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Abstract: Lake Malawi is an important water resource in Africa. However, there is no routine
monitoring of water quality in the lake due to financial and institutional constraints in the surrounding
countries. A combination of satellite data and a semi-analytical algorithm can provide an alternative
for routine monitoring of water quality, especially in developing countries. In this study, we first
compared the performance of two semi-analytical algorithms, Doron11 and Lee15, which can estimate
Secchi disk depth (SD) from satellite data in Lake Malawi. Our results showed that even though the
SD estimations from the two algorithms were very highly correlated, the Lee15 outperformed the
Doron11 in Lake Malawi with high estimation accuracy (RMSE = 1.17 m, MAPE = 18.7%, R = 0.66,
p < 0.05). We then evaluated water transparency in Lake Malawi using the SD values estimated from
nine years of Medium Resolution Imaging Spectrometer (MERIS) data (2003–2011) with the Lee15
algorithm. Results showed that Lake Malawi maintained four water transparency levels throughout
the study period (i.e., level 1: SD > 12 m; level 2: SD between 6–12 m; level 3: SD between 3–6 m; level
4: SD between 1.5–3 m). The level 1 and 2 water areas tended to shift or trade places depending on
year or season. In contrast, level 3 and 4 water areas were relatively stable and constantly distributed
along the southwestern and southern lakeshores. In general, Lake Malawi is dominated by waters
with SD values larger than 6 m (>95%). This study represents the first overall and comprehensive
analysis of water transparency status and spatiotemporal variation in Lake Malawi.

Keywords: Secchi Disk Depth; Semi-analytical algorithm; remote sensing; spatiotemporal variation

1. Introduction

Lake Malawi, with an area of 29,252 km2, is the third largest lake in Africa and the ninth largest in
the world, if the Aral Sea is excluded [1]. The lake serves as an important water resource, providing
economic, recreational, and domestic uses for riparian countries [2]. In addition, the lake has the
largest number of indigenous fish species in the world, and thus conservation of the biodiversity in the
lake is important [3]. However, given the steady population growth of the riparian countries, and land
use conversion from forests to agriculture in the watershed of the lake, water quality in Lake Malawi
has been deteriorating [4,5]. Therefore, routine monitoring of water quality is essential.
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Generally, two main techniques are used for monitoring water quality: (1) field survey by a
boat; and (2) using remote sensing data. However, financial and institutional constraints in Africa
make for poor availability of in situ water quality data in most African lakes [6]. In addition, in situ
monitoring of a large lake such as Lake Malawi has spatial constraints, which makes it difficult to
represent the characteristics of water quality across the entire lake. Therefore, the remote sensing
technique should be considered as an effective method for providing water quality information on
African lakes, especially for monitoring a big lake such as Lake Malawi [6,7].

There are two requirements for monitoring water quality by the remote sensing technique.
First, a satellite sensor with ocean bands is desired. These include, for example, the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) from
the National Aeronautics and Space Administration (NASA), and the Medium Resolution Imaging
Spectrometer (MERIS) from the European Space Agency (ESA) [8]. Compared to sensors for land
applications, the ocean color sensors can provide remote sensing reflectance (Rrs) data with better
temporal and spectral resolution, as well as higher radiative sensitivity, all of which are necessary for
monitoring water quality [9].

Second, an algorithm is needed for estimating water quality parameters from the Rrs.
The algorithm can be either empirical or semi-analytical. Although empirical algorithms are easy
to implement, in situ data for recalibration is always necessary, which limits their applicability to
other lakes, especially those without available in situ data. In contrast, semi-analytical algorithms are
based on a radiative transfer theory (or bio-optical model) with several secondary important empirical
relationships under some assumptions, and thus do not often require recalibration [10,11]. In cases
where there is a lack of in situ data such as in Lake Malawi, the use of a semi-analytical algorithm is
the most practical and viable method for estimating water quality parameters.

