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Abstract: Effective feature representations play a decisive role in content-based remote sensing image
retrieval (CBRSIR). Recently, learning-based features have been widely used in CBRSIR and they show
powerful ability of feature representations. In addition, a significant effort has been made to improve
learning-based features from the perspective of the network structure. However, these learning-based
features are not sufficiently discriminative for CBRSIR. In this paper, we propose two effective schemes
for generating discriminative features for CBRSIR. In the first scheme, the attention mechanism and
a new attention module are introduced to the Convolutional Neural Networks (CNNs) structure,
causing more attention towards salient features, and the suppression of other features. In the second
scheme, a multi-task learning network structure is proposed, to force learning-based features to be
more discriminative, with inter-class dispersion and intra-class compaction, through penalizing the
distances between the feature representations and their corresponding class centers. Then, a new
method for constructing more challenging datasets is first used for remote sensing image retrieval,
to better validate our schemes. Extensive experiments on challenging datasets are conducted to
evaluate the effectiveness of our two schemes, and the comparison of the results demonstrate that
our proposed schemes, especially the fusion of the two schemes, can improve the baseline methods
by a significant margin.

Keywords: attention mechanism; discriminative feature learning; center loss; remote sensing
image retrieval

1. Introduction

As a result of the rapid development of remote sensing technology, the amount of remote sensing
images with higher resolution has dramatically increased. How to effectively manage and analyze
remote sensing images has been a hot issue to be solved urgently. Among them, content-based remote
sensing image retrieval (CBRSIR) [1,2] is a key problem in the effective use of remote sensing big data.
This includes two main components, feature extraction and similarity measure. CBRSIR automatically
processes the representations of image features, and it measures the similarity between images. The
performance of CBRSIR mainly depends on the representation power of feature embedding. Therefore,
research on CBRSIR mainly focuses on feature extraction [3-6].

With regard to feature extraction, the existing methods can mainly be divided into methods that
are based on handcrafted features, and methods based on learning-based features [7]. Handcrafted
features are usually used to extract global features such as color, texture, shape, and local features based
on SIFT [8] and SUREF [9], which belong to low-level features. The Bag of Word model (BOW) [10-12],
and the Vector of Locally Aggregated Descriptors (VLAD) [13] are proposed to encode local features,
which further improve the feature representation power, they belong to the middle-level feature.
Whether a global feature or a local feature, these handcrafted features are difficult for expressing image
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semantics precisely. That is, there is a “Semantic Gap” between low-level features and high-level
semantics. With the progress of deep learning, especially the excellent performance of Convolutional
Neural Networks (CNNs) in computer vision tasks such as classification [14-16], detection [17-19],
and segmentation [20,21], CNNs are widely applied to image feature automatic extraction. The reason
for why CNNs can achieve better performance than handcrafted features is that CNNs can extract
high-level semantic features through a large number of convolutional layer stacking with non-linearity.
Ge et al. [22] transfers the pre-trained CNNs trained on ImageNet to the remote sensing image data set
and compares the features extracted by pre-trained CNNs with handcrafted features for CBRSIR, which
leads to the conclusion that the CNNs features outperform the traditional features by a large margin.

However, it is difficult to achieve a satisfactory retrieval result only by pre-trained or fine-tuned
CNNs, by facing the large-scale and high-resolution remote sensing image datasets. We think that
this is mainly caused by the following two reasons. The first is insufficient representation power of
feature embedding. In Figure 1, some examples of Aerial Image Data (AID) dataset [23] that are used
for remote sensing image retrieval are shown. It can be inferred from Figure 1a,b that these two types
of remote sensing images are characterized by color and texture features. From Figure 1c,d, we can
see that they are characterized by the local shape of the aircraft and bridge instead of land and water
occupying most areas of the image. Therefore, the features used for CBRSIR should be able to take into
account both the global and local silent features of the image. However, pre-trained CNNs features
may be difficult for meeting this requirement, due to the big difference between the ImageNet data set
and the remote sensing image data set, and the difficulty of covering the images’ global and local silent
features simultaneously with a convolutional layer or a fully connected layer. Some works [24-26] try
to solve the above problems from the aspect of improving the data set, by introducing multi-labels
and dense labeling remote sensing datasets for training. To a certain extent, this problem can be
alleviated, while the disadvantage is also obvious that annotating on multi-labels is time-consuming
and costly. The second reason is the inconsistency in the purpose between the training process and
the retrieval process. Feature representation used in CBRSIR is the result of training for classification.
The accuracy of classification can even reach 99% in the verification set and test set, while when it is
used for image retrieval, the accuracy is far less than this. This is mainly due to the difference between
classification and retrieval. In classification, softmax loss is usually used for training to encourage
features to be separable, which leads the inter-class be disperse. However, in CBRSIR, the similarity
is measured between the images by the Euclidean distance or the cosine distance, which requires
feature representation not only to be separable but also discriminative. Discriminative features mean
inter-class to disperse, and intra-class to be compact as much as possible.

