
remote sensing  

Article

Using Sentinel-2 Multispectral Images to Map the
Occurrence of the Cossid Moth (Coryphodema tristis)
in Eucalyptus Nitens Plantations of Mpumalanga,
South Africa

Samuel Takudzwa Kumbula *, Paramu Mafongoya, Kabir Yunus Peerbhay,
Romano Trent Lottering and Riyad Ismail

School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P/Bag X01,
Scottsville 3209, Pietermaritzburg, South Africa; mafongoya@ukzn.ac.za (P.M.);
peerbhaykabir@gmail.com (K.Y.P.); lottering@ukzn.ac.za (R.T.L.); Ismail.Riyad@gmail.com (R.I.)
* Correspondence: takudzwasamuel@gmail.com; Tel.: +27-719-974-833

Received: 18 September 2018; Accepted: 28 November 2018; Published: 31 January 2019
����������
�������

Abstract: Coryphodema tristis is a wood-boring insect, indigenous to South Africa, that has recently
been identified as an emerging pest feeding on Eucalyptus nitens, resulting in extensive damage
and economic loss. Eucalyptus plantations contributes over 9% to the total exported manufactured
goods of South Africa which contributes significantly to the gross domestic product. Currently,
the distribution extent of the Coryphodema tristis is unknown and estimated to infest Eucalyptus nitens
compartments from less than 1% to nearly 80%, which is certainly a concern for the forestry sector
related to the quantity and quality of yield produced. Therefore, the study sought to model the
probability of occurrence of Coryphodema tristis on Eucalyptus nitens plantations in Mpumalanga,
South Africa, using data from the Sentinel-2 multispectral instrument (MSI). Traditional field surveys
were carried out through mass trapping in all compartments (n = 878) of Eucalyptus nitens plantations.
Only 371 Eucalyptus nitens compartments were positively identified as infested and were used to
generate the Coryphodema tristis presence data. Presence data and spectral features from the area
were analysed using the Maxent algorithm. Model performance was evaluated using the receiver
operating characteristics (ROC) curve showing the area under the curve (AUC) and True Skill Statistic
(TSS) while the performance of predictors was analysed with the jack-knife. Validation of results
were conducted using the test data. Using only the occurrence data and Sentinel-2 bands and
derived vegetation indices, the Maxent model provided successful results, exhibiting an area under
the curve (AUC) of 0.890. The Photosynthetic vigour ratio, Band 5 (Red edge 1), Band 4 (Red),
Green NDVI hyper, Band 3 (Green) and Band 12 (SWIR 2) were identified as the most influential
predictor variables. Results of this study suggest that remotely sensed derived vegetation indices
from cost-effective platforms could play a crucial role in supporting forest pest management strategies
and infestation control.

Keywords: multispectral remote sensing; Eucalyptus nitens; Coryphodema tristis (Cossid moth);
Sentinel 2; Maxent model

1. Introduction

In South Africa, emerging forest pests have caused extensive damage to Eucalyptus plantations [1].
Approximately 1.3 million hectares of South African land is composed of both hard and softwoods
with the majority located in the eastern parts of the country; primarily in Mpumalanga (40.8%),
KwaZulu-Natal (39.5%) and the Eastern Cape (11.1%) [2]. These plantations contribute annually
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to South Africa’s gross domestic product with Eucalyptus plantations contributing over 9% to the
total of exported manufactured goods [3]. These species are the most productive planted exotics that
mostly offer timber, pulp and paper in South Africa [4–6]. Therefore, a robust mechanism needs to be
established to prevent excessive damage, as numerous investments have been injected into the forestry
sector, particularly the Mpumalanga province [7]. Since 2004, Coryphodema tristis, commonly known as
Cossid moth, has been the major cause of damage to Eucalyptus nitens resources across Mpumalanga,
with forest managers requiring up-to-date information to support their forest protection interventions
at ground level [8–10].