The main water quality parameters that can be estimated from remote sensing data using the
semi-analytical algorithms are Chlorophyll-a (Chl-a, [12–14]), total suspended matter (TSM; [15]),
colored dissolved organic matter (CDOM, [14]), and Secchi disk depth (SD, [11,16]). As the SD
estimation is based on an underwater visibility theory, and the SD value itself is an apparent optical
property (AOP) of a water body just like Rrs, the relationship between SD and Rrs values can be
considered more robust than those between other water quality parameters and Rrs values. In addition,
the SD value is easy to measure and can be understood by the general public. Thus, it has been widely
used as an indicator for evaluating water quality (transparency or clarity) since the 1860s [17] as well
as one of the important parameters for calculating trophic state index (TSI, [18]).

There are two main semi-analytical algorithms for estimating SD values from remote sensing
data. The first, developed by Doron et al. in 2011 [16], is based on a classic underwater visibility theory
that has been used for over 60 years ([19]; hereafter, ‘Doron11’). The second semi-analytical algorithm
was developed by Lee et al. in 2015, based on a new underwater visibility theory proposed by the
same authors in the same study ([11]; hereafter, ‘Lee15’). Although Lee et al. [11] pointed out some
shortcomings in the classic theory, and later [20] directly compared the performance of Doron11 and
Lee15 using a simulated dataset, the two algorithms have not been applied in practice to the same
water body and compared to common in situ measured SD values. Therefore, we considered that there
was not yet enough evidence to show which algorithm should be selected and used in Lake Malawi.

In consideration of the above, and the fact that few studies have comprehensively evaluated water
quality in Lake Malawi [5,21], the research objectives of the present study are: (1) to comprehensively
compare the performance of the two semi-analytical algorithms (Doron11 and Lee15) in Lake Malawi;
and (2) to obtain an overall evaluation of water transparency in Lake Malawi from MERIS data.
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2. Materials and Methods

2.1. Study Area

Lake Malawi (09◦30′–14◦40′S, 33◦50′–33◦36′E) is the southernmost lake in the Great Rift Valley,
surrounded by Malawi, Mozambique, and Tanzania (Figure 1). While the lake is also known as
Niassa in Mozambique and Nyasa in Tanzania, internationally and scientifically it is known as Lake
Malawi. It is about 560 km long, and has a maximum width of about 75–87 km, an average depth
of 292 m, and a maximum depth of 706 m. There are three seasons in the area surrounding the
lake, determined by rainfall and temperature. They are the cool dry season (May–August), hot dry
season (September–October), and warm wet season (November–April), with 95% of precipitation
falling during this latter period (Figure 2, [22]). The majority of the lake’s catchment is in Malawi,
where the population has doubled in the past 25 years, with a 2.8% yearly increase over the last
10 years for a current total population of about 19 million. Most of the population relies directly
on subsistence agriculture and fish for food, and the high population density is resulting in the
expansion of subsistence agriculture to marginal land, including wetlands and steep hill slopes [23].
About 7% of the catchment area is within Mozambique, while approximately 25% lies within Tanzania;
the remainder is in Malawi. Most of the rain falls along the lake’s shoreline, which is dominated by flat
land contrary to other regions of the basin. All three adjacent countries are developing, and subsistence
agriculture is still vital to the majority of the population.
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Figure 2. Monthly mean temperature and rainfall in Malawi (1991–2015). There are three seasons:
the cool dry season (May–August), hot dry season (September–October), and warm wet season
(November–April). Data source: [24].

2.2. Data Collection

A total of 1658 MERIS L1b, Full Resolution (300 m) images covering the study area during
2003–2012 were downloaded from the European Space Agency (ESA, [25]). These data were subset to
the lake’s basin area to reduce their size. After removing cloud-contaminated images, only 822 images
from 20 Jan., 2003 to 30 Dec., 2011, were used, of which 338 images covered just half or more of the
lake area. Table 1 summarizes the MERIS dataset used in this study.

Table 1. Temporal availability of Medium Resolution Imaging Spectrometer (MERIS) images used in
this study.