Figure 1. Some samples images from Aerial Image Data (AID). (a) desert, (b) forest, (c) airport,
(d) bridge.
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In this paper, we propose two schemes as the response to the above problems. We first propose a
new attention module for features extraction for CBRSIR, which can pay more attention to the silent
features, and suppress the less useful ones. We then provide a center loss-based multi-task learning
network structure to further boost the discriminative power of the features. The framework of our
proposed method is shown in Figure 2.

Pre-trained on | w ) ] b Softmax
TgceNet | |:Conv-1 HCmv-zHCmv-aHConM HCmvsh FC-6 H{ FC-7 h 1000 H

________________ j' Trdnsferf______________________
‘ Softmax | |
Train X ) < ) . G0)
Conv-1 Conv-2 Conv-3 Conv-4 m Conv-5 A“emmn Ll )
\| ‘ | J | \‘ [ \I Module (Feature)
- ‘ ‘ \ Ccnler
Loss
AID Training Set N
‘ Transfer
_feature_probe |
Probe set fﬂ:m—el J
Fcalurc [featureZ__je Similarity Retrieval
Extraction ﬁ feature¥ 14 # metric ‘ Result

Test set

fmlun’ n-1 e
featuren |«

Figure 2. The framework of our proposed discriminative feature learning approach.

The main contributions of this paper can be summarized as follows:

e To obtain salient and effective features, we propose a new attention module, which can be easily
connected with the last convolutional layer of any pre-trained CNNs and can be applied along
two dimensions: channel and spatial, attending to emphasize the meaningful features along these
two axes.

e  We propose a multi-task learning network structure, introducing center loss as a network branch
in the training phase, to penalize the intra-class distances of features, and to improve the
discriminative ability of the deep features.

e The two schemes that we proposed can be combined and integrated into the same training
network to further improve performance.

The rest of this paper is organized as follows. Section 2 presents some published work that is
related to features extraction for CBRSIR. Our proposed two schemes to generate discriminative feature
representation are discussed in Section 3. Section 4 displays the experimental results and analysis.
Section 5 includes a discussion, and Section 6 draws some conclusions.

2. Related Work

In the following section, we will present the related work on feature extraction, attention
mechanism, and a loss function.

2.1. Learning-Based Feature Representation for CBRSIR

CNNs have been dominant in feature extraction, and have gradually replaced traditional methods
in the field of computer vision. The achievement of CNNs is mainly due to the fact that deep network
structures bring a large number of nonlinear functions, and weight parameters can be automatically
learned from the training data. However, remote sensing image datasets cannot provide a large
amount of data for CNNs training from scratch. CNNs pre-trained on massive datasets have been
used to extract feature embedding, which has been proven to be effective and efficient, even when the
training data set has a lot of difference with the remote sensing image. There are mainly two ways to
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exploit pre-trained CNNSs, including regarding fully-connected layers or convolutional layers as the
feature representation. Many works [3,22,27,28] have compared the performance of different feature
representations extracted among the different networks and different layers. Ge, Jiang, Xu, Jiang and
Ye [22] exploit representations from pre-trained CNNSs, and feature combination and compression
are adopted to improve the feature representation. The experimental results demonstrate that the
pre-trained features and aggregated features are simple, and are able to improve retrieval performance.
Zhou, Newsam, Li and Shao [28] propose to fine-tune the pre-trained CNNs on a remote sensing
dataset, and they propose a novel CNN architecture based on a three-layer perceptron that has fewer
parameters and that can learn low-dimensional features. The results show that the fine-tuned CNNs
and the novel CNN are effective. Li et al. [29] proposes a novel approach based on deep hashing neural
networks for large-scale RMIR. Deep feature learning networks and hashing learning networks are
concluded in an end-to-end network. Zhou, Deng and Shao [26] propose a novel multi-label RSIR
method using fully convolutional networks (FCN). A pixel-wise labeled dataset is used for training
the FCN network. The segmentation maps of each remote sensing image are predicted and region
convolutional features are extracted based on the segmentation maps. The experimental results show
that the method achieves state-of-the-art performance. While these methods mainly focus on the depth
and the width of network architecture, we pay more attention to “attention”.

2.2. Attention Mechanism

The attention mechanism is an important part of human perception. It focuses on a specific area of
the image in “high resolution”, and it perceives the surrounding area of the image in “low resolution”,
and then it continuously adjusts its focus point. Actually, the attention mechanism is involved in
learning the weight distribution of different parts, which leads to different parts corresponding to
different degrees of concentration. The benefits of this property have been proven in many tasks,
ranging from machine translation and text summarization in sequence-based tasks to classification
and segmentation in computer vision.

References [30-32] apply the weight-learned to the original image, and Wang et al. [33] apply
the weight-learned to feature maps. In Hu et al. [34], the weight is applied to channel scales, to
weight different channel features. Closer to our work, Woo et al. [35] exploits both channel and
spatial-wise attention, and each of the attention mechanisms can acquire “what” and “where” to focus.
All of these works are proposed for natural image processing, and they have shown their excellent
performances in classification, detection and so on. There is no attention model for processing the
remote sensing images.