C. tristis is an indigenous wood-boring insect that commonly infests tree families, such as Ulmaceae
(Elm Family), Vitaceae (Wild Grape family), Rosaceae (Rose family), Scrophulariaceae (Figwort family),
Malvaceae (Mallow family) and Combretaceae (Indian almond family) [11,12]. However, a sudden shift by
the C. tristis to infest E. nitens in Southern Africa has been observed. According to Gebeyehu et al. [10],
the shift of the C. tristis to infest E. nitens trees may be caused by a few to non-existent natural enemies
in the area. As a result, the absence of natural enemies influences the increase of pests in the geographic
area, due to less interspecific competition [13]. This results in the moth breeding and multiplying at
faster rates and increasing the intensities of E. nitens infestation. Adult female moths lay eggs on the
bark of the E. nitens trees and the larvae feed on the bark damaging the cambium [10]. The damage
reduces the movement of water within the tree and also extends to the trunk and branches which turn
black [8]. Furthermore, as the larvae grow, it drills extensive tunnels into the sapwood and hardwood
of the E. nitens which results in the trees producing resin on their trunks and branches and sawdust
on the base of the forest floor [11]. However, extensive tunnelling by the moth has resulted in severe
damage to trees increasing the probability of tree mortality. Additionally, pupal casings are found
protruding on the tunnelled bark or either at the base of the floor indicating the presence of C. tristis.

In recent years, researchers have attempted to use environmental variables to predict the spatial
distribution of C. tristis [8,11]. For example, Boreham [9] conducted a study that investigated the
outbreak and impact of C. tristis on E. nitens in the Highveld of Mpumalanga, using environmental
variables and the Residual Maximum Likelihood (REML) statistical method. The results showed
that older E. nitens trees (above 8 years) and lower elevation sites less than 1600 m were the most
susceptible to C. tristis infestations. Similarly, Adam et al. [8] used climatic and topographical variables
to map the presence and extent of C. tristis infestations in E. nitens plantations of Mpumalanga. Using a
random forest classifier, results indicated that with September and April’s maximum temperatures;
April’s median rainfall and elevation played a crucial role in identifying conditions that are suitable
for C. tristis occurrence. Their results furthermore predicted that areas with a maximum temperature
greater than 23 ◦C in September and 22 ◦C in April were the most susceptible to infestation. While these
studies have successfully utilised environmental and climatic variables to predict the presence of the
moth, different studies have identified a number of limitations regarding traditional data collection
methods to determine the presence or absence of pests.

Different studies stated that traditional methods such as field surveys are mostly time-consuming,
costly, labour-intensive, spatially restrictive and likely unreliable as data collection is based on the
knowledge of the surveyor [14,15]. Hence, a direct detection approach that provides real-time
information and can be repeated regularly for up-to-date decisions is required. Furthermore,
utilizing environmental or climatic variables only for mapping the spatial distribution of pests can
be challenging since these variables focus precisely on the surrounding factors and not the actual
damage of plantations. For example, Germishuizen et al. [16] utilized environmental factors to
determine the susceptibility of pine compartments to bark stripping by Chacma baboons (Papio ursinus).
Results indicated that indirect variables such as altitude provide a challenge in explaining the
complex relationship of baboon-damage risk. Moreover, Donatelli et al. [17] indicated that observed
environmental datasets alone were no longer sufficient to predict the behaviour of pests due to climate
change that has influenced the variability of temperature averages, rainfall means and distributions.
Thus, requiring more traditional field surveys to confirm whether a particular area has been truly
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infested. Bouwer et al. [11] indicated that actual confirmation of infestation was certainly confirmed
by tree felling which is impossible for large-scale assessments. Hence, the use of remotely sensed data
with the ancillary data such as environmental and climatic variables would provide an up-to-date,
repeatable source of information for forest assessment and inventory.

Remote sensing has improved the accuracy of predictions of forest-damaging pests using narrow
and broad bands in the visible, near, shortwave-infrared and red edge regions [15,18,19]. For example,
Adelabu et al. [20] sought to discriminate the levels of change in forest canopy cover instigated by
insect defoliation using hyperspectral data in mopane woodland. Results indicated that the overall
accuracy of classification was 82.42% using a random forest algorithm and was 81.21% using ANOVA.
In another study, Oumar and Mutanga [19] successfully assessed the potential of WorldView-2 bands,
environmental variables, as well as vegetation indices which resulted in the prediction of Thaumastocoris
peregrinus infestations on Eucalyptus trees. Results indicated that WorldView-2 sensor bands and indices
predicted T. peregrinus damage with an R2 value of 0.65 and a root mean square error of 3.62% in an
independent test data set. Similarly, Lottering et al. [18] also found that vegetation indices derived
from the red edge region correlated with Gonipterus scutellatus-induced vegetation defoliation using
WorldView-2 satellite data. Furthermore, Pietrzykowski et al. [15] assessed the presence and severity
of defoliation and necrosis caused by the Mycosphaerella fungus in a Eucalyptus globulus plantation,
using multi-spectral imagery in north-western Tasmania, Australia. Their results indicated that
high spatial resolution airborne digital imagery performed well, producing an accuracy of 71% for
defoliation and 67% for necrosis. Therefore, despite the optimal modelling accuracies attained using
multispectral remotely sensed data in these studies, these data sets are expensive and limited to a local
scale. In this regard, there is an urgent need for testing and assessing the utility of other cheaper data
sets that could capture the disease and pest incidences at landscape levels.