Year

Month 2003 2004 2005 2006 2007 2008 2009 2010 2011 Total

Jan 2 9 4 10 2 2 5 2 4 40
Feb 1 7 2 6 2 5 4 1 3 31
Mar 2 1 6 10 8 6 2 4 4 43
Apr 3 1 3 8 9 10 6 11 6 57
May 3 1 11 11 16 13 11 11 7 84
Jun 10 0 15 14 13 13 11 10 13 99
Jul 4 1 14 13 12 11 8 9 10 82

Aug 10 3 12 14 13 15 9 13 12 101
Sep 12 3 14 12 11 14 7 11 8 92
Oct 7 1 13 6 12 12 8 6 7 72
Nov 10 2 11 7 12 8 5 7 7 69
Dec 9 5 8 6 5 5 3 5 6 52

Subtotal 73 34 113 117 115 114 79 90 87 822

The Case-2 regional processor (C2R) embedded in BEAM 5.0 was used to carry out the atmospheric
correction. The C2R was chosen because it has been tested over a wide range of atmospheric parameters
(aerosol optical properties), and it provides atmospheric correction, smile correction, land masking
through its land detection, cloud and ice invalid pixels, and other flags for filtering the data [26–28].
To further avoid a possible influence from the bottom reflectance caused by the pixels along the
shoreline, a 600 m buffer was generated to mask these pixels. After SD estimations, the daily SD
values were aggregated into monthly (averaged 9-year SD values in each month) and yearly (averaged
12-month SD values in each year) datasets.
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The in situ measured SD values used in this study were collected in 2007. Figure 3 shows the
sampling locations. The SD values were measured along a 10-km south–north transect. The transect
included one station (KGC) at the center of the cage farm (fish cages deployed in 2004 for fish
aquaculture), 4 stations at the south (CS1–CS4), and 4 stations at the north of the cage farm (CN1–CN4).
The distance between two stations was controlled to be at least 1 km away [29]. The name of stations
and the number of in situ SD measurements for each station including the minimum and maximum
SD values are summarized in Table 2.
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four sampling stations in the south of KGC (modified from [29]).

Table 2. Stations and number of in situ Secchi disk (SD) measurements used for validation, including
minimum and maximum values. KGC represents the center of the cage farm, CN1–CN4 represents
four sampling stations in the north of KGC, and CS1–CS4 represents four sampling stations in the
south of KGC [29].

Station Nr of SD
Measurements

Min–Max
(m)

Sampling Time
(Monthly)

CS4 20 2.8–9.6

except for Jul. and Aug.CS3 15 2.1–10.0
CS2 21 2.4–10.2
CS1 14 2.8–11.1

KGC 33 2.9–9.6 except for Jan. and Aug.

CN1 15 3.5–9.6
except for Apr., Jul., and

Aug.
CN2 22 2.9–9.0
CN3 14 3.0–12.3
CN4 19 3.9–12.2

In total 173 2.1–12.3
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2.3. The Two Semi-Analytical Algorithms Used in This Study

2.3.1. Doron11 Algorithm

The basic equation of the Doron11 is as follows [30,31]:

SD =
ln ( Co

Cmin
)

Kd(v) + c(v)
(1)

where Kd(v) is the photopic vertical diffuse attenuation coefficient (m−1), c(v) is the photopic beam
attenuation coefficient (m−1), Cmin is the minimum apparent contrast perceivable by the human eye
(=0.0066), and Co is the inherent contrast between the disk and background water, which can be
expressed as [30]:

Co =
RSD − R∞

R∞
, (2)

where RSD is the reflectance of the Secchi disk (= 0.82 based on [30]), and R∞ is the irradiance reflectance
of the environment around the Secchi disk at 490 nm.

Kd(v) + c(v) can be estimated from Kd (490) + c (490) together, based on the following
equation [16,20,32]:

Kd(v) + c(v) = 0.0989X2 + 0.8879X + 0.0467, (3)

where X represents Kd (490) + c (490), which are the vertical diffuse attenuation coefficient and beam
attenuation coefficient at a wavelength of 490 nm, respectively. The c (490) can be further obtained
from the sum of the total absorption coefficient and total scattering coefficient at 490 nm (i.e., a(490)
and b(490)); a(490) and the total backscattering coefficient at 490 nm (i.e., bb(490)) can be calculated
using Equations (11) and (12) in [16] (also see Equations (A1) and (A2) in Appendix A). The b(490)
can be calculated from the sum of the particle scattering coefficient (Equation (9) in [32], also see
Equation (A3) in Appendix A) and the scattering coefficient of pure water at a wavelength of 490 nm.