2.3. The Loss Function

The effect of CNNs has been continuously improved, in addition to the improvement of the
network structure, and the development of the loss function.

Softmax function is the most commonly used loss function to supervise the learning process
for classification. Taking one image as an input, and outputting the image’s identification, this kind
of model (softmax loss function) is called the identification model. Siamese networks are proposed
in [36], which take a pair of images as input, and is called a verification model. This model can
drive the distance to be closer for positive pairs, and further for negative pairs. After that, a model
combining identification and verification is adopted in Reference [37,38], which makes the feature more
discriminative. Besides, Schroff et al. [39] proposes triplet loss, and this has proven its effectiveness in
many datasets. A model with triplet loss takes anchor, positive and negative three images as input, to
minimize the distance between the anchor and the positive, and to maximize the distance between the
anchor and the negative.



Remote Sens. 2019, 11, 281 50f 19

3. The Proposed Approach

3.1. Scheme 1—The Attention Module

Our attention module can be connected with the last convolutional layer of the pre-trained CNNS.
As applied along two dimensions: channel and spatial, the attention module can be divided into the
channel attention module and the spatial attention module. The attention module’s framework is
shown in Figure 3.

Spatial attention module
Channel attention

module
Input Output
F F bl F b
(HxWxC) (1x1xC) (HxWxC) (HxWx1) (HxWxC)

Figure 3. Diagram of the attention module.
3.1.1. The Channel Attention Module

Given the last convolutional layer F (H x W x C) of any CNNs as input, the channel attention
module learns the channel attention map M, (1 x 1 x C). As we all know, the last convolutional layer
in CNNSs contains the richest high-level semantic information, and the different channels are regarded
as different features. For example, there are 2048 channels in the last convolutional layer of ResNet,
and 512 channels in VGG. Not all of these 2048 or 512 features have equal contributions to feature
representation. Thus, the vector Mc is learned, in order to weigh the importance of different channels.
The progress of channel attention module is illustrated in Figure 4.

Sigmoid Channel refined feature map

Input  Avgpool Favg

(HxWxC) (1x1xC) C (1x1xC) (1x1xC) (HxWxC)

Figure 4. Diagram of the channel attention module.

A typical average pooling method, global average pooling, is adopted, to squeeze the spatial
dimension of the feature map to acquire the channel attention map Fgye (1x1xC). Average pooling has
been commonly used in some works [34,35], while Reference [35] suggest exploiting both the average
pooling and the max pooling simultaneously, and this proves that their strategy is more effective than
using each strategy independently. Different from References [34,35], the attention module in this
paper is connected to the last convolutional layer of CNNSs, not to each block. This is mainly because
there is insufficient remote sensing data to enable the network to train from scratch. We apply average
pooling in the attention module, which is connected to the pre-trained CNNs. The design choice of the
different pooling methods and the effectiveness of our attention module is shown in Section 4.2.1. Then
Fayg connects with a multi-layer perceptron (MLP) with a hidden layer. The size of the hidden layer is
set to C/r, where r is set to 2 in this study. After the MLP is the sigmoid function. Then, input F and
the channel attention map M, are multiplied by elementwise, to acquire the output channel-refined
feature map. In conclusion, the channel attention module is computed as:

F' = M, ® F = 0(MLP(AvgPool(F))) ® F = ¢(W1(Wo(Faue))) @ F 1)
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where W, eRY*C and W,eRC*C/" denote the weight of MLP, o donates the sigmoid function, ®
denotes element-wise multiplication, and F’ is the final channel-refined feature map.

3.1.2. The Spatial Attention Module

The channel attention module is proposed for the difference between different channels, while
the spatial attention module is aimed at a different spatial location. Human beings can easily capture
informative features in an image by comparing the difference between the silent targets and the
background. The differences between the silent targets and the background in the images reflect the
differing importance of the different spatial locations in the feature maps.

As the complementary to channel attention module, the spatial attention module takes the output
of the channel attention module as the input to yield the spatial attention map Ms, which focuses on
weighing the importance of each spatial location in the feature map. Similar to the channel attention
module, the average pooling is implemented first to acquire the map Fs (H x W X 1), but the difference
is that the average pooling is applied along the channel axis. The choice of the different pooling ways
is also verified in Section 4.2.1. The map F; is regarded as an initial value of every pixel in the feature
map. Then, a convolutional layer and a sigmoid function were used to generate the final weights of
every location in the feature map. On the filter size used in the convolutional layer, the size adopted in
Reference [35]is 7 x 7, but we have verified in Section 4.2.1 that a filter of size 3 x 3 can lead to a better
performance than filters with other sizes in our attention module. At last, element-wise multiplication
is applied to acquire the final refined output, F”. The detailed operation is computed as:

F” = M; ® F' = o(f 3*3(AvgPool (F'))) ® F' = off >*3(F;)) ® F' ()

where ¢ donates the sigmoid function, and f3*3 denotes the convolutional layer with a filter size of
3x3. The specific progress of spatial attention module can be seen in Figure 5.