This study, therefore, sought to model the probability of the occurrence of the C. tristis on
E. nitens plantations in Mpumalanga, South Africa using the cost-effective Sentinel-2 multispectral
instrument and derived vegetation indices. Sentinel-2 images across the valuable red edge portion
of the electromagnetic spectrum are suitable for forest health applications related to pest and disease
damage detection [21,22]. The large swath width and a 5-day temporal resolution make this sensor
suitable for repeatable monitoring over forest plantations and detect pest-related damage continuously
for effective management and control. Therefore, we used Maxent a robust machine-learning algorithm
to predict the probability of the occurrence of the C. tristis using remotely sensed data.

2. Materials and Methods

2.1. Study Area

The research was conducted in the Mpumalanga province of South Africa in the Lothair village,
also known as Silindile, and is located in the Msukaligwa Local Municipality (Figure 1). The study site
is located between 26◦26′25.08” S and 30◦3′59.4” E in the Highveld of Mpumalanga. Elevation of the
study area ranges from 1200 to 2100 m above sea level.

The area is associated with between 783–1200 mm of rainfall on average per year from November
to March. The Highveld has a summer (October to February) to winter (April to August) temperature
range of approximately 19 ◦C, with average temperatures ranging between 8 ◦C and 26 ◦C in the
contrasting seasons. The Highveld is among South Africa’s highly productive commercial plantation
forests that consist of Pine and Eucalyptus plantations. Greater parts of the Highveld are comprised of
sandstone and granite derived soils which the majority of commercial tree species are grown.
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Figure 1. (a) Map of South Africa showing the Mpumalanga Province, (b) the location of the study area within the Mpumalanga Province (c,d) show healthy and 
infested Eucalyptus nitens and (e) shows the sampled compartments over the Sentinel-2 image with a false-colour composite of R-NIR-B (B4, B8 & B2).
Figure 1. (a) Map of South Africa showing the Mpumalanga Province, (b) the location of the study area within the Mpumalanga Province (c,d) show healthy and
infested Eucalyptus nitens and (e) shows the sampled compartments over the Sentinel-2 image with a false-colour composite of R-NIR-B (B4, B8 & B2).
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2.2. Image Acquisition

A cloud-free Sentinel-2A MSI image of the study area acquired on 19 August 2016,
was downloaded from the United States Geological Survey website (www.earthexplorer.ugs.gov).
The MSI sensor has a revisit time of 5 days making the detection of pest damage to vegetation
instantaneous [21,23,24]. The MSI sensor covers a large area with a swath width of 290 km for
increasing the spatial coverage of area of interest [22,24]. Sentinel-2A has thirteen bands ranging
from 443.9 nm to 2202.4 nm including four 10 m visible and near-infrared bands, six 20 m red edge,
near infrared and shortwave infrared bands and three 60 m bands visible, near-infrared and shortwave
infrared bands. The narrow red edge bands cover spectral regions of 703.9 nm, 740.2 nm and 782.5 nm
that can be utilised for monitoring vegetation status [22,23,25].

2.3. Image Processing and Analysis

Atmospheric correction of the image was done using the Sentinel Application Platform (SNAP)
software, which incorporates the plugin, Sen2Cor. In total, ten bands were derived for modelling the
probability of the occurrence of the C. tristis as shown in Table 1. In this study, Sentinel-2A bands 1,
9 and 10 were excluded because of their sensitivity to aerosol, clouds and spatial resolution (60 m).
Furthermore, these three bands are not used for vegetation mapping.

Table 1. Sentinel-2 bands used in this study.

