact of dilated convolutions: It can be seen from Table 3 that the baseline network Deformable
Faster R-CNN performs poorly on small object detection when compared with the work of Azimi et
al. [23], which get the best detection results in all published methods. In order to better detect a large
number of small objects in the dataset, we use the dilated convolutions in the 4th and 5th network stages
of the original backbone network. On the one hand, increasing the feature map makes the object features,
especially the small object features more expressive. On the other hand, compared with the previous
network, increasing the anchor density enables small objects to obtain matching anchors with larger IoUs.
At the same time, there are more positive ROIs corresponding to small objects participating in the training
of the network. As shown in the Figure 6, we draw the GT boxes of small objects with red rectangles, and
the anchors or positive ROIs corresponding to the small object with green rectangles. The number in the
first column images is the average IoU of anchors corresponding to the small objects. It can be seen that
when we use suitable number of dilated convolutions, the anchors and positive ROIs involved in network
training are more reasonable.

Table 3. Quantitative comparison of the baseline and other methods on DOTA dataset We highlight in bold
the best results on each category.

Method Test_Data

Azimi et al. [23] test

plane BD bridge GTF SV LV ship TC
89.54 73.48 51.96 70.33 73.39 67.91 78.15 90.39

BC ST SBF RA harbor SP HC mAP
78.73 78.48 51.02 59.41 73.81 69 52.59 70.54

baseline [18] test

plane BD bridge GTF SV LV ship TC
86.53 77.54 42.7 64.43 67.6 63.64 77.86 90.33

BC ST SBF RA harbor SP HC mAP
77.82 75.36 52.12 56.79 68.92 62.04 54.92 67.91

baseline [18] val_clip

plane BD bridge GTF SV LV ship TC
87.52 77.9 51.5 75.86 53.93 61.17 83.75 90.38

BC ST SBF RA harbor SP HC mAP
57.83 51.44 65.45 57.21 77.61 49.73 62.86 66.94

baseline+dilated Conv val_clip

plane BD bridge GTF SV LV ship TC
87.62 76.99 52.81 76.64 56.48 65.8 87.19 89.04

BC ST SBF RA harbor SP HC mAP
58.73 62.16 66.02 58.69 76.92 51.35 70.4 69.12
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Figure 5. Outputs of HBB prediction on test images of DOTA dataset.
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Figure 6. Anchors and positive ROIs which participate in network training. SA mean the stride of the
anchors in different detection framework. When we use dilated convolution in Res5 stage, SA = 16 as
shown in the first row images. When we use dilated convolution in Res4 and Res5 stage, SA = 8 as
shown in the second row images. The green bounding box represents the anchor or positive ROI, the red
represents ground truth. Numbers in the first column images are the average IoU value of the positive
anchors corresponding to the small objects exist in this image.

By using dilated convolutions, we can obtain more reasonable anchors corresponding to small objects
to participate in the training of the RPN network. In addition, as shown in Figure 6, we can get more
positive ROIs corresponding to small objects to participate in the training of the detection head, and a
higher recall rate can be obtained during the inference. As shown in Table 3, the detection performance of
some categories, especially those with many small objects (such as ship, storage-tank) has been significantly
improved. Meanwhile, the detection performance of some categories has been declined, may be due to the
fact that the network generates more anchors and introduces more FPs.

The impact of reducing IoU threshold of the detectors: The quality of a detector is defined by
Cai et al. [15]. Since a bounding box usually includes an object and some amount of background, it is
difficult to determine a detection is positive or negative. We usually make judgment by using the IoU
overlap between detection BB and the GT box. If the IoU is above a predefined threshold u, the patch is
considered an example of the foreground. Thus, the class label of a hypothesis x is a function of u,

y =

{
gy, if IoU(x, g) ≥ u

0, if ohterwise
(15)

where gy is the class label of the GT object g and the IoU threshold defines the quality of the detector.
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As shown in the last column of Figure 6, there are many small objects that are ignored and do not
participate in the training of the network. Even if the density of the anchor is increased by using more
dilated convolutions, there are still small objects lacking the corresponding positive ROIs. Therefore, we
appropriately reduce the IoU threshold of the detector so that more small objects can participate in the
training of the network. As shown in Figure 7, when the detector’s IoU threshold is changed from 0.5 to
0.4, more small objects participate in the training of the network. With the participation of these ROIs,
which have small IoU values during training, the regression branch can make the proposal with a lower
IoU regress to the position of the GT box more efficiently. The detection performance is listed in Table 4,
for most categories, the detection performance is improved when the detector’s IoU threshold is lowered.