Channel refined Fs 3x3 conv spaital
feature map attention map
Sigmoid
Avgpool Y
(HxWxC) (HxWx1) (HxWx1) (HxWx1) (HxWxC)

Figure 5. Diagram of spatial attention module.
3.2. Scheme 2—The Center Loss-Based Multi-Task Learning Network

In most of the CNNSs, the softmax function is usually used as the loss function to supervise
the training of the model. The softmax loss function is shown in Equation (3), and it can efficiently
supervise the network trained for the classification task. The center loss function was proposed
in Reference [40] to minimize the intra-class variations for face recognition task, as formulated in
Equation (4).

m Wy; xi+by;

e
i=1 j=1¢

Le = = Y (xi —Cy)3 @)

N —
.Mb

i=1

where Cyl- donates the class center of features, n is the number of classes, m donates the size of the
mini-batch. During training, the update of the Cy; should consider all of the training sets in each
iteration that is not impractical. In [40], the class center Cy,» is updated, based on the mini-batch instead
of all training sets. A scalar A was used to control the learning rate of Cy;. The formulation of the
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improved loss function is given as Equation (5). The Stochastic Gradient Descent (SGD) can be used to
optimize the parameters in the loss function, but the process of the back propagation is complicated,
the specific algorithm can be found in Reference [40].

L=Ls+ ALc 5)

In this paper, a new network structure is proposed to leverage the center loss. The update
of center C;; is not decided by the average of the features of each class, which is complicated and
time-consuming. We treat class center C;; as the parameters to be learned. The Class centers are
initialized to a matrix K of (1, k) where 7 is the number of classes and k donates the dimensions of
the feature representation. The input of this branch is the label of the training image, which is the
same as the output of the softmax branch. Through the input label, we can obtain the corresponding
class center in the class centers matrix K. Thus, the center loss is calculated by minimizing the mean
square error of the input image’s feature vector and center loss as formulated in Equation (6). From
Reference [40], we can find that a proper value of A can improve the performance of the features. Also,
the hyper-parameter A in Equation (5), which decides the intra-class variations, is set to 0.0001 in our
experiment, which is verified in Section 4.2.2. As shown in Figure 6, the center loss is merged as a
branch of the network, the class centers are learned and the distances between the features and their
corresponding centers are minimized simultaneously. Our scheme is simpler, and the experiment is
verified in Section 4.2.2.

k . N
_ 2 _ ] ]
LC—Hin*CyiH = Z(Pxifcyi)z ©)
j=1
Attention Features
Module

Flatten
VGG16

Softmax loss

aa: °°° aa
eRell [; J P— - 112 -I
aaw **- aa

Input 2 Class centers(30x512) Classi centers(1x512) Center loss
Figure 6. Diagram of the Center Loss-based multi-task learning network structure.

4. Experiments and Analysis

4.1. Experimental Setup

The datasets used in our experiments are mainly AID [23] and ParttenNet [41], both of which
contain a large number of remote sensing images.

The Aerial Image Data (AID) is composed of 30 categories of typical aerial scene images with
a size of 600 x 600 pixels collected from Google Earth. The numbers of the images vary a lot with
different classes, from 220 up to 420, for a total of 10,000 images. Examples from every category are
shown in Figure 7a.

PatternNet comprises 38 categories of high-resolution remote sensing images with a size of
256 x 256 pixels selected from Google Earth. Each category contains 800 images, for a total of
30,400 images. Examples from every category are shown in Figure 7b.
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Figure 7. Samples images from the datasets AID and PatternNet, (a) examples from dataset AID,
(b) examples from dataset PatternNet.
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Currently, datasets used for CBRSIR are mostly datasets for scene classification. However, there is
an obvious difference between the classification and retrieval, and category labels are not available
and are only used for accuracy evaluation in retrieval. However, some work conducts experiments on
a data set, by dividing the data set into a training set and test set, and the category information has
been utilized in the training process, which is contrary to the precondition of image retrieval. Different
from this, in this paper, a challenging data set that is more in line with the preconditions of image
retrieval is constructed to better verify the effectiveness of our method. The data set that is used for
retrieval contains three subsets of the training set, probe set and test set, where the training set is
different from the probe set and the test set. The label information in the training set is applied to
fine-tune the pre-trained CNNs, but the labels are not available in the probe set and test set during the
process of retrieval. Specifically, the data set AID is chosen as the training set to fine-tune the network
pre-trained on ImageNet for its relatively huge amount of data and diverse data categories. The probe
and test sets are selected from PatternNet. Twenty images are picked from each of the 38 categories in
the PatternNet, a total of 760 images, forming the probe set. There are a total of 8162 images in the
test set, of which 7600 are from PatternNet as ground truth, 200 in each category, and the remaining
562 images acting as interference are collected from other remote sensing image datasets and they are
not related to the image of the PatternNet. These remote sensing image datasets includes RSSCN7 [42],
UC Merced_landUse [43] and WHU-RS19 [44].