Spatial Resolution (m) Sentinel-2 Bands Wavelength (nm) Bandwidth (nm)

Band 2—Blue 496.6 98
10 Band 3—Green 560.0 45

Band 4—Red 664.5 38
Band 8—NIR 835.1 145

Band 5—Vegetation Red Edge 703.9 19
Band 6—Vegetation Red Edge
Band 7—Vegetation Red Edge

Band 8a—Narrow NIR

740.2
782.5
864.8

18
28
33

20 Band 11—SWIR (2) 1613.7 143
Band 12—SWIR (3) 2202.4 242

Using the Index Database (https://www.indexdatabase.de/db/i.php), we selected vegetation
indices with the best capacity to detect and map the occurrence of the C. tristis (see Table 2).
Additionally, a number of published vegetation indices that have been effective in characterizing
vegetation defoliation, many of which are sensitive to reflectance in the visible and NIR regions were
derived. However, vegetation indices with wavelengths from the red edge region were given more
emphasis based on their ability to identify stressed vegetation [18].

www.earthexplorer.ugs.gov
https://www.indexdatabase.de/db/i.php
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Table 2. Sentinel 2 vegetation indices tested in this study.

Vegetation Indices Abbreviation Equation Index Equation Reference

Simple Ratio 800/500 Pigment specific simple ratio C1 PSSRc1 NIR
Blue

B8
B2 [26]

Simple Ratio 520/670 SR520/670 Blue
Red

B2
B4 [27]

Simple Ratio 774/677 SR774/677 Vegetation Red Edge
Red

B7
B4 [28]

Simple Ratio NIR/700–715 SRNir/700–715 Water vapour
Vegetation Red edge

B9
B5 [29]

Normalized Difference Vegetation Index NDVI NIR−Red
NIR+Red

B8−B4
B8+B4 [30]

Normalized Difference 780/550 Green NDVI hyper GNDVIhyper Vegetation Red edge−Green
Vegetation Red edge+Green

B7−B3
B7+B3 [31]

Normalized Difference Salinity Index NDSI SWIR2−SWIR3
SWIR2+SWIR3

B11−B12
B11+B12 [32]

Normalized Difference 800/470 Pigment specific normalized difference C2 PSNDc2 NIR−Blue
NIR+Blue

B8−B2
B8+B2 [26]

Chlorophyll Green Chlgreen
{

Vegetation Red edge
Green

}−1 {
B7
B3

}−1
[33]

Normalized Difference 550/650 Photosynthetic vigour ratio PVR Green−Red
Green+Red

B3−B4
B3+B4 [34]
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2.4. Field Data Collection

On the 19 August 2016, a field visit was conducted in two South African Pulp and Paper Industries
(SAPPI) plantations totalling 23,928 hectares to establish the presence/absence of the pest in the area.
SAPPI plantations are divided into two blocks namely, Woodstock and Riverbend that contains
878 E. nitens compartments. Compartments are partitioned from the blocks that contain the E. nitens
plantations and vary in size. Woodstock is located in the northern region of the SAPPI plantation
and consists of 55 E. nitens plantations, whilst Riverbend located in the southern region comprises
of 1145 plantations. Field crews from SAPPI were assigned different compartments to assist with
field work in order to cover the whole study area. To determine the presence/absence of the C. tristis
in E. nitens compartments, we used a quadrat sampling technique to carry out mass trapping of
C. tristis. Mass trapping was carried out from 15 June to 19 August 2016 using a minimum of 19 and a
maximum of 348 yellow bucket funnel traps with pheromone lures across all E. nitens compartments.
Pheromones that match the chemical scent of a female adult moth was used to lure male moths into
the traps that were located in the compartments [8]. The number of traps used in the field varied
with the size of the compartments where traps were placed at 50 m apart from each other hence, in
bigger compartments there were more traps compared to smaller compartments. To determine the
presence/absence, the sawdust and resin on the stem or the base of the tree were used as indicators
of the presence/absence of the C. tristis. Locations of these indicators were then measured using a
handheld Trimble GeoHX 6000 Global Positioning System (GPS) with a sub-meter accuracy (<10 cm).
The dataset of pest damage indicators was then used to extract spectra from the Sentinel-2A image
and develop training and testing datasets for statistical analysis.

2.5. Maxent Modelling Approach

The freely available Maxent approach (version 3.4.0) is developed for species distribution
modelling (SDM) and was used in this study for modelling the probability of the occurrence of the
C. tristis (http://biodiversityinformatics.amnh.org/open_source/maxent/) [35]. Maxent is a machine
learning technique that uses presence-only data to determine the potential spatial suitability preference
of species [35,36]. The model evaluates the probability of the occurrence from a number of spatial
environmental variables [37–39]. For Maxent to determine the probability of occurrence and reduce
uncertainty, it requires more presence information of the target species [40]. The background dataset
definition contributes to the model’s output significantly and requires the species full environmental
distribution of those areas that have been searched [41]. As a result, Maxent establishes a model with a
maximum entropy in relation to the data of presence locations and variables to similar interactions
with background locations [36,41].