Kd (490) can be estimated from a(490) and bb(490) using the following equation [33]:

Kd(λ) = (1 + 0.005× θs)× a(λ) + (1− 0.265× (bbw(λ)/bb(λ)))× 4.259× (1− 0.52e−10.8×a(λ))× bb(λ), (4)

where θs represents the solar zenith angle in degree and bbw is the backscattering coefficient of
pure water [34].

2.3.2. Lee15 Algorithm

The basic equation of the Lee15 algorithm is as follows [11]:

SD =
1

2.5Min(Kd(443, 490, 510, 560, 620, 665))
ln(

∣∣∣0.14− Rpc
rs

∣∣∣
Cr

t
), (5)

where Rpc
rs is the above-water remote sensing reflectance (Rrs) corresponding to the wavelength with

the minimum Kd, and Cr
t is the contrast threshold of the human eye in radiance reflectance (=0.013

sr−1). Min(Kd (443, 490, 510, 560, 620, 665) is the Kd at MERIS visible bands with a minimum value.
The Kd at a given band can be estimated from a and bb at the same band using Equation (4) above.
In the Lee15 algorithm, the total absorption coefficient (a) and total backscattering coefficient (bb) were
estimated from Rrs using the sixth version of the quasi-analytical algorithm [35].

2.4. Definition of Transparency Levels

The Organization for Economic Cooperation and Development (OECD) [36] classification system
was used to define water transparency levels in Lake Malawi. In all, there are five transparency levels
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according to thresholds of SD values [36], which were also linked to trophic states of a water body
(Table 3).

Table 3. Transparency level definition according to thresholds of SD values [36].

Trophic Category Secchi Depth (m) Transparency Level

Ultra-oligotrophic >12 1
Oligotrophic 6–12 2
Mesotrophic 3–6 3

Eutrophic 1.5–3 4
Hyper-eutrophic <1.5 5

2.5. Accuracy Assessment

In this study, we used the Root mean square error (RMSE), Mean absolute percent error (MAPE),
and Bias to evaluate the performance of the two semi-analytical algorithms. These error measurement
indexes are defined as follows:

RMSE =

√
∑N

i=1(Xest,i − Xmeas,i)
2

N
(6)

MAPE =
1
N

N

∑
i=1

∣∣∣∣Xest,i − Xmeas,i

Xmeas,i

∣∣∣∣× 100% (7)

Bias =
∑(Xest,i − Xmeas,i)

N
, (8)

where Xest is the estimated SD value, Xmeas is the corresponding in situ measured SD value, and N is
the number of SD pairs.

3. Results

3.1. Comparison of Doron11 and Lee15 in Lake Malawi

Figure 4 shows comparisons of in situ measured SD in 2007, and corresponding estimated SD
values from MERIS data using the Doron11 and Lee15 algorithms, respectively. First, we compared
all available in situ measured SD to the estimated SD values from the closest MERIS data without
consideration of the time difference between satellite acquisition day and in situ sampling day
(Figure 4a,b, N = 173). Results show that the Lee15 algorithm generally performed better than the
Doron11 algorithm, with smaller RMSE value of 2.1 m (4.87 m for Doron11) and MAPE value of
30.76% (83.94% for Doron11). The SD values derived from the Doron11 algorithm showed obvious
overestimations. In contrast, the SD values derived from the Lee15 algorithm were almost distributed
around the 1:1 line. However, the correlations between the estimated and in situ measured SD values
were weak for both algorithms, although these correlations were significant (R = 0.24 and p < 0.001
for both).

Second, we compared in situ measured and MERIS data estimated SD values only for the same
day matchups to reduce effects due to dynamic variation of water quality (Figure 4c,d, N = 23).
Results revealed that RMSE and MAPE values were reduced to 1.86 m and 21.01% using the Lee15
algorithm, and 3.68 m and 66.87% with the Doron11 algorithm. In addition, the correlation coefficients
were increased to 0.63 for the Lee15 algorithm and 0.65 for the Doron11 algorithm (p < 0.001). In this
comparison, the Lee15 algorithm outperformed the Doron11 algorithm.