Figure 7. The positive ROIs and the prediction results when we used different IoU threshold to train
the detection framework. (a,b) shows the positive ROIs corresponding to small objects participating in
network training when the IoU threshold is set to 0.5 and 0.4, respectively, and (c,d) shows the prediction
results of the baseline network and the network which used more dilated convolutions and a lower IoU
threshold. The GT box is represented by a red rectangle, and the positive ROIs corresponding to the GT box
or detection results are represented by green rectangles. It can be seen that when the IoU threshold is set to
0.4, there are more small objects involved in network training and the test result gets a higher recall rate.
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Table 4. The effect of setting different IoU thresholds for the detector during training. We perform
evaluation on the val_clip set The best results on each category is highlight in bold.

Method

baseline [18]

plane BD bridge GTF SV LV ship TC
87.52 77.9 51.5 75.86 53.93 61.17 83.75 90.38

BC ST SBF RA harbor SP HC mAP
57.83 51.44 65.45 57.21 77.61 49.73 62.86 66.94

baseline+IoU 0.4

plane BD bridge GTF SV LV ship TC
87.7 80.69 48.81 78.01 58.09 61.75 84.89 90.18

BC ST SBF RA harbor SP HC mAP
55.57 55.18 70.42 58.39 75.38 52.5 64.49 68.14

The impact of Cascade R-CNN architecture: Although the use of dilated convolutions and lowering
the IoU threshold of the detector can effectively improve the ability of the network to handle small object
detection problems, it may reduce the detection performance of other objects due to the reasons indicated
in Section 2.1.

As compensation, we use the Cascaded R-CNN architecture to improve the overall detection
performance. Additional cascading of two detection heads of the same structure with increasing IoU
thresholds based on the original detection head structure, we get more accurate detection results, and the
detection results can get closer to the corresponding GT boxes through multiple regression. In addition,
more True Positive results can be obtained when used the Cascaded R-CNN architecture. It is helpful to
improve the overall detection performance as shown in Table 5.

The impact of the IoU-based Weighted Loss: To the best of our knowledge, we are the first to propose
that the loss function can be weighted by the IoU value of the ROI during training to improve the detection
performance. In order to analyze the different effects on classification branch and regression branch when
we introduce the influence of the IoU weighting function, we designed three different loss functions based
on the basic framework to introduce the impact of the IoU value on the network learning. Results in
Table 6 show that all three weighted loss functions improve the detection accuracy. There is no significant
difference in the final detection performance when we used three different loss functions for training.
In the following experiments, we use the IoU weighted loss function that affects both the classification
branch and the regression branch by default.

To analyze the impact of using different weighting method on detection performance, we also use
other weight calculation formulas. For example, we change the weight of the classification loss as 0.5 + iou
when a positive ROI has an IoU larger than 0.5, which remove the problem of weight jump changes
existing in Equation (7), but there is no significant difference in the final detection performance (the mAP
is 70.41 when use Equation (7) while the mAP is 70.47 when we use the new weight calculation formula).
Furthermore, we change the weight of the regression loss as 1.5− iou or 3− iou during training when
a positive ROI has an IoU larger than the IoU threshold of the detector. As the weight value increases,
the detection performance has a small increase as shown in Table 7. A more reasonable weight calculation
method will be studied in our future work.

The impact of the Class Aspect Ratio Constrained NMS (CARC-NMS): As shown in Table 8, we list
the mean, standard deviation, and corresponding constraint factors of the distribution of different classes
of samples L_ARs which are calculated according to the annotations of the training set. When evaluated
on the test set, our final detection framework used CARC-NMS instead of NMS can lead to an additional
increase of 0.8% for the mean average precision metric (from 71.93% to 72.72%), and an average 0.8%
performance gain can be get when we evaluated on the validation set.
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Table 5. The impact of Cascade R-CNN architecture, we evaluate on val set.