In this study, a total of 20 predictor variables with a correlation −0.8 < r < 0.8 were considered
for determining the probability of the occurrence of C. tristis. Bands and vegetation indices from
Sentinel-2A MSI data were used to run four model scenarios in Maxent to determine the probability
of the occurrence of the C. tristis (as shown in Table 3). These four model scenarios were carried out
independently to identify which predictor variables were more robust in modelling the probability of
the occurrence of the C. tristis.

Table 3. Bands and indices from Sentinel-2A MSI data used as independent variables for predicting
the probability of occurrence of the C. tristis with Maxent models.

Model
Scenarios

Sentinel-2A
Bands and Indices List of Variables Used

1 Spectral bands Band 2, Band 3, Band 4, Band 5, Band 6, Band 7, Band 8, Band 8A, Band 11 and Band 12

2 Vegetation indices PSSRc1, SR520/670, SR774/677, SRNir/700-715, NDVI, GNDVIhyper, NDSI, PSNDc2, Chlgreen and PVR

3 Combined variables Bands and vegetation indices

4 The most influential bands Band 5, Band 4, Band 3, Band 12, Band 2, PVR, GNDVIhyper, PSND, SR774/667 and NDSI

http://biodiversityinformatics.amnh.org/open_source/maxent/
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2.6. Model Accuracy Assessment

For this study, presence data of the C. tristis infested locations (n = 371) within the compartments
were randomly partitioned into two sets, 70% training data (n = 259) and 30% test data (n = 111).
A sub-sample was used as the replicate run and iterations were fixed to 500. The regularization
multiplier was maintained at 4 to avoid overfitting of the test data [36]. The remaining model
values were set to default values. A complementary log-log (clog log) output was utilised because it
strongly predicts areas of moderately high output compared to the logistic output [34]. To avoid
bias of estimation, the study used a nonparametric method called the jack-knife to analyse the
effects of environmental variables on model results to indicate influential variables. This method can
estimate parameters and adjust the deviation without assumptions of distribution probability [42,43].
Hence, during training, Maxent performs a jack-knife test that assesses the relative importance of each
predictor variable which explain the spatial distribution of the species [41]. Model performance was
assessed using the area under the curve (AUC) of the receiver operating characteristics (ROC) [39,44,45].
ROC is a graphical plot generated by the Maxent algorithm based on the AUC when model sensitivity
is plotted against 1 minus model specificity [16,37]. Hence, the model was characterized as more
accurate when the curve followed the plot y-axis when compared to the x-axis because it attained a
higher sensitivity value than a specificity value. Validation of results were carried out using test data.

In that regard, the AUC ranged from 0 to 1 and the accuracy was classified as poor between
0.5–0.70, while 0.70 and 0.80 are good and above 0.90 are termed high [46,47]. Additionally,
the jack-knife test was used to assess the contribution of each variable’s to the model and highlighted the
dominant variables [39,46]. Furthermore, True Skill Statistic (TSS), also known as the Hanssen–Kuipers
discriminant was utilized to assess the accuracy of the model. TSS accommodates both sensitivity
and specificity errors and success as a result of random guessing [48,49]. It ranges from −1 to +1,
whereby +1 indicates perfect agreement whilst values of zero or less indicate random performance.
The advantage of TSS compared to Kappa is that, TSS is not affected by prevalence making it a better
accuracy assessment method [50,51]. In terms of prevalence, Kappa may introduce bias with regards to
the frequency of validation sites (field data) that is, a higher frequency of a specific species would result
in higher prevalence rates, which would ultimately affect the classification accuracy [50].

2.7. Mapping C. tristis Occurrence

To determine the spatial distribution of the C. tristis, Maxent applies the maximum-entropy
principle to fit the model and compares the interactions between the presence locations and variables
to estimate the probability of species distribution [52,53]. A complementary log-log (clog log) output
was utilized as it strongly predicts areas of moderately high output [35]. The regularization multiplier
was set at 4 to avoid overfitting the test data [36]. Model parameters were set to default replication
of 1 with 500 iterations using cross-validation run type. Based on a threshold value, we used a
10-percentile threshold value in Maxent to generate model predictions using combined predictor
variables (bands and vegetation indices). An estimate of probability of occurrence of C. tristis was
exported to ArcGIS 10.4 from Maxent showing presence = 1 and absence = 0. Using ArcGIS 10.4,
maps were generated to indicate presence/absence of C. tristis.