Third, we further compared in situ measured and MERIS-derived SD values for matchups with
a time gap smaller than 3 h by considering NASA’s recommendation [37] and the high dynamic
variation of water quality in the southeast arm of Lake Malawi (Figure 4e,f, N = 12). Results showed
that the RMSE and MAPE values were further reduced to 1.17 m and 18.7% for Lee15 algorithm, with a
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correlation coefficient of 0.66 (p < 0.05) and slope of 0.74. However, the RMSE and MAPE values using
Doron11 algorithm were slightly increased with an insignificant correlation between the measured
and estimated SD values (R = 0.52 but p > 0.05). This comparison also demonstrated that the Lee15
algorithm performed better than the Doron11 algorithm.
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Lee15 algorithm for all available in situ SD measurements; (b) using the Doron11 for all available in
situ SD measurements; (c) using the Lee15 for matchups on the same day; (d) using the Doron11 for
matchups on the same day; (e) using the Lee15 for matchups within 3 h; (f) using the Doron11 for
matchups within 3 h.

Figure 5 presents an example of comparison of the MERIS-derived SD values using the Doron11
algorithm and Lee15 algorithm; a summary of the values during the study period is shown in Tables 4
and 5. From Figure 5, it can be seen that the SD values derived by using the Doron11 algorithm
were strongly correlated with those derived by using the Lee15 algorithm (nonlinear), but always
with higher SD values for both yearly and monthly comparisons. Similar relationships could also
be found for other years and months, with high determination coefficients larger than 0.96, absolute
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mean differences (AMD) ranging from 4.9–6.5 m, and relative mean differences (RMD) ranging from
37–58.7% (Tables 4 and 5).
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Table 4. Summary of pixel-based comparison of yearly MERIS-derived SD values using the Doron11
and Lee15 algorithms in Lake Malawi during the study period. The absolute mean difference (AMD)
is calculated as averaged |Doron11_SD – Lee15_SD|, and the relative mean difference (RMD) is
calculated as averaged |Doron11_SD – Lee15_ SD|/ Lee15_ SD × 100.

Year R2 Regression Equation AMD (m) RMD (%)

2003 0.99 y = (0.00012)x4 + (−0.0054)x3 + (0.04)x2 + (1.51)x + (0.06) 5.6 48.1
2004 0.98 y = (0.00013)x4 + (−0.0050)x3 + (0.04)x2 + (1.53)x + (−0.10) 5.2 42.5
2005 0.98 y = (0.00024)x4 + (−0.0094)x3 + (0.09)x2 + (1.32)x + (0.34) 5.8 45.0
2006 0.99 y = (0.00025)x4 + (−0.0088)x3 + (0.07)x2 + (1.54)x + (−0.17) 6.5 48.9
2007 0.98 y = (0.00035)x4 + (−0.0131)x3 + (0.13)x2 + (1.18)x + (0.45) 5.7 46.8
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Table 5. Summary of pixel-based comparison of monthly MERIS-derived SD values using the Doron11
algorithm and those using Lee15 algorithms in Lake Malawi during the study period. The absolute
mean difference (AMD) is calculated as averaged |Doron11_SD – Lee15_SD|, and the relative mean
difference (RMD) is calculated as averaged |Doron11_SD – Lee15_SD|/ Lee15_SD × 100.

Month R2 Regression Equation AMD (m) RMD (%)

Jan 0.98 y = (0.00024)x4 + (−0.0093)x3 + (0.10)x2 + (1.07)x + (1.20) 6.5 47.3
Feb 0.99 y = (0.00008)x4 + (−0.0035)x3 + (0.03)x2 + (1.45)x + (0.18) 4.9 42.7
Mar 0.98 y = (0.00033)x4 + (−0.0145)x3 + (0.19)x2 + (0.52)x + (2.35) 6.3 48.1
Apr 0.99 y = (0.00015)x4 + (−0.0061)x3 + (0.05)x2 + (1.45)x + (0.12) 5.5 46.4
May 0.98 y = (0.00028)x4 + (−0.0094)x3 + (0.06)x2 + (1.72)x + (−0.87) 5.9 48.9
Jun 0.98 y = (0.00005)x4 + (0.0011)x3 + (−0.11)x2 + (2.98)x + (−3.73) 6.2 51.8
Jul 0.97 y = (0.00042)x4 + (−0.0124)x3 + (0.06)x2 + (2.12)x + (−2.13) 6.4 58.7