Method Plane BD Bridge GTF SV LV Ship TC

baseline+0.4
AP 86.67 69.54 40.55 60.92 53.22 63.78 84.01 90.13
TP 2365 181 316 116 4587 3626 8047 710
FP 12,090 2397 21,798 3792 123,132 76,126 42,921 5041

baseline+0.4+dilated
AP 86.43 67.62 44.02 64.55 49.48 61.22 85.42 88.91
TP 2366 185 310 113 4733 3623 8205 698
FP 6197 2020 7188 3513 87,227 50,905 26,622 4078

baseline+0.4+dilated+Cascade
AP 86.78 66.99 41.87 57.76 64.13 68.21 87.41 89.89
TP 2351 189 306 115 4873 3673 8306 711
FP 6993 3598 8809 5135 89,094 53,290 30,331 4737

Method BC ST SBF RA Harbor SP HC mAP

baseline+0.4
AP 65.85 82.14 66.56 62.64 70.76 50.34 55.29 66.83
TP 102 1724 78 140 1812 294 61 −
FP 3593 31,486 2526 4755 16,118 10,746 3920 −

baseline+0.4+dilated
AP 63.13 78.53 70.14 64.83 69.35 46.29 58.28 66.55
TP 97 1755 80 138 1815 292 61 −
FP 2131 19,672 1820 2745 12,758 6197 2556 −

baseline+0.4+dilated+Cascade
AP 63.86 81.72 70.01 59.37 70.77 53.4 55.36 67.83
TP 101 1765 83 139 1827 300 62 −
FP 3392 16,102 2666 3820 14,643 6456 3079 −

Table 6. The impact of the IoU-based Weighted Loss.we evaluate on val set.

Method Plane BD Bridge GTF SV LV Ship TC

baseline [18] 86.67 69.54 40.55 60.92 53.22 63.78 84.01 90.13
baseline+iou based cls_loss 88.26 70.1 48.28 68.12 61.88 69.29 82.77 90.5

baseline+iou based bbox_loss 88.69 70.86 48.37 65.02 62.98 70.54 83.13 90.52
baseline+iou based loss 89.04 65.67 48.42 67.18 65.14 70.86 83.65 90.48

Method BC ST SBF RA Harbor SP HC mAP

baseline [18] 65.85 82.14 66.56 62.64 70.76 50.34 55.29 66.83
baseline+iou based cls_loss 66.41 85.69 68.97 66.91 74.96 53.51 60.44 70.41

baseline+iou based bbox_loss 67.57 85.14 72.04 67.33 75.22 56.6 59.06 70.87
baseline+iou based loss 66.11 86.52 67.72 67.17 75.31 53 56.23 70.17

Table 7. The impact of using different weight calculation formulas. We have designed three different
regression loss weight calculation formula, and we evaluate on val set, The best results on each category is
highlight in bold.

Weight Calculation Formula Plane BD Bridge GTF SV LV Ship TC

1.5− iou 89.07 70.46 47.59 63.67 62.85 74.43 84.51 90.34
2− iou (Equation (8)) 88.69 70.86 48.37 65.02 62.98 70.54 83.13 90.52

3− iou 88.37 71.13 48.43 65.13 65.13 74.85 85.77 90.52

Weight Calculation Formula BC ST SBF RA Harbor SP HC mAP

1.5− iou 67.21 84.37 71.47 64.87 74.46 55.83 55.71 70.45
2− iou (Equation (8)) 67.57 85.14 72.04 67.33 75.22 56.6 59.06 70.87

3− iou 70.08 86.37 65.11 64.42 75.09 56.13 57.84 70.96
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Table 8. The mean, standard deviation, and corresponding constraint factors of the distribution of different
classes of samples L_AR.

Plane BD Bridge GTF SV LV Ship TC

mean 0 0 0.015 −0.06 −0.01 0.022 0.022 −0.17
std 0.11 0.081 0.252 0.189 0.197 0.305 0.275 0.14
m 4.887 4.487 4.35 3.753 3.107 3.194 3.364 4.86

BC ST SBF RA Harbor SP HC −
mean −0.103 0 −0.04 0 −0.06 0.023 −0.345 −

std 0.167 0.063 0.167 0.072 0.32 0.168 0.237 −
m 3.789 4.86 3.355 4.53 3.86 3.33 4.746 −

4.2. Comparison With the State-of-the-Art

Table 9 shows the performance of our algorithm on the HBB prediction tasks of the DOTA dataset.
In order to get a better results, we changed the NMS threshold of the LV and ship categories from 0.3 to
0.4 when testing on the test subset. In the case of not using multi-scale training and multi-scale testing,
feature pyramid structure, rotational region-proposal network (R-RPN) and Online Hard Positive Mining
(OHEM), which can further improve the performance of the network, we achieve the state-of-the-art
detection performance on the DOTA dataset and achieve significant improvements in comparison with
the baseline network. Compared to the baseline network, there is a 4.8% increase for the overall detection
performance, and we have achieved better results in all categories, and compared with the method
proposed by Azimi et al., which gets the best detection result in all published algorithms, we achieve the
same detection result without introducing image pyramid and feature pyramid, and these two strategies
can also be applied to our method to further improve the detection performance. Using image pyramid is
helpful to solve the detection problem when the target is larger than the cropped image size.