In the experiment, the Euclidean distance is used for the similarity measure. VGG16, VGG19
and ResNet50 are chosen as the baseline networks. The average normalized modified retrieval
rank (ANMRR), the precision at k (P@k, k is the number of returned images), and the mean average
precision (mAP) are used to assess the performance of CBRSIR. ANMRR and mAP can comprehensively
evaluate the retrieval performance for it considering the order of all ground truths appearing in the
retrieved images.

Besides, the class-level precision is adopted as another evaluation criteria. The precision of the
i-th class can be expressed by n/e, where 7 is the number of correct retrieval images of class i in
the top ¢ retrieved images and ¢ is set to 20. Although the class-level precision cannot measure the
performance of retrieval comprehensively like mAP and ANMRR for the reason that it is only the
precision of the top 20 retrieved images, it can depict the precision of each class, and that it can reflect
the differences among the different classes. It is worth noting that the lower values of ANMRR reflect
better performance, while the larger the better, for mAP, P@k and class-level precision.

4.2. Results and Analysis

4.2.1. Design Choice and Effects of Scheme 1

In this section, the design process and the effectiveness of our attention module are shown. The
design process of the module mainly consists of three parts. We first compare three ways of pooling
strategies: max pooling, average pooling and the joint use of both two ways as in Reference [35],
which are adopted in a channel attention module. The experimental results, with different pooling
strategies, are shown in Table 1. On the one hand, we can observe that CNNs features, combined
with the attention module, outperform the baselines, especially in VGG16 and VGG19. While the
improvement in ResNet50 is not obvious, the main reason for this is that the performance of ResNet50
is relatively good, and that room for improvement is not as big as VGG. We observe that the attention
module with any pooling methods is beneficial for improving the performance, compared with the
baselines. On the other hand, the results imply the advantages of average pooling over the other two
methods. The choice of average pooling can achieve better performance in both mAP and ANMRR,
which improves the mAP from 0.5641 in VGG16, 0.5518 in VGG19 and 0.7080 in ResNet50 to 0.6 in
VGG16, 0.5858 in VGG19, and 0.7187 in ResNet50. There are improvements of almost 4%, 2.5%, and
0.7% improvement for VGG16, VGG19, and ResNet50 in the value of ANMRR.
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Table 1. Comparisons of different attention modules by using different pooling methods. The best
result for each baseline CNN (Convolutional Neural Network) is reported in bold.

Description ANMRR mAP Pe1 P@5 P@10 P@20 P@50 P@100

Vggl6(baseline) 0.3691 0.5641 0.9368 0.8868 0.8342 0.7684 0.6684 0.5474
Vggl6_Avgpool 0.3283 0.6097 0.9474 0.9053 0.8789 0.8026 0.7474 0.5868
Vggl6_Maxpool 0.3376 0.5997 0.9447 0.8737 0.8921 0.7921 0.6921 0.5868
Vggl6o_Avg + Max 0.3326 0.6011 0.9474 0.9316 0.8747 0.7947 0.7263 0.6026
Vggl9(baseline) 0.3717 0.5518 0.9263 0.8921 0.8447 0.7500 0.6500 0.5447
Vggl9_Avgpool 0.3473 0.5858 0.9605 0.9132 0.8920 0.7895 0.6868 0.5263
Vggl9_Maxpool 0.3683 0.5658 0.9237 0.8684 0.8211 0.7711 0.6474 0.5421
Vggl9_Avg + Max 0.3604 0.5727 0.9500 0.8921 0.8789 0.8053 0.6816 0.5316
Res50(baseline) 0.2335 0.7080 0.9668 0.9500 0.9263 0.8737 0.7789 0.6579
Res50_Avgpool 0.2267 0.7187 0.9816 0.9526 0.9237 0.8816 0.8211 0.6789
Res50_Maxpool 0.2413 0.7007 0.9842 0.9500 0.9368 0.8921 0.8158 0.6974
Res50_Avg + Max 0.2344 0.7086 0.9789 0.9605 0.9342 0.8789 0.7921 0.7132

Second, we investigate the influences of three different filter sizes in the spatial attention module.
The different spatial attention modules are placed after the previously designed channel attention
module. Table 2 shows the experimental results. We can find that a smaller filter size leads to a better
performance. This implies that the smaller receptive field can finely focus on each pixel, so that the
importance of each pixel can be determined more accurately.

Table 2. Comparisons among different filter sizes. The best result is reported in bold.