Aug 0.97 y = (0.00090)x4 + (−0.0323)x3 + (0.35)x2 + (0.37)x + (1.34) 6.0 54.2
Sept 0.98 y = (0.00046)x4 + (−0.0184)x3 + (0.22)x2 + (0.63)x + (1.66) 6.1 45.9
Oct 0.99 y = (0.00014)x4 + (−0.0049)x3 + (0.02)x2 + (1.63)x + (−0.08) 5.2 37.0
Nov 0.99 y = (0.00018)x4 + (−0.0064)x3 + (0.05)x2 + (1.49)x + (0.19) 5.2 40.0
Dec 0.99 y = (0.00014)x4 + (−0.0057)x3 + (0.05)x2 + (1.33)x + (0.55) 5.2 40.3

Average 0.98 5.8 46.8
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3.2. Evaluation of Water Transparency in Lake Malawi

Figure 6 shows yearly water transparency level maps in Lake Malawi, which were generated
from yearly SD distribution maps (obtained from MERIS data using the Lee15 algorithm) based on
the OECD classification system [36] (i.e., Table 3). The yearly percentages for each water transparency
level are summarized in Table 6. From Figure 6 and Table 6, it can be seen that: (1) Lake Malawi
maintained four transparency levels throughout the period 2003–2011; (2) waters with transparency
level 1 accounted for the largest area in the lake (58.7–79.7%), followed by waters with transparency
level 2 (17.3–37.5%) and level 3 (2.2–3.6%), and with transparency level 4 (0.1–0.4%); (3) waters with
transparency levels 3 and 4 were always distributed along the southwestern and southern lakeshores,
and sometimes found in northern part (e.g., in 2004); (4) the largest change of transparency levels was
found between levels 1 and 2; and (5) waters with transparency levels 1 and 2 accounted for more than
95% of the lake.

Table 6. Yearly percentage for each water transparency level shown in (Figure 6).

Year Level 1 (%) Level 2 (%) Level 3 (%) Level 4 (%)

2003 67.6 28.4 3.6 0.4
2004 65.5 30.5 3.6 0.4
2005 79.7 17.3 2.8 0.2
2006 80.0 17.7 2.2 0.1
2007 72.5 23.9 3.3 0.3
2008 73.6 22.5 3.6 0.3
2009 68.6 27.6 3.6 0.2
2010 58.7 37.5 3.6 0.2
2011 74.5 22.8 2.5 0.2

Average 71.2 25.4 3.2 0.3
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Figure 6. Yearly water transparency level maps in Lake Malawi. These maps were generated from
yearly SD distribution maps (obtained from MERIS data using the Lee15 algorithm) based on the
Economic Cooperation and Development (OECD) classification system [36].

Figure 7 shows monthly water transparency level maps in Lake Malawi, which were generated
from monthly SD distribution maps (obtained from MERIS data using the Lee15 algorithm) based on
the OECD classification system [36]. The monthly percentages for each water transparency level are
summarized in Table 7. From Figure 7 and Table 7, it can be seen that there were several noticeable
seasonal variations of SD in Lake Malawi. First, SD values from October–January were generally
higher than in other months, and more than 78.5% of the water area was classified as transparency level
1 during the period. Second, the lake water was more turbid in February, April, July, and August than
in other months due to water areas with transparency level 2 constituting more than 31.3% in these
months; July, in particular, was dominated by water transparency level 2 (59.4%). Third, Lake Malawi
was dominated by transparency levels 1 and 2 throughout the year (more than 95%), but the other two
water transparency levels (i.e., levels 3 and 4) were also found in the lake each month.
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Table 7. Monthly percentage for each water transparency level shown in (Figure 7).