3. Results

3.1. Maxent Modelling of C. tristis Occurrence

Table 4 shows the results attained after running the three models for determining the probability of
the occurrence of the C. tristis. Using spectral bands, an overall accuracy of test data = 0.898 and training
data = 0.891 with a TSS value of 0.282 was achieved while vegetation indices produced an overall accuracy
of test data = 0.872 and training data = 0.875 with a TSS value of 0.324. When comparing the two models,
the overall accuracy decreased by 0.026 test data and 0.04 training data. As a result, Sentinel-2 derived
vegetation indices were outperformed by bands in detecting the probability of the occurrence of C. tristis.
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Table 4. Evaluation results for all Maxent models used for predicting the probability of the occurrence
of C. tristis.

Predictor Variables
Model Accuracy

AUC
TSS

Training Testing

Bands 0.891 0.898 0.282
Vegetation indices 0.875 0.872 0.324

Combined variables 0.900 0.890 0.344

The results in Table 4 show that the overall integration of bands and vegetation indices produced
higher prediction accuracy in this study. Using the combined data set, the model yielded a high
overall accuracy of 0.890 test data and 0.900 training data with a TSS value of 0.344. Bands performed
slightly weaker than vegetation indices. Based on the results, the models performed above the random
prediction of 0.5 indicating good results.

Respectively in Figure 2, the Maxent model produced a test jack-knife that indicated the relative
importance of each variable in the modelling process. In Figure 2a, the most influential bands in the
model were Band 5 (Red edge 1), Band 4 (Red), Band 3 (Green), Band 12 (SWIR 3) and Band 2 (Blue)
respectively. As illustrated in Figure 2b, PVR, GNDVIhyper, PSND, SR774/667 and NDSI respectively
were the most influential variables in the vegetation indices model. Figure 3 is Jack-knife test variable
importance graph of combined variables derived in modelling the spatial distribution of the C. tristis.

Band 5 (Red edge 1) contributed significantly to the probability of the occurrence of the C. tristis
with a variable importance of 0.814 (Figure 2a). This shows the significance of the vegetation red edge
band in discriminating healthy and unhealthy E. nitens trees. Moreover, Band 4 (Red) was the second
highest variable with a contribution of 0.802. Band 4 (Red) recorded a decrease in the reflectance
indicating the possibility of infested vegetation in the study area. Additionally, Figure 2a illustrates
that bands in the VIS had the highest contribution as Band 3 (Green) was the third highest variable
with a contribution of 0.793. Moreover, both Bands 11 (SWIR 2) and 12 (SWIR 3) performed well in
the modelling of the C. tristis, with Band 12 (SWIR 3) contributing 0.784 as the fourth highest variable.
Band 2 (Blue) also yielded a contribution of 0.757 and was the fifth highest variable in the model.
In addition, Band 8 (NIR), Band 6 (Red edge 2), Band 7 (Red edge 3) and Band 8A (Narrow NIR)
displayed a significant contribution above 0.65 each to the overall model. Sentinel-2 derived bands
demonstrated the high potential of predicting the likely spatial distribution of the C. tristis.

As shown in Figure 2b, PVR was the most prominent variable in the model with a contribution of
0.818. The index has the potential to detect any changes in the chlorophyll content and identify weakly
active vegetation affected by stress [29]. The results showed that GNDVIhyper was the second highest
important variable with a contribution of 0.797. The test jack-knife highlighted that the PSND was the
third highest variable that performed well in the model with a contribution of 0.776. Both the NDSI
and NDVI performed fairly equally with a contribution of 0.720. The remaining vegetation indices
had a contribution above 0.500 in the model. The results obtained using Sentinel-2 derived vegetation
indices alone produced slightly lower prediction accuracies when compared to those derived using
the spectral bands.