Description ANMRR mAP Pe@1 P@5 P@10 P@20 P@50 P@100

Vgglé(baseline) 0.3691 05641 09368 0.8868 0.8342 0.7684 0.6684  0.5474
Vggl6_AM(3 x 3) 0.3283 0.6097 09474 0.9053 0.8789  0.8026  0.7474  0.5868
Vggle_AM(5 x 5) 0.3381 0.5959  0.9500 0.9000 0.8789  0.8000  0.6711 0.5447
Vgglo_AM(7 x 7) 0.3411 05946 09479 09116 0.8395 0.8000 0.6737  0.5816

Thirdly, we compare our attention module to other popular attention modules: SE [34] and
CBAM [35]. SE [34] and CBAM [35] are proposed for natural image processing, which inspired our
attention module for remote sensing image processing. The experimental results are shown in Table 3.
From mAP and ANMRR, it can be found that SE and CBAM cannot be adapted to the processing of
remote sensing images. This is mainly because the SE and CBAM modify each block of the original
network structure, and they need to be trained from scratch, while it is impossible to provide sufficient
remote sensing image datasets to train the model from scratch. Our method adds the attention module
to the end of the original network structure, and it can still take advantage of the pre-trained weights
on ImageNet. The better mAP and ANMRR in Table 3 indicate our method is not only simple but
effective. Besides, Figure 8 depicts that the baseline network connected with the average pooled
attention module can achieve better performance for the majority of the classes. To better show the
effect of our attention module, Gradient-weighted Class Activation Mapping (Grad-CAM) [45] is
applied to visualize how the module is affecting the learning of the features. In Figure 9, we can
find that the masks of the VGG16 combined with attention module cover the salient regions better
than original VGG16, which indicates that the module-integrated networks can make full use of
the information in salient regions and aggregate the features. Thus, these positive results show the
superiority of our design choice and the effect of the attention module.

Table 3. Comparisons of different attention modules. The best result is reported in bold.

Description ANMRR mAP
Vgglé6(baseline) 0.3691 0.5641
Vggle_ AM 0.3283 0.6097
Vggl6_SE [34] 0.4911 0.4296

Vggle_CBAM [35] 0.4910 0.4316
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Figure 8. Class-level precisions of different baseline networks and the corresponding average
pooled attention modules, where vggl6_am means the vggl6é combined with the average pooled
attention module.

Figure 9. Grad-CAM (Gradient-weighted Class Activation Mapping) visualization results.

4.2.2. The Results of Scheme 2

In this part, we experimentally verify the effect of our scheme 2, by evaluating the performance of
different CNNs trained under the supervision of different loss functions and making a comparison
between our method and the baselines. A model combining identification loss and verification
loss [37,38], and a model proposing triplet loss [39] are two popular and effective loss functions in
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natural image processing. The comparison between our method and the two methods is shown
in Table 4. We observe that the models in References [37-39] are not as effective as dealing with
natural images problems, such as face recognition and person re-identification. We believe that this
is mainly because the remote sensing dataset is not as complex as the pedestrian dataset and face
dataset. This means that more complex models [37-39] do not achieve better results based on relatively
simple remote sensing datasets. Our method, a simpler loss function, is meaningful in improving the
performance compared to References [37-39]. As depicted in Figure 10, we visualize the deep features
of five classes obtained through the two training modes, to compare their differences intuitively, and
Principal Component Analysis (PCA) is adopted to compress the 512-dimensional features obtained
by VGGI16 to two dimensions. Figure 10a,b exhibit the distribution of the softmax loss without center
loss, and softmax loss with center loss. Figure 10c is the distribution of References [37,38], and (d) is
Reference [39]. We can observe that the distribution of the same class in Figure 10b is more compact
and that the features are relatively separable compared with Figure 10a,c,d. As a brief conclusion, the
features trained under the softmax loss combined with the center loss, are more discriminative for its
more dispersed inter-class and more compact intra-class.

Table 4. Comparisons of the different loss functions. The best result is reported in bold.

Description ANMRR mAP

Vggl6(baseline) 0.3691 0.5641
Vggle_CL 0.3410 0.5864
Vggl6_[37,38] 0.3603 0.5656
Vggl6_[39] 0.3622 0.5662
° 2 401 e 2
x : x ?1 30 1 x j
X:’ * * 20

10 20 30 40 —40 =30 -20 =10 0 10 20 30 40
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Figure 10. The distribution of the learned features under the supervision of softmax loss and softmax
combined center loss: (a) Softmax loss (b) Softmax loss + center loss (c) Reference [37], Reference [38]:
identification loss+ verification loss, (d) Reference [39]: triplet loss.
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Figure 11 shows the mAP of different models with different hyper-parameters A. It is clear that
the softmax loss (A is 0) is not the best choice. The best performance is acquired when A is set to
0.0001, and the performance decreases sharply as A continues to increase. Figure 12 demonstrates
the results of class-level precision, from which we can observe that ResNet50 outperforms the other
two baselines, and the center loss can help CNNs to achieve better performance for the majority
of the classes. The performance of our method and the original CNNs models is summarized in
Table 5. There are improvements of almost 2%, 1%, and 0.7% for the baselines VGG16, VGG19, and
ResNet50, respectively, in the values of mAP and ANMRR. We conclude that center loss is meaningful

for boosting the discriminative power of deep features, comparing the ANMRR and mAP with the
baseline networks.
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Figure 11. Models with different A.
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Figure 12. Class-level precision of different baselines trained under different loss function. vggl6_cl

means the vggl6 trained under the joint supervision of the softmax loss function and the center
loss function.
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Table 5. Comparisons of different CNNs (Convolutional Neural Networks) under different loss
functions. CL means that the network is trained under the supervision of the softmax loss function and
the center loss function. The best result for each baseline CNN is reported in bold.