Month Level 1 (%) Level 2 (%) Level 3 (%) Level 4 (%)

Jan 81.4 16.0 2.4 0.2
Feb 53.8 40.8 4.2 1.2
Mar 73.7 23.0 3.1 0.2
Apr 64.7 31.3 3.5 0.5
May 72.2 24.5 3.2 0.1
Jun 70.0 26.7 3.2 0.1
Jul 37.1 59.4 3.4 0.1

Aug 50.9 45.1 3.8 0.2
Sept 78.5 17.9 3.4 0.2
Oct 87.5 9.5 2.7 0.3
Nov 82.4 14.7 2.6 0.3
Dec 79.2 17.4 3.0 0.4

Average 69.3 27.2 3.2 0.3

Figure 8 shows yearly averaged SD values in Lake Malawi from 2003 to 2011. Although a slightly
decreased trend of SD values was observed, the change was not significant in Lake Malawi during the
nine years (R2 = 0.051; p > 0.05). The highest and lowest yearly averaged SD values were observed in
Lake Malawi in 2006 (13.6 m) and 2010 (11.6 m), respectively.
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Figure 8. Yearly averaged SD from 2003–2011 in Lake Malawi (red solid line); the black dashed (—)
line represents the trend line.

4. Discussion

In this study, we compared two semi-analytical algorithms (i.e., Doron11 and Lee15) by applying
them to Lake Malawi to estimate SD values from nine years of MERIS data (2003–2011). We found
that although the two algorithms were developed based on different underwater visibility theories
(i.e., classic and new), SD estimations using the two algorithms were highly correlated, with R2 larger
than 0.96 (Figure 5; Tables 4 and 5). Lee et al. [20] also reported a high R2 value of 0.89 when comparing
the performance of the two algorithms with simulation data. These results indicate that there is no
substantial difference between the two algorithms, especially if only one is used to evaluate water
transparency change in a waterbody.

However, we found that the Doron11 algorithm always gave higher SD estimations than the
Lee15 algorithm, with an averaged AMD value of 5.8 m in Lake Malawi. A similar trend was also
found by Lee et al. [20]. In addition, by comparing the SD estimations from the two algorithms to
in situ SD measurements, we found that the Lee15 algorithm outperformed the Doron11 algorithm
with a MAPE value of 18.7% (Figure 4e). In contrast, the Doron11 algorithm overestimated SD values
with a MAPE value of 73.4% (Figure 4f). These findings indicate that water quality would probably
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be overestimated if one used SD values from the Doron11 algorithm. For example, if we used SD
distribution maps generated using the Doron11 to classify water transparency levels, we would have
found that on average more than 94% of Lake Malawi was classified as level 1, and the sum of levels 3
and 4 would be less than 1% (results not shown).

Preisendorfer [31] reported that the value of the numerator of Equation (1) (i.e., Γ) could vary
from 5 to 10. In the present study, the values of Γ were calculated in a range of 7.5–8.3, with an average
of 7.9, within the range of initially published values. Therefore, we consider that the overestimations
of SD values by Doron11 mainly derived from the denominator of Equation (1) (i.e., Kd(v) + c(v)).
Previous studies have pointed out that it is difficult to directly estimate c(v) from Rrs because of
the ratio’s requirement of the backscattering and scattering coefficients, which cannot be obtained
from Rrs [32]. In addition, it is well known that the ratio of the backscattering and scattering
coefficients can vary temporally and spatially [32,38–40]. The Lee15 algorithm overcomes this difficulty,
because the algorithm requires only Kd. Therefore, Lee15 algorithm can be considered more robust
than the Doron11 algorithm. However, we still found some overestimations in lower SD values and
underestimations in higher SD values with the Lee15 algorithm (Figure 4), indicating that further
improvements of the algorithm are necessary.

As mentioned in the introduction, there is no routine monitoring of water transparency in Lake
Malawi due to the financial and institutional constraints in the surrounding countries [6]. In addition,
even though there have been several studies measuring SD values by field surveys, it is difficult to
use these measurements to evaluate water transparency or its changes for the entire lake, because
all of these studies focused on only a small part of the lake for a short period of time. For example,
Gondwe [41] investigated seasonal variation of SD in the Southeast Arm of Lake Malawi (see Figure 3
here) and reported that SD values ranged from 2.1 to 12.3 m; however, 79% of the SD values were
between 4 and 8 m. Later, Macuiane et al. [42] reported that SD values were between 2 and 6 m in the
Southeast part of the lake in 2012. In addition, Weyl et al. [22] reported that SD values were between
12 and 20 m in Lake Malawi.