Comparing the results attained in the model 1 and model 2 for each variable, it is evident that
contribution accuracies did not significantly increase indicating similar strength in the prediction of
the occurrence of C. tristis. Moreover, of all the three models, the results showed that PVR increased
its contribution factor to 0.853 while Band 5 (Red edge 1) increased to 0.821 resulting in vegetation
indices outperforming the spectral bands. Hence, results showed that vegetation indices (TSS = 0.324)
outperformed bands (TSS = 0.282). However, model 3 produced a TSS value of 0.344, which is closer to
+1 indicating a higher accuracy. Therefore, the results from model 3 using both bands and vegetation
indices established a significant improvement on the overall contribution accuracies integrated into this



Remote Sens. 2019, 11, 278 10 of 16

study. Clearly, the results from the three models that surpassed the random prediction of 0.5 highlighted
the great potential of the model to predict the probability of the occurrence of C. tristis. Based on the
Jack-knife results obtained from using the bands alone and vegetation indices alone, we ran the final
models using the most influential predictor variables and the results for each group are shown in
Table 5 below displaying their performance metrics.
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Table 5. Evaluation results for all influential predictor variables used for predicting the probability of
occurrence of the C. tristis.

Predictor Variables
Model Accuracy

AUC
TSS

Training Testing

Bands 0.858 0.849 0.482
Vegetation indices 0.868 0.867 0.564

Combined variables 0.869 0.872 0.581

3.2. C. tristis Spatial Distribution

Using the Maxent models, we used both bands and indices to determine the highest probability of
C. tristis occurring across the study as illustrated in Figure 4. The highest probability of occurrence is
detected in the upper northern parts of the boundary in the Woodstock area descending to the southern
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areas in the Riverbend area. In the middle of the Riverbend plantation, the highest probability of
occurrence is expected, whilst minimum occurrence is anticipated at the lowest parts of the study area.
Generally, the presence of the moth is spread across the plantation and observed from the northern
parts to southern parts of the study area.
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4. Discussion

In this study, using remotely sensed data we modelled the probability of the occurrence of
C. tristis on E. nitens through the application of Maxent. Derived Sentinel-2 vegetation indices and
bands combined together performed well in modelling the probability the C. tristis occurring. However,
when testing both bands and vegetation indices individually, they did not perform as well as the
combined variables. The significance of these vegetation indices compared to bands could be explained
by their ability to detect the health status of vegetation. C. tristis damages the tree trunk and branches
of E. nitens resulting in foliage turning black through chlorosis and then it ultimately dies. As a result,
there is a reduction in the absorption rates of the visible light as there are fewer green pigments
available, which cause changes in the spectral reflection.

Results obtained in this study regarding the significance of vegetation indices concurs with
previous studies of Minařík and Langhammer [54], Metternicht [34] and Hart and Veblen [55].
According to Gitelson and Merzlyak [30], they identified that healthy and unhealthy (stressed)
vegetation is mostly observed in the green peak and vegetation red edge region, hence vegetation
indices such as PVR and GNDVI yielded an outstanding performance in detecting the probability
of C. tristis occurring. In addition, Metternicht [34] highlighted that PVR detects any changes in the
reflective properties originating from changes in chlorophyll content and produce low values for
photosynthetically weakly active vegetation. Moreover, Gitelson et al. [29] stated that new vegetation
indices such as GNDVIhyper have an extensive dynamic range compared to NDVI, hence, they are
more sensitive to chlorophyll changes. Therefore, this accounts for the high results yielded by
GNDVIhyper in predicting the probability C. tristis occurring in this study. Sanchez-Azofeifa et al. [56]
pointed out that SR and NDVI indices are used to estimate the chlorophyll concentration of vegetation
as well as observing fundamental variations on leaf age, henceforth, these attributes boosts its
performance. Findings from this study showed that SR800/500, SR 774/667 and NDVI performed
exceptionally well and can be credited to the above-mentioned. In addition, a combination of two
robust bands (NIR and Red) strengthens the probability of modelling and picking up vegetation
characteristics that indicate the occurrence of pests. Therefore, different studies have stated that the
integration of NIR and band 4 (NDVI) and vegetation indices derived from the red edge bands have
enhanced the prediction of pests [19,21,54]. For example, Hart and Veblen [56] illustrated that the
vegetation indices were the most important predictors to detect tree mortality caused by spruce beetle
(Dendroctonus rufipennis) at grey-stage. Therefore, future studies should seek to improve the detection
of C. tristis and its associated impacts on E. nitens trees using powerful vegetation indices.