Description ANMRR  mAP Pe1 P@5 P@10 P@20 P@50 P@100
Vgglé6(baseline) 0.3691 0.5641 0.9368 0.8868  0.8342  0.7684  0.6684  0.5474

Vggle_CL 0.3410 0.5864 09395  0.8921  0.8421  0.8105 0.6948  0.5421
Vggl9(baseline) 0.3717 05518 09263 0.8684 0.8447 0.7500  0.6500  0.5447
Vggl9_CL 0.3601 0.5604 09237 0.8921  0.8211 0.7711  0.6474  0.5421
Res50(baseline) 0.2335 0.7080 09668 09500  0.9263 0.8737 0.7789  0.6579
Res50_CL 0.2274 0.7153 09868  0.9658  0.9447 0.8816 0.8116  0.7079

4.2.3. The Effects of Combining Scheme 1 with Scheme 2

In this part, the effectiveness of combining our two schemes is empirically demonstrated. The
attention module and the center loss are adopted simultaneously in the training phase, to acquire the
discriminative deep features (as shown in Figure 2).

The results are shown in Table 6. We can see that the combined effect of the two schemes is
generally better than any of the single schemes in terms of ANMRR and mAP. Our method increases
the mAP of baseline VGG16 by nearly 5%, VGG19 by 4%, and ResNet50 by 1.2%. The improvement
is similar on ANMRR. These results indicate that the feature representation generated under the
combination of the two schemes is more discriminative and effective. The class-level precision is
displayed in Figure 13.

Table 6. Comparisons of three different schemes with the baseline networks. The best result for each
baseline CNN (Convolutional Neural Network) is reported in bold.

Description ANMRR mAP P@1 P@5 P@10 P@20 P@50 P@100

Vgglé 0.3691 05641 09368 0.8868 0.8342 0.7684 0.6684  0.5474
Vgglo_AM 0.3283 0.6097 09474 09053 0.8789  0.8026  0.7474  0.5868
Vggl6_CL 0.3410 05864 09395  0.8921  0.8421  0.8105 0.6948  0.5421

Vggle_AM + CL 0.3182 0.6111 09421 09132 09105 0.8132 0.7342  0.6000

Vggl9 0.3717 05518 09263 0.8684  0.8447 0.7500  0.6500  0.5447
Vggl9_AM 0.3473 0.5858 09605 09132 0.8920 0.7895  0.6868  0.5263
Vggl9_CL 0.3601 0.5604 09237 0.8921 0.8211 0.7711 0.6474  0.5421

Vggl9_AM + CL 0.3437 0.5925 09500 09237 0.8816  0.8184  0.7000  0.5605

Res50 0.2335 0.7080 09668 09500 09263 08737 07789  0.6579
Res50_AM 0.2267 0.7187 09816 09526 09237 0.8816 0.8211  0.6789
Res50_CL 0.2274 0.7153 09868 09658 09447 08816 0.8116  0.7079

Res50_AM + CL 0.2230 0.7203 09816 09605 09579 09105 0.8053  0.7026
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Figure 13. Class-level precision of different baselines, and the scheme combining the attention module

with center loss.

4.2.4. Comparisons with the Baselines

In this part, the best result of our scheme is compared with a multi-label approach ReCNN+ [26]
and several state-of-the-art approaches. We conduct the experiments under the same experimental
conditions as ReCNN+ in [26]. The data set UC Merced_landUse is used, which contains 21 classes
with 100 images per class, and 80% of the images are used for training, and the remaining 20% are
used for evaluating the performance of the retrieval.

The results are shown in Table 7, from which we can see that our methods beat the multi-label
approach ReCNN+ and other baselines with a large margin. The best performance in Reference [26]
is ReCNN+, which achieves an ANMRR value of 0.264, the mAP value is 0.688. However, the
CNNs-based features can achieve better performance, especially Resnet50. Our three methods have
increased these two indicators by more than 10%, compared to Reference [26]. A 4%—9% improvement
has been achieved, compared to the CNNs baseline. In addition, it can be found that the performance
difference between our three methods is not large, and we think that this may be due to the smaller
training and test sets. In conclusion, the CNNs-based features are effective, and they have good
performance in CBRSIR, and our two schemes can further improve the performance of the CNNss.

Table 7. Comparisons between our methods and the baselines. The best result is reported in bold.