None of the previous studies could show water transparency status for the entire surface of
Lake Malawi, which, based on our results, always has four transparency levels (SD values ranging
from 1.5 m to >12 m). The SD distribution maps generated from MERIS data can show not only the
different water transparency levels, and the percentage and spatial distribution of each level, but also
their seasonal and annual variations (Figures 6 and 7). Such information is useful for lake water
management. Therefore, we consider that the combination of satellite data and the semi-analytical
algorithm (Lee15) to be a useful tool for routinely monitoring water quality in Lake Malawi.

Our results also showed that turbid waters (transparency levels 3 and 4) in Lake Malawi are
mainly distributed along the southwestern lakeshore. This is probably because the majority of
the inflowing rivers, population, and rainfall are concentrated in the southwestern watershed of
the lake [43]. Although no significant water transparency changes were found in Lake Malawi
during the study period (2003–2011), continuous monitoring of the lake’s water transparency remains
necessary using Lee15 algorithm and more current new sensors such as Landsat 8/OLI, Sentinel-2/MSI,
Sentinel-3/OLCI, which have been successfully used for deriving SD values in several previous
studies [44–46].

Our future work will link the MERIS-derived SD values to trophic state of Lake Malawi. For this
purpose, chlorophyll-a concentrations (Chl-a) in Lake Malawi are required to build a relationship
between Chl-a and SD values as well as to determine coefficients for adapting Carlson’s trophic
state index (CTSI, [18]) model [47–50]. Chl-a estimation from MERIS data is ongoing by using OC4E
algorithm [51].

As pointed out by a previous study, loss of biodiversity due to fishing and nearshore water quality
impacts has been a threat to Lake Malawi [52]. The information on water quality of Lake Malawi
provided in this study can be used to help in the management of the lake and its basin as well as toward
achieving the Sustainable Development Goal 6, target 6.3 (Monitoring Ambient Water Quality; [53]).
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5. Conclusions

In this study, we first compared the performance of two semi-analytical algorithms (i.e., Doron11
and Lee15) in Lake Malawi. Our results showed that even though the SD estimations from the two
algorithms were very highly correlated, with R2 larger than 0.96, the Lee15 algorithm outperformed the
Doron11 algorithm in Lake Malawi with a high estimation accuracy (RMSE = 1.17 m, MAPE = 18.7%,
R = 0.66, p < 0.05). The Doron11 usually overestimated SD values. These results indicate that water
transparency in Lake Malawi can be evaluated by combining MERIS data and the Lee15 without
algorithm recalibration using in situ data. This finding is important for most African lakes due to lack
of in situ data for evaluating water quality or recalibrating an estimation algorithm in these lakes.

We then evaluated water transparency in Lake Malawi using the SD values estimated from nine
years of MERIS data (2003–2011) with the Lee15 algorithm. Our results showed that there were always
four water transparency levels in Lake Malawi throughout the study period. The levels 1 and 2 water
areas tended to shift and trade places, depending on the year or season. In contrast, levels 3 and 4
water areas were relatively stable and constantly distributed along the southwestern and southern
lakeshores. Generally, Lake Malawi is dominated by waters with SD values larger than 6 m (>95%).
This is the first analysis to provide an overall and comprehensive assessment of water transparency
status and spatiotemporal variation in Lake Malawi.
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Appendix A


bb(490) = bbw(490) + N

D with
N = −B490−560bbw(560) + B490−560

aw(560)
f (560) R(560)+

α490−560B490−560
f (490)
f (560)

R(560)
R(490)bbw(490) − α490−560B490−560

R(560)
f (560) aw(490)

D = 1− α490−560B490−560
f (490)
f (560)

R (560)
R (490)

(A1)

a(490) =
f (490)bb(490)

R(490)
(A2)

bp(490) =
bbp(490)

−0.0310 + 0.0503tanh
( bbp(490)+0.00686

0.00820

) (A3)

where, bbw is acquired from Zhang et al. [34] and the average ratio of the scattering coefficient at 490
and 560 nm was equal to 1.003 (B490−560 dimensionless) and the proportionality factor between the
residual absorption at 490 and 560 nm equal to 0.323 (α490−560 equally dimensionless). The value for
the proportionality factor f (λ) = 0.335 at both wavelength 490 and 560 nm, and R (λ) is the irradiance
reflectance just below the surface [16]; (aw (490) = 0.0150 m−1) and (aw (560) = 0.0619 m−1).
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