The results of this study also revealed that the band 5 (Red edge 1) was significant in determining
the probability of C. tristis occurring. There is a high correlation between red edge bands and the
chlorophyll content of the leaves, so that the spectral signature of E. nitens after chlorosis due to
an attack by the C. tristis is easily detected on the red edge spectrum. Several studies that sought
to detect and map the spatial distribution of insect pests affecting forest species confirmed that the
red edge region played a significant role in predicting of the occurrence of such pests [19,20,57,58].
In support of these results, Oumar and Mutanga [19], Murfitt et al. [59] and Pietrzykowski et al. [15]
concluded that red edge bands perform slightly better than other bands in the detection of insect
pests in forest damage. For example, Oumar and Mutanga [19] illustrated that the red-edge and NIR
bands of WorldView-2 were sensitive to stress-induced changes in leaf chlorophyll content, therefore,
improved the potential to detect T. peregrinus infestations. In this regard, the Sentinel-2’s red edge bands
demonstrated its great potential in monitoring the probability of C. tristis occurring, using its higher
temporal and spatial resolution.

In determining the probability of the occurrence of C. tristis, results of this study further revealed
the significant potential of the SWIR region. This region has the ability to map vegetation statues
due to its sensitivity to changes in the water content of vegetation [54,55]. Generally, the larva of
C. tristis feeds on the cambium, which is responsible for providing layers of phloem and xylem
in E. nitens plantations. Therefore, damage to the cambium affects both phloem and xylem which
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ultimately alters the movement cycle of water from the roots through the trunk to the leaves of E. nitens
trees [54]. This results in foliage and canopy water changes. It induces stress which leads to the
reduction of the water content present in the main trunk and branches contributing to the change in
colour to black. Subsequently, the variations are then detected effectively in the SWIR portion of the
electromagnetic spectrum. This then explains the optimal influence of the band 11 (SWIR 2) and band
12 (SWIR 3) in detecting E. nitens compartments that are vulnerable to C. tristis. Similarly to this study,
Senf et al. [60] accurately detected the infestations of bark beetle at the red and grey-attack stage using
the SWIR bands which distinguished changes in the water content. In a similar study, Ismail et al. [61]
indicated that infestation caused by the S. noctilio on pine trees altered the water balance of the tree
and bands within the SWIR captured these changes and improved the overall prediction of the pests’
distribution. Furthermore, Hart and Veblen [55] indicated that in the spruce beetle and mountain pine
beetle-infested trees, reflection increased in the SWIR and decreased in NIR due to a decrease in the
foliar moisture content.

As a species distribution model (SDM), the Maxent model developed a spatial distribution
map that shows the probability of the occurrence of C. tristis across the study area. High levels of
presence of the moth spread across from the upper (Riverbend plantation) to the lower (Woodstock
plantation) portions of the study area while medium presence along the centre of the study area was
recorded. The increase in the presence of the moth from the upper portions to the lower portions
might be characterized by the absence of natural enemies and hence, could explain the higher level
of infestations. The results were similar to Adam et al. [8] which illustrated that in the upper portion
of the study area where there was a high presence of the C. tristis compared to the lower portions
indicating that C. tristis is rapidly spreading. However, our results may be affected by the trap density
and as a result, future studies should look at better sampling strategies. Hence, distribution maps
of the C. tristis can help to formulate and improve on-going monitoring and management efforts to
reduce the current infestation of E. nitens forests.

5. Conclusions

This study tested the utility of the new generation Sentinel-2 multispectral instrument in detecting
and mapping the probability of the occurrence of C. tristis infestations on E. nitens plantations. Based on
the findings of this study, we conclude that bands in the VIS, NIR and SWIR are significant in modelling
the probability of the occurrence of C. tristis. These three regions measure the spectral reflectance of
vegetation that results in determining the amount of healthy and unhealthy vegetation. Additionally,
the red edge bands played a crucial role in the probability of occurrence of C. tristis. Consequently,
vegetation indices derived from the VIS/NIR have demonstrated their influence in detecting changes
in the chlorophyll concentrations and improving the overall modelling concept in this study. Overall,
these results underscore the significance of the Sentinel-2 sensor in detecting C. tristis. The results are
a platform towards the detection and mapping of the highest probability of occurrence of C. tristis,
using different multispectral sensors and their spatial resolution. The utility of remotely sensed data
will improve the monitoring and management strategies used in forecasting the prevalence of pests as
well as their spread. Moreover, key stakeholders such as forest managers will be in a position to control
the damage of pests and devise proactive measures that are seemingly appropriate. This information
is critical for preventing extensive damage in the forestry sector.
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