Description ANMRR mAP P@5 P@10 P@20 P@50
Statistic 0.820 0.156 0.273 0.182 0.131 0.098
LBP 0.740 0.217 0.480 0.327 0.218 0.121
BOVW 0.538 0.398 0.561 0.464 0.376 0.236
ReCNN 0.509 0.441 0.686 0.556 0.414 0.228
ReCNN+ 0.264 0.688 0.861 0.753 0.624 0.344
Vgglé 0.196 0.728 0.871 0.841 0.816 0.614
Vggl9 0.177 0.717 0.870 0.833 0.817 0.676
Res50 0.092 0.817 0.916 0.909 0.883 0.781
Vggl6_AM+CL 0.081 0.813 0.895 0.876 0.848 0.783
Vggl9_AM+CL 0.114 0.797 0.893 0.881 0.803 0.771

Res50_AM+CL 0.089 0.840 0.919 0.914 0.921 0.845
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5. Discussion

Through the above experiments and comparisons, the two schemes that we proposed can be

proven to be effective. Based on the experimental results, we make some further discussion as follows:

In the first scheme, the pre-trained CNNs connected with our simple attention module are
regarded as the feature extractors. To give an extensive evaluation of our scheme, we conduct
four comparative experiments: comparisons with fine-tuned VGG16, VGG19, and ResNet50,
comparisons among different pooling methods, comparisons among different filter sizes, and
comparisons with different attention modules. The results of experiment 1 in Table 1 show that
our scheme is beneficial for improving the CNNs’ ability of feature representation. The results
of experiments 2 and 3 in Tables 1 and 2 show that the design choice of the attention module
is appropriate and effective. The results of experiment 4 in Table 3 indicate that our attention
module is more suitable for remote sensing images processing than SE [34] and CBAM [35], which
are used for processing natural images. The attention module can further weight the features
that are extracted by CNNs, to generate meaningful features that are more important, which is a
possible explanation for the effects of our attention module.

In the second scheme, a novel multi-task learning network structure that can further boost the
discriminative power of the features is proposed based on center loss. By reducing the intra-class
distance, the center loss that is adopted in our novel network further compensates for the lack
of softmax loss. From the comparisons in Table 4 and the distributions in Figure 9, center loss,
integrated with softmax loss, can achieve better performance than other loss functions [37-39],
and more discriminative features, rather than just separable features, can be learned under the
supervision of center loss. Better performance can be found in Table 5, compared with fine-tuned
CNNs, which indicates that center loss is meaningful for boosting the discriminative power of
deep features. Compared to the fine-tuned CNNs, a more compact intra-class distance is the key
to the better performance of our scheme.

The validity of the combination of scheme 1 and scheme 2 is verified in Sections 4.2.3 and 4.2.4.
The re-weighted feature maps caused by the attention module, and a more discriminative feature
representation caused by center loss, are combined and compared with other schemes and
baselines. The results in Tables 6 and 7 show the remarkable performances of our combined
schemes, which further validates the effectiveness of our two schemes and the feasibility of
combining the two schemes.

Learning-based features have attracted increasing interest not only in remote sensing image
retrieval but also in the computer vision society. For example, most baselines in instance
retrieval and person re-identification are learning-based features. Although the CNNs features are
commonly adopted by remote sensing image retrieval and other retrieval tasks, the difference still
exists. Specifically, person re-identification aims at retrieving a person of interest in other cameras,
which is based on the person detection. The target of interest has been detected, there is almost no
other interference information such as a background in the remote sensing image retrieval. Our
scheme 1 is proposed for this point to focus on the salient target. Compared to instance retrieval,
which is aiming to retrieve images containing the same object or architecture that may be captured
under different views, remote sensing image retrieval belongs to class retrieval, which aims at
retrieving images of the same class with the query, and this is why datasets used for CBRSIR are
mostly datasets for remote sensing scene classification. Based on this, our scheme 2 is designed to
penalize the intra-class distances of features. Our method is designed for the characteristics of
remote sensing image retrieval and the particularity of the dataset.

6. Conclusions

In this paper, we proposed two schemes to acquire the discriminative features for remote sensing

images retrieval. Our first scheme attention module, a simple module with small calculations, is
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applied to capture the silent local features and to suppress less useful ones. Through the execution of
the two channel and spatial dimensions, our attention module can emphasize the important features
along those two axes. Our second scheme center loss is adopted to improve the network structure
of the original classification training. The advantage of center loss is to make the deep features of
the inter-class dispersed and intra-class to be as compact as possible, which is more suitable for
remote sensing images retrieval. To verify the validation of the approach, a more challenging data
set is built, which consists of multiple published datasets for remote sensing images retrieval and
scene classification. Finally, extensive experiments on the challenging data set and comparisons with
baselines demonstrate the effectiveness and superiority of our two schemes, especially the combination
of two schemes that can achieve the best performance.

Though our proposed feature learning approach can achieve better performance, there are still
some shortcomings that we cannot neglect. As described in Section 3.1, our attention module can only
be connected to the convolutional layer of CNNs. However, both the fully connected layer and the
convolutional layer can be used as the feature representations. In Reference [27], the fully connected
layer of some CNNs can obtain better retrieval performance than the convolutional layer under certain
conditions. So, how to overcome the limitation for the use of the attention module is one of our future
focuses. In addition, the attention module is proposed for remote sensing images retrieval, but it
can also be used for other tasks, such as object detection and scene classification in remote sensing
image processing.
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