Table 9. Quantitative comparison of the baseline and our method on the HBB task in test set of DOTA dataset
FR-H stands for Faster R-CNN[6] trained on HBB. The best results on each category is highlight in bold.

YOLOv2 [25] R-FCN [11] SSD [26] FR-H [9] Deformable FR-H [18] Azimi et al. [23] Ours

plane 76.90 81.01 57.85 80.32 86.53 89.97 88.62
BD 33.87 58.96 32.79 77.55 77.54 77.71 80.22

bridge 22.73 31.64 16.14 32.86 42.7 53.38 53.18
GTF 34.88 58.97 18.67 68.13 64.43 73.26 66.97
SV 38.73 49.77 0.05 53.66 67.6 73.46 76.3
LV 32.02 45.04 36.93 52.49 63.64 65.02 72.59

ship 52.37 49.29 24.74 50.04 77.86 78.22 84.07
TC 61.65 68.99 81.16 90.41 90.33 90.79 90.66
BC 48.54 52.07 25.1 75.05 77.82 79.05 80.95
ST 33.91 67.42 47.47 59.59 75.36 84.81 76.24

SBF 29.27 41.83 11.22 57.00 52.12 57.20 57.12
RA 36.83 51.44 31.53 49.81 56.79 62.11 66.65

harbor 36.44 45.15 14.12 61.69 68.92 73.45 74.08
SP 38.26 53.3 9.09 56.46 62.04 70.22 66.36
HC 11.61 33.89 0.0 41.85 54.92 58.08 56.85

mAP 39.20 52.58 29.86 60.64 67.91 72.45 72.72
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5. Discussion

The experimental results have shown that our method can achieve desirable results without bells
and whistles. Compared to other published methods, our detection framework achieves the best mAP
for HBB detection tasks on DOTA dataset With the IoU-guided detection framework, the problem of
loss of small object information during training is effectively solved, and we achieve a better overall
detection performance with the IoU-based weighted loss we proposed. Finally, our detection framework
outperforms the baseline network by 4.81 points mAP. When compared to the work of Azimi et al. [23],
which gets the best detection results in all published methods, we get a better detection performance on
the classes with more small objects, such as small vehicle, large vehicle, ship and so on, but the detection
performance of ground-track-field, storage tank and swimming pool is lower than that shown by Azimi et
al. We think the new joint image cascade and feature pyramid network proposed by them can provide
great help in detecting these classes of samples, which we can use to further improve our network.

In addition, the network can get further improvements. As the weight calculation formula based
on IoU is designed in a very simple way. By using a more reasonable weighting method, the detection
performance of the network can be further improved. Furthermore, for a 800 × 800 image, the baseline
network takes 0.22 s for detection. As we use more dilated convolutions and the Cascade R-CNN
architecture, the detection speed of the network is significantly lower than baseline network, which takes
0.95 s for detection. We will conduct further research on how to design more efficient weighting methods
and how to improve the detection efficiency of the network in our future work.

6. Conclusions

In this paper, we analyzed the role that IoU can play in a two-stage detection networks, and based
on this, we proposed a new algorithm for multi-class object detection in unconstrained RS imagery and
evaluated it on DOTA datasets. Our algorithm uses suitable dilated convolutions in the backbone network
and a smaller IoU threshold for detectors, which are significant for detecting small objects, and we solved
the loss of small objects information problem during training to some extent. Furthermore, we enhance
our model by applying Cascade R-CNN architecture and propose the IoU-based Weighted loss during
training to improve the overall detection performance. Finally, we use CARC-NMS for post processing.
Our method outperforms the baseline network by a large margin and achieve the state-of-the-art detection
performance showed in other published algorithms [3,23] on the DOTA dataset. Our approach is robust to
differences in spatial resolution of the image data acquired by various platforms (airborne and space-borne).
For future work, we plan to further apply our proposed method to the detection tasks with oriented
bounding boxes and use Scale Normalization for Image Pyramids (SNIP) methods to further improve
network performance with multi-scale training and multi-scale testing at a small cost.
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Abbreviations

The following abbreviations are used in this manuscript:

ROI Region-of-Interest
IoU Intersection-over-Union
CARC-NMS Class Aspect Ratio Constrained Non-maximum Suppression
RS Remote Sensing
OHEM Online Hard Positive Mining
LFRP Line like False Region Proposals
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